Objectives: T-cell repertoire dysfunction characterizes human immunodeficiency virus type 1 (HIV-1) infection, but the pathogenic mechanisms remain unclear. Disease progression is probably due to a profound dysregulation of Th1, Th2, Th17 and Treg patterns. The aim of this study was to analyze the features of CD4+ T cells in HIV-positive patients with different viroimmunological profile. Methods: we used a gene expression dataset of CD4+ T cells from healthy donors, HIV+ naive patients and Elite Controllers (EC), obtained from the NCBI Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/, accession number GSE18233). Results: Principal Component Analysis (PCA) showed an almost complete overlap between the HIV-infected and EC patients, which cannot easily explain the different responses to HIV infection of these two group of patients. We have found that HIV patients and the EC showed an upregulation of the Th1 pro-inflammatory cytokines and chemokines, compared to the controls. Also, we have surprisingly identified IL28B, which resulted downregulated in HIV and EC compared to healthy controls. We focused attention also on genes involved in the constitution of the immunological synapse and we showed that HLA class I and II genes resulted significantly upregulated in HIV and in EC compared to the control. In addition to it, we have found the upregulation of others syncytial molecules, including LAG3, CTLA4, CD28 and CD3, assisting the formation of syncytia with APC cells. Conclusions: Understanding the mechanisms of HIV-associated immunological chaos is critical to strategically plan focused interventions.

CD4+ T-cell gene expression of healthy donors, HIV-1 and elite controllers: Immunological chaos

NUNNARI, Giuseppe
Primo
;
2016-01-01

Abstract

Objectives: T-cell repertoire dysfunction characterizes human immunodeficiency virus type 1 (HIV-1) infection, but the pathogenic mechanisms remain unclear. Disease progression is probably due to a profound dysregulation of Th1, Th2, Th17 and Treg patterns. The aim of this study was to analyze the features of CD4+ T cells in HIV-positive patients with different viroimmunological profile. Methods: we used a gene expression dataset of CD4+ T cells from healthy donors, HIV+ naive patients and Elite Controllers (EC), obtained from the NCBI Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/, accession number GSE18233). Results: Principal Component Analysis (PCA) showed an almost complete overlap between the HIV-infected and EC patients, which cannot easily explain the different responses to HIV infection of these two group of patients. We have found that HIV patients and the EC showed an upregulation of the Th1 pro-inflammatory cytokines and chemokines, compared to the controls. Also, we have surprisingly identified IL28B, which resulted downregulated in HIV and EC compared to healthy controls. We focused attention also on genes involved in the constitution of the immunological synapse and we showed that HLA class I and II genes resulted significantly upregulated in HIV and in EC compared to the control. In addition to it, we have found the upregulation of others syncytial molecules, including LAG3, CTLA4, CD28 and CD3, assisting the formation of syncytia with APC cells. Conclusions: Understanding the mechanisms of HIV-associated immunological chaos is critical to strategically plan focused interventions.
2016
File in questo prodotto:
File Dimensione Formato  
immunological choas 2016.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.09 MB
Formato Adobe PDF
2.09 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3092524
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact