Peripheral blood mononuclear cells (PBMCs) from healthy individuals can be infected by human T-lymphotropic virus type 1 (HTLV-1) upon cocultivation of the PBMCs with irradiated HTLV-1-transformed human MT-2 cells. This model system closely mimics HTLV-1 transmission through cell-to-cell contact. Carbohydrate-binding agents (CBAs) such as the alpha(1,3)/alpha(1,6)mannose-specific Hippeastrum hybrid agglutinin and the GIcNAc-specific Urtica dioica agglutinin, and also the small, nonpeptidic alpha(1,2)-mannose-specific antibiotic pradimicin A, were able to efficiently prevent cell-to-cell HTLV-1 transmission at nontoxic concentrations, as evidenced by the lack of appearance of virus-specific mRNA and of the viral protein Tax in the acceptor cells. Consistently, antivirally active doses of CBAs fully prevented HTLV-1-induced stimulation of PBMC growth. The inhibitory effects of CBAs on HTLV-1 transmission were also evident when HTLV-1-infected C5MJ cells were used in place of MT-2 cells as a virus donor cell line. The anti-HTLV-1 properties of the CBAs highlight the importance of the envelope glycans in events underlying HTLV-1 passage from cell to cell and indicate that CBAs should be further investigated for their potential to prevent HTLV-1 infection, including mother-to-child virus transmission by cell-to-cell contact through breast milk feeding.

Inhibition of HTLV-1 cell-to-cell transmission in vitro by carbohydrate-binding agents

MASTINO, Antonio;
2008-01-01

Abstract

Peripheral blood mononuclear cells (PBMCs) from healthy individuals can be infected by human T-lymphotropic virus type 1 (HTLV-1) upon cocultivation of the PBMCs with irradiated HTLV-1-transformed human MT-2 cells. This model system closely mimics HTLV-1 transmission through cell-to-cell contact. Carbohydrate-binding agents (CBAs) such as the alpha(1,3)/alpha(1,6)mannose-specific Hippeastrum hybrid agglutinin and the GIcNAc-specific Urtica dioica agglutinin, and also the small, nonpeptidic alpha(1,2)-mannose-specific antibiotic pradimicin A, were able to efficiently prevent cell-to-cell HTLV-1 transmission at nontoxic concentrations, as evidenced by the lack of appearance of virus-specific mRNA and of the viral protein Tax in the acceptor cells. Consistently, antivirally active doses of CBAs fully prevented HTLV-1-induced stimulation of PBMC growth. The inhibitory effects of CBAs on HTLV-1 transmission were also evident when HTLV-1-infected C5MJ cells were used in place of MT-2 cells as a virus donor cell line. The anti-HTLV-1 properties of the CBAs highlight the importance of the envelope glycans in events underlying HTLV-1 passage from cell to cell and indicate that CBAs should be further investigated for their potential to prevent HTLV-1 infection, including mother-to-child virus transmission by cell-to-cell contact through breast milk feeding.
2008
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/1844266
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 10
social impact