Room temperature reaction of the epoxy resin poly(bisphenolA-co-epichlorohydrin), glycidyl end-capped with the coupling agent (3-aminopropyl)triethoxysilane, in 1:2 (1), 1:1 (2) and 2:1 (3) molar ratios, leads, after curing for three months at room temperature, to glassy, transparent, crack-free solids which were investigated by SEM, TGA, DSC, NIR and Raman spectroscopy. SEM investigations show substantially a great homogeneity over the entire area with absence of cracks, veins and/or fissures and without formations of clusters and/or aggregates. The conversion of oxirane rings, as found by Raman spectroscopy, decreases by increasing the epoxy/amine ratio, with conversion percentages ranging from 95.3 to 81.3%. As a common feature, the presence in 1, 2 and 3 of Si-O-Si linkages increases the polymer degradation temperature and thermal oxidative stability relative to the parent epoxy resin by shifting the weight loss to higher temperatures. Differently from mixtures 2 and 3, which show the Tg at 90 °C, the mixture 1 does not exhibit any detectable glass transition.

Epoxy-silica polymers as restoration materials. Part II

CARDIANO, Paola;SERGI, Sergio;TRISCARI, Maurizio;PIRAINO, Pasquale
2003-01-01

Abstract

Room temperature reaction of the epoxy resin poly(bisphenolA-co-epichlorohydrin), glycidyl end-capped with the coupling agent (3-aminopropyl)triethoxysilane, in 1:2 (1), 1:1 (2) and 2:1 (3) molar ratios, leads, after curing for three months at room temperature, to glassy, transparent, crack-free solids which were investigated by SEM, TGA, DSC, NIR and Raman spectroscopy. SEM investigations show substantially a great homogeneity over the entire area with absence of cracks, veins and/or fissures and without formations of clusters and/or aggregates. The conversion of oxirane rings, as found by Raman spectroscopy, decreases by increasing the epoxy/amine ratio, with conversion percentages ranging from 95.3 to 81.3%. As a common feature, the presence in 1, 2 and 3 of Si-O-Si linkages increases the polymer degradation temperature and thermal oxidative stability relative to the parent epoxy resin by shifting the weight loss to higher temperatures. Differently from mixtures 2 and 3, which show the Tg at 90 °C, the mixture 1 does not exhibit any detectable glass transition.
2003
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/1584576
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 33
social impact