The economics and environmental impact of a new technology for the production of urea from municipal solid waste, particularly the residue-derived fuel (RdF) fraction, is analyzed. Estimates indicate a cost of production of approximately is an element of 135 per ton of urea (internal rate of return more than 10%) and savings of approximately 0.113 tons of CH4 and approximately 0.78 tons of CO2 per ton of urea produced. Thus, the results show that this waste-to-urea (WtU) technology is both economically valuable and environmentally advantageous (in terms of saving resources and limiting carbon footprint) for the production of chemicals from municipal solid waste in comparison with both the production of urea with conventional technology (starting from natural gas) and the use of RdF to produce electrical energy (waste-to-energy). A further benefit is the lower environmental impact of the solid residue produced from RdF conversion. The further benefit of this technology is the possibility to realize distributed fertilizer production.

Waste-to-Chemicals for a Circular Economy: The Case of Urea Production (Waste-to-Urea)

Perathoner S
Penultimo
;
Centi G
Ultimo
2017-01-01

Abstract

The economics and environmental impact of a new technology for the production of urea from municipal solid waste, particularly the residue-derived fuel (RdF) fraction, is analyzed. Estimates indicate a cost of production of approximately is an element of 135 per ton of urea (internal rate of return more than 10%) and savings of approximately 0.113 tons of CH4 and approximately 0.78 tons of CO2 per ton of urea produced. Thus, the results show that this waste-to-urea (WtU) technology is both economically valuable and environmentally advantageous (in terms of saving resources and limiting carbon footprint) for the production of chemicals from municipal solid waste in comparison with both the production of urea with conventional technology (starting from natural gas) and the use of RdF to produce electrical energy (waste-to-energy). A further benefit is the lower environmental impact of the solid residue produced from RdF conversion. The further benefit of this technology is the possibility to realize distributed fertilizer production.
2017
File in questo prodotto:
File Dimensione Formato  
cssc.201601555.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.19 MB
Formato Adobe PDF
1.19 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3120789
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 54
  • ???jsp.display-item.citation.isi??? 46
social impact