The novel exopolysaccharide (EPS-B3-15) produced by the marine thermotolerant Bacillus licheniformis strain B3-15, constituted by mannose and glucose, has been recently reported as a valuable biopolymer in pharmaceutical applications. To dynamically characterize the thermal behavior of the whole EPS-B3-15 system, the Attenuated Total Reflectance Fourier Transform Infra-Red spectroscopy technique was used over a temperature range from ambient to 78.5 °C. The molecular changes of EPS-B3-15 during the heating process were evaluated by the spectral distance (SD) and wavelet cross-correlation (XWT) analysis. The thermal analysis revealed that the EPS-B3-15 possessed high stability until 78.5 °C. As evaluated by SD and XWT, the molecular structure of EPS-B3-15 at 45 °C was partially modified, due to –OH groups and the –COOH and –OH interactions, conferring a new conformational structure to the biopolymer. The thermal characterization provides novel information about the molecular conformations of the whole EPS-B3-15 system at different temperatures. The thermostable EPS-B3-15 can be successfully employed for biotechnological, nanotechnological and material science applications even at high temperatures

Thermal properties of an exopolysaccharide produced by a marine thermotolerant Bacillus licheniformis by ATR-FTIR spectroscopy

CACCAMO, Maria Teresa
Primo
;
Gugliandolo C.
Secondo
;
Zammuto V.
Penultimo
;
Magazu S.
Ultimo
2020-01-01

Abstract

The novel exopolysaccharide (EPS-B3-15) produced by the marine thermotolerant Bacillus licheniformis strain B3-15, constituted by mannose and glucose, has been recently reported as a valuable biopolymer in pharmaceutical applications. To dynamically characterize the thermal behavior of the whole EPS-B3-15 system, the Attenuated Total Reflectance Fourier Transform Infra-Red spectroscopy technique was used over a temperature range from ambient to 78.5 °C. The molecular changes of EPS-B3-15 during the heating process were evaluated by the spectral distance (SD) and wavelet cross-correlation (XWT) analysis. The thermal analysis revealed that the EPS-B3-15 possessed high stability until 78.5 °C. As evaluated by SD and XWT, the molecular structure of EPS-B3-15 at 45 °C was partially modified, due to –OH groups and the –COOH and –OH interactions, conferring a new conformational structure to the biopolymer. The thermal characterization provides novel information about the molecular conformations of the whole EPS-B3-15 system at different temperatures. The thermostable EPS-B3-15 can be successfully employed for biotechnological, nanotechnological and material science applications even at high temperatures
2020
File in questo prodotto:
File Dimensione Formato  
2020 Caccamo et al IJBioMac.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.23 MB
Formato Adobe PDF
1.23 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3149369
Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 32
social impact