In this paper, the diffusion of different phases in a third-grade Korteweg fluid is modeled by introducing a phase-field as a new independent thermodynamic variable. The constitutive equations are supposed to depend on the mass density and its spatial derivatives up to the second order, as well as on specific internal energy, barycentric velocity and phase-field, together with their first-order spatial derivatives. The compatibility of the model with the second law of thermodynamics is exploited by applying a generalized Liu procedure. For isothermal and isochoric phases, a general evolution equation for the phase-field, which generalizes the classical Cahn-Hilliard equation, is derived. Specific entropy and free energy are proved to depend on the basic unknown fields as well as on their gradients. A general constitutive equation for the Cauchy stress, which encompasses the classical one postulated by Korteweg in 1901, is obtained.

Phase-field evolution in Cahn–Hilliard–Korteweg fluids

OLIVERI, Francesco;
2016-01-01

Abstract

In this paper, the diffusion of different phases in a third-grade Korteweg fluid is modeled by introducing a phase-field as a new independent thermodynamic variable. The constitutive equations are supposed to depend on the mass density and its spatial derivatives up to the second order, as well as on specific internal energy, barycentric velocity and phase-field, together with their first-order spatial derivatives. The compatibility of the model with the second law of thermodynamics is exploited by applying a generalized Liu procedure. For isothermal and isochoric phases, a general evolution equation for the phase-field, which generalizes the classical Cahn-Hilliard equation, is derived. Specific entropy and free energy are proved to depend on the basic unknown fields as well as on their gradients. A general constitutive equation for the Cauchy stress, which encompasses the classical one postulated by Korteweg in 1901, is obtained.
2016
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3090927
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact