Graphene quantum dots (GQD) are the next generation of nanomaterials with great potential in drug delivery and target-specific HIV inhibition. In this study we investigated the antiviral activity of graphene based nanomaterials by using water-soluble GQD synthesized from multiwalled carbon nanotubes (MWCNT) through prolonged acidic oxidation and exfoliation and compared their anti-HIV activity with that exerted by reverse transcriptase inhibitors (RTI) conjugated with the same nanomaterial. The antiretroviral agents chosen in this study, CHI499 and CDF119, belong to the class of non-nucleoside reverse transcriptase inhibitors (NNRTI). From this study emerged the RTI-conjugated compound GQD-CHI499 as a good potential candidate for HIV treatment, showing an IC50 of 0.09 μg/mL and an EC50 value in cell of 0.066 μg/mL. The target of action in the replicative cycle of HIV of the drug conjugated samples GQD-CHI499 and GQD-CDF119 was also investigated by a time of addition (TOA) method, showing for both conjugated samples a mechanism of action similar to that exerted by NNRTI drugs.

Graphene Quantum Dots Based Systems As HIV Inhibitors

Daniela Iannazzo
Primo
;
Alessandro Pistone
Secondo
;
Stefania Ferro;Laura De Luca;Anna Maria Monforte;Roberto Romeo
Penultimo
;
Maria Rosa Buemi
Ultimo
2018-01-01

Abstract

Graphene quantum dots (GQD) are the next generation of nanomaterials with great potential in drug delivery and target-specific HIV inhibition. In this study we investigated the antiviral activity of graphene based nanomaterials by using water-soluble GQD synthesized from multiwalled carbon nanotubes (MWCNT) through prolonged acidic oxidation and exfoliation and compared their anti-HIV activity with that exerted by reverse transcriptase inhibitors (RTI) conjugated with the same nanomaterial. The antiretroviral agents chosen in this study, CHI499 and CDF119, belong to the class of non-nucleoside reverse transcriptase inhibitors (NNRTI). From this study emerged the RTI-conjugated compound GQD-CHI499 as a good potential candidate for HIV treatment, showing an IC50 of 0.09 μg/mL and an EC50 value in cell of 0.066 μg/mL. The target of action in the replicative cycle of HIV of the drug conjugated samples GQD-CHI499 and GQD-CDF119 was also investigated by a time of addition (TOA) method, showing for both conjugated samples a mechanism of action similar to that exerted by NNRTI drugs.
2018
File in questo prodotto:
File Dimensione Formato  
bioconjchem2018(29)3084.pdf

solo utenti autorizzati

Descrizione: Bioconjugate Chemistry, 2018 (29) 3084-3093
Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 3.8 MB
Formato Adobe PDF
3.8 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3129477
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 109
  • ???jsp.display-item.citation.isi??? 89
social impact