We study the optical trapping of highly elongated linear nanostructures in the focal region of a high-numerical aperture lens (optical tweezers). The radiation torque and trapping force on these nanostructures that are modeled as chains of identical spherical scatterers are calculated by means of multipole field expansions in the framework of the transition matrix approach. We investigate both orientational and trapping stability and calculate force constants and trap parameters in order to clarify the role of the linear geometry in the optical trapping mechanism. Furthermore, we calculate optical trapping of nanowires of different materials and compare our theoretical findings with available experimental results.

Radiation torque and force on optically trapped linear nanostructures

DENTI, Paolo;SAIJA, Rosalba;
2008-01-01

Abstract

We study the optical trapping of highly elongated linear nanostructures in the focal region of a high-numerical aperture lens (optical tweezers). The radiation torque and trapping force on these nanostructures that are modeled as chains of identical spherical scatterers are calculated by means of multipole field expansions in the framework of the transition matrix approach. We investigate both orientational and trapping stability and calculate force constants and trap parameters in order to clarify the role of the linear geometry in the optical trapping mechanism. Furthermore, we calculate optical trapping of nanowires of different materials and compare our theoretical findings with available experimental results.
2008
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/1836984
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 85
  • ???jsp.display-item.citation.isi??? 84
social impact