Precise tacrolimus treatment in transplanted patients is achieved in the clinical setting by performing therapeutic drug monitoring (TDM) and consequently adjusting therapy. The aim of this study was to retrospectively analyze the variability in tacrolimus blood levels throughout 2 years of observation in 75 transplanted patients and to investigate if tacrolimus blood levels correlate with presence of genetic polymorphisms, thus modifying tacrolimus pharmacokinetics. CYP3A5*1 (G6986A), CYP3A4*1B (A392G), CYP3A4*22, ABCB1 (C3435T; C1236T; G2677A/T), SLCO1B1 (T521C), polymorphisms were analyzed. Based on the e↵ect of their genotypes, patients were stratified into 5 groups: (1) reduced tacrolimus metabolism (RM), (2) increased metabolism (IM), (3) transporters polymorphisms (TM), (4) metabolism and transporter polymorphisms (AM) and (5) no mutations (Wild Type, WT). The percentage of the samples out of therapeutic range was significantly higher in the IM group than in the WT group (p = 0.001), as well as compared to the TM group (p = 0.004). Only IM pattern (p = 0.015) resulted as an independent predictor of number of tacrolimus blood levels out of therapeutic range. RM pattern (p = 0.006) was inversely related to the administered dose. Therefore, genotyping could become a standard practice before tacrolimus prescription thus decreasing side e↵ects, increasing ecacy and reducing the economic burden for the national health system.

Dalla genotipizzazione alla terapia personalizzata nei pazienti trapiantati in trattamento con tacrolimus

PALLIO, GIOVANNI
2020-11-16

Abstract

Precise tacrolimus treatment in transplanted patients is achieved in the clinical setting by performing therapeutic drug monitoring (TDM) and consequently adjusting therapy. The aim of this study was to retrospectively analyze the variability in tacrolimus blood levels throughout 2 years of observation in 75 transplanted patients and to investigate if tacrolimus blood levels correlate with presence of genetic polymorphisms, thus modifying tacrolimus pharmacokinetics. CYP3A5*1 (G6986A), CYP3A4*1B (A392G), CYP3A4*22, ABCB1 (C3435T; C1236T; G2677A/T), SLCO1B1 (T521C), polymorphisms were analyzed. Based on the e↵ect of their genotypes, patients were stratified into 5 groups: (1) reduced tacrolimus metabolism (RM), (2) increased metabolism (IM), (3) transporters polymorphisms (TM), (4) metabolism and transporter polymorphisms (AM) and (5) no mutations (Wild Type, WT). The percentage of the samples out of therapeutic range was significantly higher in the IM group than in the WT group (p = 0.001), as well as compared to the TM group (p = 0.004). Only IM pattern (p = 0.015) resulted as an independent predictor of number of tacrolimus blood levels out of therapeutic range. RM pattern (p = 0.006) was inversely related to the administered dose. Therefore, genotyping could become a standard practice before tacrolimus prescription thus decreasing side e↵ects, increasing ecacy and reducing the economic burden for the national health system.
16-nov-2020
File in questo prodotto:
File Dimensione Formato  
PhD thesis Dr. Giovanni Pallio.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: Creative commons
Dimensione 350.11 kB
Formato Adobe PDF
350.11 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3179458
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact