Reelin is an extracellular matrix protein that plays a pivotal role in development of the central nervous system. Reelin is also expressed in the adult brain, notably in the cerebral cortex, where it might play a role in synaptic plasticity. The mechanism of action of reelin at the molecular level has been the subject of several hypotheses. Here we show that reelin is a serine protease and that proteolytic activity is relevant to its function, since (i) Reelin expression in HEK 293T cells impairs their ability to adhere to fibronectin-coated surfaces, and adhesion to fibronectin is restored by micromolar concentrations of diisopropyl phosphorofluoridate, a serine hydrolase inhibitor; (ii) purified Reelin binds FPPeg-biotin, a trap probe which irreversibly binds to serine residues located in active catalytic sites of serine hydrolases; (iii) purified Reelin rapidly degrades fibronectin and laminin, while collagen IV is degraded at a much slower rate; fibronectin degradation is inhibited by inhibitors of serine proteases, and by monoclonal antibody CR-50, an antibody known to block the function of Reelin both in vitro and in vivo. The proteolytic activity of Reelin on adhesion molecules of the extracellular matrix and/or receptors on neurons may explain how Reelin regulates neuronal migration and synaptic plasticity.

Reelin is a serine protease of the extracellular matrix

Persico, Antonio M.;
2002-01-01

Abstract

Reelin is an extracellular matrix protein that plays a pivotal role in development of the central nervous system. Reelin is also expressed in the adult brain, notably in the cerebral cortex, where it might play a role in synaptic plasticity. The mechanism of action of reelin at the molecular level has been the subject of several hypotheses. Here we show that reelin is a serine protease and that proteolytic activity is relevant to its function, since (i) Reelin expression in HEK 293T cells impairs their ability to adhere to fibronectin-coated surfaces, and adhesion to fibronectin is restored by micromolar concentrations of diisopropyl phosphorofluoridate, a serine hydrolase inhibitor; (ii) purified Reelin binds FPPeg-biotin, a trap probe which irreversibly binds to serine residues located in active catalytic sites of serine hydrolases; (iii) purified Reelin rapidly degrades fibronectin and laminin, while collagen IV is degraded at a much slower rate; fibronectin degradation is inhibited by inhibitors of serine proteases, and by monoclonal antibody CR-50, an antibody known to block the function of Reelin both in vitro and in vivo. The proteolytic activity of Reelin on adhesion molecules of the extracellular matrix and/or receptors on neurons may explain how Reelin regulates neuronal migration and synaptic plasticity.
2002
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3122151
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 28
  • Scopus 135
  • ???jsp.display-item.citation.isi??? 125
social impact