A novel non-aqueous sol-gel route for synthesizing pure indium oxide (In2O3) nanoparticles (NPs) using indium acetylacetonate and n-butylamine as the reactive solvent, under solvothermal conditions, is herein proposed. The samples were characterized by an advanced X-ray method, whole powder pattern modeling (WPPM) and high-resolution transmission electron microscopy (HR-TEM), showing the exclusive presence of pure In2O3. Diffuse reflectance spectroscopy (DRS) was used to determine the optical band gap (E-g) of the sample. Moreover, these investigations also revealed that the In2O3 nanoparticles are quasi-spherical in shape, with a diameter of around 7 nm as prepared and 9.5 nm after thermal treatment at 250 degrees C. In2O3 NPs worked as highly sensitive sensing interfaces to provide resistance changes during exposure to sevoflurane, a volatile anesthetic agent used in surgical wards. The developed sensor demonstrated a good response and fast response/recovery time towards very low concentrations of sevoflurane in air, suggesting a very attractive application as a real-time monitoring analyzer in a hospital environment.

Novel nanosynthesis of In2O3 and its application as a resistive gas sensor for sevoflurane anesthetic

LEONARDI, SALVATORE GIANLUCA;DONATO, Nicola;NERI, Giovanni
2014-01-01

Abstract

A novel non-aqueous sol-gel route for synthesizing pure indium oxide (In2O3) nanoparticles (NPs) using indium acetylacetonate and n-butylamine as the reactive solvent, under solvothermal conditions, is herein proposed. The samples were characterized by an advanced X-ray method, whole powder pattern modeling (WPPM) and high-resolution transmission electron microscopy (HR-TEM), showing the exclusive presence of pure In2O3. Diffuse reflectance spectroscopy (DRS) was used to determine the optical band gap (E-g) of the sample. Moreover, these investigations also revealed that the In2O3 nanoparticles are quasi-spherical in shape, with a diameter of around 7 nm as prepared and 9.5 nm after thermal treatment at 250 degrees C. In2O3 NPs worked as highly sensitive sensing interfaces to provide resistance changes during exposure to sevoflurane, a volatile anesthetic agent used in surgical wards. The developed sensor demonstrated a good response and fast response/recovery time towards very low concentrations of sevoflurane in air, suggesting a very attractive application as a real-time monitoring analyzer in a hospital environment.
2014
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3065776
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 16
social impact