Effective and adaptive motor functions are important for living beings and developing computational and learning mechanisms for roving robots is a crucial aspect in biorobotics. In this chapter we report a new architecture for motor learning to be applied in insect-like walking robots. The proposed model is based on the MB structure previously introduced able to memorize time evolutions of key parameters of the neural motor controller to improve existing motor primitives. The adopted control scheme enables the structure to efficiently cope with goal-oriented behavioural motor tasks. The problem of body-size evaluation is also considered and a model for the parallax-based estimation is provided. Finally, a six-legged structure, showing a steady-state exponentially stable locomotion pattern, was employed to modulate its motor commands implementing an obstacle climbing procedure. Simulation results on a Drosophila-inspired hexapod robot are reported.

Controlling and learning motor functions

Patane L.;
2018-01-01

Abstract

Effective and adaptive motor functions are important for living beings and developing computational and learning mechanisms for roving robots is a crucial aspect in biorobotics. In this chapter we report a new architecture for motor learning to be applied in insect-like walking robots. The proposed model is based on the MB structure previously introduced able to memorize time evolutions of key parameters of the neural motor controller to improve existing motor primitives. The adopted control scheme enables the structure to efficiently cope with goal-oriented behavioural motor tasks. The problem of body-size evaluation is also considered and a model for the parallax-based estimation is provided. Finally, a six-legged structure, showing a steady-state exponentially stable locomotion pattern, was employed to modulate its motor commands implementing an obstacle climbing procedure. Simulation results on a Drosophila-inspired hexapod robot are reported.
2018
978-3-319-73346-3
978-3-319-73347-0
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3150951
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact