CREBBP mutations are highly recurrent in B-cell lymphomas and either inactivate its histone acetyltransferase (HAT) domain or truncate the protein. Herein, we show that these two classes of mutations yield different degrees of disruption of the epigenome, with HAT mutations being more severe and associated with inferior clinical outcome. Genes perturbed by CREBBP mutation are direct targets of the BCL6/HDAC3 onco-repressor complex. Accordingly, we show that HDAC3 selective inhibitors reverse CREBBP mutant aberrant epigenetic programming resulting in: a) growth inhibition of lymphoma cells through induction of BCL6 target genes such as CDKN1A and b) restoration of immune surveillance due to induction of BCL6-repressed IFN pathway and antigen presentation genes. By reactivating these genes, exposure to HDAC3 inhibitor restored the ability of tumor infiltrating lymphocytes to kill DLBCL cells in an MHC class I and II dependent manner, and synergized with PD-L1 blockade in a syngeneic model in vivo. Hence HDAC3 inhibition represents a novel mechanism-based immune-epigenetic therapy for CREBBP mutant lymphomas.

Selective inhibition of HDAC3 targets synthetic vulnerabilities and activates immune surveillance in lymphoma

Mondello, Patrizia
Primo
;
2020-01-01

Abstract

CREBBP mutations are highly recurrent in B-cell lymphomas and either inactivate its histone acetyltransferase (HAT) domain or truncate the protein. Herein, we show that these two classes of mutations yield different degrees of disruption of the epigenome, with HAT mutations being more severe and associated with inferior clinical outcome. Genes perturbed by CREBBP mutation are direct targets of the BCL6/HDAC3 onco-repressor complex. Accordingly, we show that HDAC3 selective inhibitors reverse CREBBP mutant aberrant epigenetic programming resulting in: a) growth inhibition of lymphoma cells through induction of BCL6 target genes such as CDKN1A and b) restoration of immune surveillance due to induction of BCL6-repressed IFN pathway and antigen presentation genes. By reactivating these genes, exposure to HDAC3 inhibitor restored the ability of tumor infiltrating lymphocytes to kill DLBCL cells in an MHC class I and II dependent manner, and synergized with PD-L1 blockade in a syngeneic model in vivo. Hence HDAC3 inhibition represents a novel mechanism-based immune-epigenetic therapy for CREBBP mutant lymphomas.
2020
File in questo prodotto:
File Dimensione Formato  
2159-8290.CD-19-0116.full cancer discovery.pdf

Open Access dal 09/01/2021

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Copyright dell'editore
Dimensione 1.96 MB
Formato Adobe PDF
1.96 MB Adobe PDF Visualizza/Apri
3149434.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 7.98 MB
Formato Adobe PDF
7.98 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3149434
Citazioni
  • ???jsp.display-item.citation.pmc??? 26
  • Scopus 95
  • ???jsp.display-item.citation.isi??? 87
social impact