Calcium doped ZnO (CZO) nanopowders with [Ca]/[Zn] atomic ratios of 0, 0.01, 0.03 and 0.05 were prepared via a sol-gel route and characterized by scanning electron microscopy, transmission electron microscopy, x-ray diffraction and Fourier transform infrared spectroscopy (FT-IR). Characterization data showed that undoped and Ca-doped ZnO samples have a hexagonal wurtzite structure with a slight distortion of the ZnO lattice and no extra secondary phases, suggesting the substitution of Ca ions in the ZnO structure. Chemo-resistive devices based on a thick layer of the synthesized CZO nanoparticles were fabricated and their electrical and sensing properties towards CO 2 were investigated. Sensing tests have demonstrated that Ca loading is the key factor in modulating the electrical properties and strongly improving the response of ZnO matrix towards CO2. An increased CO2 adsorption with Ca loading has been also evidenced by FT-IR, providing the basis for the formulation of a plausible mechanism for CO2 sensing operating on these sensors.

ZnO:Ca nanopowders with enhanced CO2 sensing properties

FAZIO, Enza;NERI, Fortunato;BARRECA, Francesco;DONATO, Nicola;BONAVITA, ANNA;LEONARDI, SALVATORE GIANLUCA;NERI, Giovanni
2015-01-01

Abstract

Calcium doped ZnO (CZO) nanopowders with [Ca]/[Zn] atomic ratios of 0, 0.01, 0.03 and 0.05 were prepared via a sol-gel route and characterized by scanning electron microscopy, transmission electron microscopy, x-ray diffraction and Fourier transform infrared spectroscopy (FT-IR). Characterization data showed that undoped and Ca-doped ZnO samples have a hexagonal wurtzite structure with a slight distortion of the ZnO lattice and no extra secondary phases, suggesting the substitution of Ca ions in the ZnO structure. Chemo-resistive devices based on a thick layer of the synthesized CZO nanoparticles were fabricated and their electrical and sensing properties towards CO 2 were investigated. Sensing tests have demonstrated that Ca loading is the key factor in modulating the electrical properties and strongly improving the response of ZnO matrix towards CO2. An increased CO2 adsorption with Ca loading has been also evidenced by FT-IR, providing the basis for the formulation of a plausible mechanism for CO2 sensing operating on these sensors.
2015
File in questo prodotto:
File Dimensione Formato  
2015_jpd_48_255503_7pp.pdf

solo gestori archivio

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.51 MB
Formato Adobe PDF
1.51 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3065365
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 64
  • ???jsp.display-item.citation.isi??? 61
social impact