An update of the Resolution Elastic Neutron Scattering (RENS) approach consisting in measuring the elastically scattered neutron intensity versus the instrumental energy resolution is presented. In particular it is shown that the measured elastic scattering law as a function of the logarithm of the instrumental energy of resolution gives rise to an increasing sigmoid trend whose inflection point can be connected with the system relaxation time. The validity of the RENS approach is supported by a numerical simulation, taking into account a Gaussian resolution function and a Lorentzian scattering law, and experimentally by integrated EINS and QENS measurements performed as a function of temperature on three homologous disaccharide/water mixtures showing different relaxation times. Furthermore, the most important advantages of the RENS approach are discussed; in particular, in comparison with QENS, the RENS approach requires a smaller amount of sample, which is an important point in dealing with biological and exotic systems, is not affected by the use of model functions for fitting spectra, and furnishes a direct access to the system relaxation time.

Upgrading of resolution elastic neutron scattering (RENS)

Magazù, S.
Primo
;
Migliardo, F.
Secondo
;
Caccamo, M. T.
Ultimo
2013-01-01

Abstract

An update of the Resolution Elastic Neutron Scattering (RENS) approach consisting in measuring the elastically scattered neutron intensity versus the instrumental energy resolution is presented. In particular it is shown that the measured elastic scattering law as a function of the logarithm of the instrumental energy of resolution gives rise to an increasing sigmoid trend whose inflection point can be connected with the system relaxation time. The validity of the RENS approach is supported by a numerical simulation, taking into account a Gaussian resolution function and a Lorentzian scattering law, and experimentally by integrated EINS and QENS measurements performed as a function of temperature on three homologous disaccharide/water mixtures showing different relaxation times. Furthermore, the most important advantages of the RENS approach are discussed; in particular, in comparison with QENS, the RENS approach requires a smaller amount of sample, which is an important point in dealing with biological and exotic systems, is not affected by the use of model functions for fitting spectra, and furnishes a direct access to the system relaxation time.
2013
File in questo prodotto:
File Dimensione Formato  
6_Adv_Mat_Sci_Eng_2013.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.69 MB
Formato Adobe PDF
1.69 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3128862
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 6
social impact