A careful pathological examination often reveals the presence of different lesions at various stages of tumor progression and invasion, even in those thyroid glands presenting with solitary nodules. Each thyroid lesion is composed of many different cell types, reflecting the marked heterogeneity of normal thyroid tissue. Among the different chromosome regions altered in thyroid tumors, 7q21 appears to be specifically involved in malignant tumors, especially of the follicular type. This study was conducted to analyze the loss of heterozygosity (LOH) pattern at 7q21 in pure populations of cells from each single lesion harbored in surgically removed thyroid glands, and to evaluate its clinical significance. One hundred and forty-two thyroid glands were examined, all showing, as a common trait, a goitrous appearance associated with one single lesion in 114 cases and with more than one in the remaining 28 cases. A total number of 318 lesions was analyzed, consisting of 142 goiters (TG), 48 hyperplasias (TH), 80 adenomas (TA) and 48 carcinomas (TC). Five different types of cells were isolated by laser capture microdissection from each lesion. DNA was analyzed by PCR and polyacrylamide gel electrophoresis in search of LOH affecting five microsatellite markers, D7S660, D7S630, D7S492, D7S657, and D7S689. We detected LOH at 7q21 not only in thyroid malignant tumors but also in benign lesions. Allelic loss occurred exclusively in dark nucleus and eosinophilic cytoplasm cells, commonly observed in the follicular type of lesions. In these types of lesions allelic loss frequency increases along with neoplastic transformation (9% in TG, 41% in TH, 68% in TA and 100% in TC), and is directly correlated with thyroid gland volume as well as with the presence of multiple lesions. The highest LOH rate was observed for D7S492, indicating that the recurrent region of deletion was localized at the corresponding genetic locus at 7q21.2, in the same position where the common fragile site FRA7E was previously mapped. LOH at this locus represents an early event in the development of follicular TC and is associated with intense growth of thyroid glands.

Clinico-pathological significance of cell-type-specific loss of heterozygosity on chromosome 7q21: analysis of 318 microdissected thyroid lesions

TROVATO, Maria Concetta;RUGGERI, Rosaria Maddalena;VITARELLI, Enrica;BENVENGA, Salvatore;BARRESI, Gaetano;TRIMARCHI, Francesco;
2004-01-01

Abstract

A careful pathological examination often reveals the presence of different lesions at various stages of tumor progression and invasion, even in those thyroid glands presenting with solitary nodules. Each thyroid lesion is composed of many different cell types, reflecting the marked heterogeneity of normal thyroid tissue. Among the different chromosome regions altered in thyroid tumors, 7q21 appears to be specifically involved in malignant tumors, especially of the follicular type. This study was conducted to analyze the loss of heterozygosity (LOH) pattern at 7q21 in pure populations of cells from each single lesion harbored in surgically removed thyroid glands, and to evaluate its clinical significance. One hundred and forty-two thyroid glands were examined, all showing, as a common trait, a goitrous appearance associated with one single lesion in 114 cases and with more than one in the remaining 28 cases. A total number of 318 lesions was analyzed, consisting of 142 goiters (TG), 48 hyperplasias (TH), 80 adenomas (TA) and 48 carcinomas (TC). Five different types of cells were isolated by laser capture microdissection from each lesion. DNA was analyzed by PCR and polyacrylamide gel electrophoresis in search of LOH affecting five microsatellite markers, D7S660, D7S630, D7S492, D7S657, and D7S689. We detected LOH at 7q21 not only in thyroid malignant tumors but also in benign lesions. Allelic loss occurred exclusively in dark nucleus and eosinophilic cytoplasm cells, commonly observed in the follicular type of lesions. In these types of lesions allelic loss frequency increases along with neoplastic transformation (9% in TG, 41% in TH, 68% in TA and 100% in TC), and is directly correlated with thyroid gland volume as well as with the presence of multiple lesions. The highest LOH rate was observed for D7S492, indicating that the recurrent region of deletion was localized at the corresponding genetic locus at 7q21.2, in the same position where the common fragile site FRA7E was previously mapped. LOH at this locus represents an early event in the development of follicular TC and is associated with intense growth of thyroid glands.
2004
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/1581090
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 16
social impact