Extracellular regulated kinases (ERK1/2) and c-Jun N-terminal Kinases (JNK), are generally considered to play a key role in signal transduction pathways activated by a wide range of stimuli. We studied the effects of SP600125, a novel inhibitor of both JNK and ERK1/2, in male C57/BL6 mice given with an hyper-stimulating dose of cerulein (50 Ag/kg for each of four injections at hourly intervals) to elicit secretagogue-induced pancreatitis. A control group received four intra-peritoneal injections of 0.9% saline at hourly intervals. Animals were randomized to receive either SP600125 (15 mg/kg i.p. administered 2h before and 30 min after the first injection of cerulein) or its vehicle (1 ml/kg of a 10% DMSO/NaCl solution). A group of animals was killed 30 minutes after the last cerulein injection to evaluate pancreatic JNK and ERK1/2 activation by Western Blot analysis. Another group was sacrificed 2 hours after the last cerulein injection to evaluate serum lipase and amylase levels, pancreas oedema, pancreatic content of Tumor Necrosis Factor-a (TNF-a) and Intercellular adhesion molecule-1 (ICAM-1) and the histological alterations. SP600125 inhibited almost totally JNK activation (90%) and partially ERK1/2 activation (45%), reduced the serum lipase and amylase levels and the degree of oedema, blunted the increased pancreatic content of TNF-a and ICAM-1 and protected against the histological damage. Our data confirm that both JNK and ERK1/2 activation plays a key role in acute pancreatitis and that SP600125 may represent a potential therapeutic approach to the treatment of patients at high risk of developing this lifethreatening condition.

Protective effects of SP600125 a new inhibitor of c-jun N-terminal kinase (JNK) and extracellular-regulated kinase (ERK1/2) in an experimental model of cerulein-induced pancreatitis

MINUTOLI, Letteria;ALTAVILLA, Domenica;MARINI, Herbert Ryan;BITTO, ALESSANDRA;VENUTI, Francesco Saverio;FAMULARI, Ciro;MACRI', Antonio;VERSACI, Antonino;SQUADRITO, Francesco
2004-01-01

Abstract

Extracellular regulated kinases (ERK1/2) and c-Jun N-terminal Kinases (JNK), are generally considered to play a key role in signal transduction pathways activated by a wide range of stimuli. We studied the effects of SP600125, a novel inhibitor of both JNK and ERK1/2, in male C57/BL6 mice given with an hyper-stimulating dose of cerulein (50 Ag/kg for each of four injections at hourly intervals) to elicit secretagogue-induced pancreatitis. A control group received four intra-peritoneal injections of 0.9% saline at hourly intervals. Animals were randomized to receive either SP600125 (15 mg/kg i.p. administered 2h before and 30 min after the first injection of cerulein) or its vehicle (1 ml/kg of a 10% DMSO/NaCl solution). A group of animals was killed 30 minutes after the last cerulein injection to evaluate pancreatic JNK and ERK1/2 activation by Western Blot analysis. Another group was sacrificed 2 hours after the last cerulein injection to evaluate serum lipase and amylase levels, pancreas oedema, pancreatic content of Tumor Necrosis Factor-a (TNF-a) and Intercellular adhesion molecule-1 (ICAM-1) and the histological alterations. SP600125 inhibited almost totally JNK activation (90%) and partially ERK1/2 activation (45%), reduced the serum lipase and amylase levels and the degree of oedema, blunted the increased pancreatic content of TNF-a and ICAM-1 and protected against the histological damage. Our data confirm that both JNK and ERK1/2 activation plays a key role in acute pancreatitis and that SP600125 may represent a potential therapeutic approach to the treatment of patients at high risk of developing this lifethreatening condition.
2004
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/1893113
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 53
  • ???jsp.display-item.citation.isi??? 49
social impact