The PALS high power iodine laser system in Prague (lambda = 1.315 mu m) was used to study non-linear processes in a laser-produced plasma at intense laser beam interactions with planar targets. The focus setting allows to alter the non-linear interaction of the main laser pulse with the ablated plasma produced by the front edge of a nanosecond laser pulse (300 ps FWHM). The arisen non-linear effects significantly influence the behavior of electrons, which accelerate fully striped or highly charged fast ions. Variations in time of the expanding plasma, recorded at the target surface by the use of Kentech low-magnification soft X-ray streak camera on similar to 2 ns time scale, are presented and discussed. Narrowing, arching and even splitting of expansion paths in the target-normal space-time diagram are shown. These phenomena are ascribed to the magnetic field, self-generated at high laser intensities, which may become strong enough to cause pinching of the expanding plasma. (C) 2012 Elsevier B.V. All rights reserved.

Studies of intense-laser plasma instabilities

TORRISI, Lorenzo;
2013-01-01

Abstract

The PALS high power iodine laser system in Prague (lambda = 1.315 mu m) was used to study non-linear processes in a laser-produced plasma at intense laser beam interactions with planar targets. The focus setting allows to alter the non-linear interaction of the main laser pulse with the ablated plasma produced by the front edge of a nanosecond laser pulse (300 ps FWHM). The arisen non-linear effects significantly influence the behavior of electrons, which accelerate fully striped or highly charged fast ions. Variations in time of the expanding plasma, recorded at the target surface by the use of Kentech low-magnification soft X-ray streak camera on similar to 2 ns time scale, are presented and discussed. Narrowing, arching and even splitting of expansion paths in the target-normal space-time diagram are shown. These phenomena are ascribed to the magnetic field, self-generated at high laser intensities, which may become strong enough to cause pinching of the expanding plasma. (C) 2012 Elsevier B.V. All rights reserved.
2013
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/2652783
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact