Previously a significant mitochondrial impairment was identified in alveolar epithelial cells exposed to metals adsorbed to combustion-generated particulate matter (PM). Due to the critical role of mitochondria in apoptosis, the aim of this study was to investigate the pro-apoptotic potential of metals present in oil fly ash (OFA). A549 cells were exposed to water-soluble components of an OFA sample, containing vanadium [V(IV)], iron [Fe(III)], and nickel [Ni(II)] (68.8, 110.4, and 18 μM, respectively). Experiments were also performed using individual metal solutions. Apoptosis was detected and the mitochondrial role was assessed by a caspase-9 inhibitor (Z-LEHD-FMK). To determine whether the presence of impaired mitochondria in unexposed daughter cells increased apoptosis, an in vitro model was developed that allowed determination of effects until the third cell generation. To specifically examine the toxicity of vanadium (V), that characterize the airborne pollutant examined in this study, p53involvement and metabolic impairment through changes in HIF-1α and Glut-1 expression were determined. OFA and individual metal solutions produced significant apoptosis in the progeny of exposed cells, triggering the intrinsic apoptosis pathway. In apoptosis induced by poorly genotoxic metal V, p53 did not play a significant role. However, V exposure increased nuclear translocation of HIF-1α and expression of the Glut-1 receptor, indicating metabolic impairment due to metal-induced mitochondrial dysfunction. Overall, these results improve our knowledge of the pathogenic role that airborne metals and in particular V exerted in respiratory epithelium.

Mitochondrial-mediated apoptosis pathway in alveolar epithelial cells exposed to the metals in combustion-generated particulate matter

VISALLI, GIUSEPPA
Primo
Formal Analysis
;
BERTUCCIO, MARIA PAOLA
Formal Analysis
;
PICERNO, Isa Anna Maria
Penultimo
Data Curation
;
DI PIETRO, Angela
Ultimo
Conceptualization
2015-01-01

Abstract

Previously a significant mitochondrial impairment was identified in alveolar epithelial cells exposed to metals adsorbed to combustion-generated particulate matter (PM). Due to the critical role of mitochondria in apoptosis, the aim of this study was to investigate the pro-apoptotic potential of metals present in oil fly ash (OFA). A549 cells were exposed to water-soluble components of an OFA sample, containing vanadium [V(IV)], iron [Fe(III)], and nickel [Ni(II)] (68.8, 110.4, and 18 μM, respectively). Experiments were also performed using individual metal solutions. Apoptosis was detected and the mitochondrial role was assessed by a caspase-9 inhibitor (Z-LEHD-FMK). To determine whether the presence of impaired mitochondria in unexposed daughter cells increased apoptosis, an in vitro model was developed that allowed determination of effects until the third cell generation. To specifically examine the toxicity of vanadium (V), that characterize the airborne pollutant examined in this study, p53involvement and metabolic impairment through changes in HIF-1α and Glut-1 expression were determined. OFA and individual metal solutions produced significant apoptosis in the progeny of exposed cells, triggering the intrinsic apoptosis pathway. In apoptosis induced by poorly genotoxic metal V, p53 did not play a significant role. However, V exposure increased nuclear translocation of HIF-1α and expression of the Glut-1 receptor, indicating metabolic impairment due to metal-induced mitochondrial dysfunction. Overall, these results improve our knowledge of the pathogenic role that airborne metals and in particular V exerted in respiratory epithelium.
2015
File in questo prodotto:
File Dimensione Formato  
Mitochondrial-mediated apoptosis pathway in alveolar epithelial cells exposed to the metals in combustion-generated particulate matter.pdf

solo gestori archivio

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 317.66 kB
Formato Adobe PDF
317.66 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/2975770
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 25
social impact