The endogenous steroid estrogen has been shown to affect neuronal growth, differentiation and survival. Genistein, daidzein and other isoflavones have been shown to mimic the pharmacological actions of the gonadal steroid estrogen with which they have structural similarities. Several studies have looked at the effect of isoflavones in the brain. In the present study, human cortical cell line HCN 1-A maintained in culture was used to test the neuroprotective efficacy of a natural mixture of phytoestrogenic isoflavones (genistein, daidzein, biochanin A and formononetin) from Red clover against glutamate toxicity. Neuronal viability was determined by MTT or trypan blue test and neuronal membrane damage was quantitatively measured by lactate dehydrogenase (LDH). The results obtained indicate that exposure of HCN 1-A cell cultures to glutamate resulted in concentration-dependent decreases in neuron viability. Concentration of glutamate ranging from 0.01 to 5 mM was toxic to these cultures. A 24-h pretreatment with 0.5, 1 and 2 mu g/ml isoflavones enriched fraction (IEF) significantly increased cell survival and significantly decreased cellular lactate dehydrogenase release from differenziated cortical neurons, indicating that neurons treated with isoflavones were protected from the cell death induced by glutamate exposure. Moreover, the pretreatment with IEF prevented the morphological disruption caused by glutamate as shown by microscopical inspection. These findings indicate that IEF has a neuroprotective effect in human cortical neurons and that this effect might be resulted from his antioxidant and estrogenic actions. (C) 2008 Elsevier GmbH. All rights reserved.

The Phytoestrogenic Isoflavones from Trifolium pratense L. (Red Clover) protects human cortical neurons from glutamate toxicity

OCCHIUTO, Francesco;SAMPERI, STEFANIA;PALUMBO, DORA RITA;PINO, ANNALISA;DE PASQUALE, Rita;CIRCOSTA, Clara
2008-01-01

Abstract

The endogenous steroid estrogen has been shown to affect neuronal growth, differentiation and survival. Genistein, daidzein and other isoflavones have been shown to mimic the pharmacological actions of the gonadal steroid estrogen with which they have structural similarities. Several studies have looked at the effect of isoflavones in the brain. In the present study, human cortical cell line HCN 1-A maintained in culture was used to test the neuroprotective efficacy of a natural mixture of phytoestrogenic isoflavones (genistein, daidzein, biochanin A and formononetin) from Red clover against glutamate toxicity. Neuronal viability was determined by MTT or trypan blue test and neuronal membrane damage was quantitatively measured by lactate dehydrogenase (LDH). The results obtained indicate that exposure of HCN 1-A cell cultures to glutamate resulted in concentration-dependent decreases in neuron viability. Concentration of glutamate ranging from 0.01 to 5 mM was toxic to these cultures. A 24-h pretreatment with 0.5, 1 and 2 mu g/ml isoflavones enriched fraction (IEF) significantly increased cell survival and significantly decreased cellular lactate dehydrogenase release from differenziated cortical neurons, indicating that neurons treated with isoflavones were protected from the cell death induced by glutamate exposure. Moreover, the pretreatment with IEF prevented the morphological disruption caused by glutamate as shown by microscopical inspection. These findings indicate that IEF has a neuroprotective effect in human cortical neurons and that this effect might be resulted from his antioxidant and estrogenic actions. (C) 2008 Elsevier GmbH. All rights reserved.
2008
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/1838188
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 34
social impact