Leaf hydraulics of Aesculus hippocastanum L. were measured over the growing season and during extensive leaf mining by the larvae of an invasive moth (Cameraria ohridella Deschka et Dimic) that specifically destroy the palisade tissue. Leaves showed seasonal changes in hydraulic resistance (Rlamina) which were related to ontogeny. After leaf expansion was complete, the hydraulic resistance of leaves and the partitioning of resistances between vascular and extra-vascular compartments remained unchanged despite extensive disruption of the palisade by leafminers (up to 50%). This finding suggests that water flow from the petiole to the evaporation sites might not directly involve the palisade cells. The analysis of the temperature dependence of Rlamina in terms of Q10 revealed that at least one transmembrane step was involved in water transport outside the leaf vasculature. Anatomical analysis suggested that this symplastic step may be located at the bundle sheath where the apoplast is interrupted by hydrophobic thickening of cell walls. Our findings offer some support to the view of a compartmentalization of leaves into wellorganized water pools so that the transpiration stream would involve veins, bundle sheath and spongy parenchyma, while the palisade tissue would be largely by-passed with the possible advantage of protecting cells from shortterm fluctuations in water status.

Leafminers help us understand leaf hydraulic design

RAIMONDO, FABIO;LO GULLO, Maria Assunta;
2010-01-01

Abstract

Leaf hydraulics of Aesculus hippocastanum L. were measured over the growing season and during extensive leaf mining by the larvae of an invasive moth (Cameraria ohridella Deschka et Dimic) that specifically destroy the palisade tissue. Leaves showed seasonal changes in hydraulic resistance (Rlamina) which were related to ontogeny. After leaf expansion was complete, the hydraulic resistance of leaves and the partitioning of resistances between vascular and extra-vascular compartments remained unchanged despite extensive disruption of the palisade by leafminers (up to 50%). This finding suggests that water flow from the petiole to the evaporation sites might not directly involve the palisade cells. The analysis of the temperature dependence of Rlamina in terms of Q10 revealed that at least one transmembrane step was involved in water transport outside the leaf vasculature. Anatomical analysis suggested that this symplastic step may be located at the bundle sheath where the apoplast is interrupted by hydrophobic thickening of cell walls. Our findings offer some support to the view of a compartmentalization of leaves into wellorganized water pools so that the transpiration stream would involve veins, bundle sheath and spongy parenchyma, while the palisade tissue would be largely by-passed with the possible advantage of protecting cells from shortterm fluctuations in water status.
2010
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/1902033
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 52
  • ???jsp.display-item.citation.isi??? 45
social impact