Oxaliplatin is an anticancer drug routinely used to treat colorectal, gastroesophageal, ovarian, breast, head/neck, and genitourinary cancers. Discontinuation of oxaliplatin treatment is mostly because of peripheral neuropathy, more often than for tumor progression, potentially compromising patient benefit. Several strategies to prevent neurotoxicity have so far been investigated. To overcome this life-threatening side effect, while taking advantage of the antineoplastic activities of oxaliplatin, we describe in detail recent findings on the underlying mechanisms of genetic variants associated with toxicity and resistance to oxaliplatin-based chemotherapy in colorectal cancer. A comprehensive panel of eight polymorphisms, previously validated as significant markers related to oxaliplatin toxicity, is proposed and discussed. In addition, the most common available strategies or methods to prevent/minimize the toxicity were described in detail. Moreover, an early outline evaluation of the genotyping costs and methods was taken in consideration. With the availability of individual pharmacogenomic profiles, the oncologists will have new means to make treatment decisions for their patients that maximize benefit and minimize toxicity. With this purpose in mind, the clinician and lab manager should cooperate to evaluate the advantages and limitations, in terms of costs and applicability, of the most appropriate pharmacogenomic tests for routine incorporation into clinical practice. © 2013 Wolters Kluwer Health | Lippincott Williams & Wilkins.

Current strategies to minimize toxicity of oxaliplatin: Selection of pharmacogenomic panel tests

Berretta M.
2013-01-01

Abstract

Oxaliplatin is an anticancer drug routinely used to treat colorectal, gastroesophageal, ovarian, breast, head/neck, and genitourinary cancers. Discontinuation of oxaliplatin treatment is mostly because of peripheral neuropathy, more often than for tumor progression, potentially compromising patient benefit. Several strategies to prevent neurotoxicity have so far been investigated. To overcome this life-threatening side effect, while taking advantage of the antineoplastic activities of oxaliplatin, we describe in detail recent findings on the underlying mechanisms of genetic variants associated with toxicity and resistance to oxaliplatin-based chemotherapy in colorectal cancer. A comprehensive panel of eight polymorphisms, previously validated as significant markers related to oxaliplatin toxicity, is proposed and discussed. In addition, the most common available strategies or methods to prevent/minimize the toxicity were described in detail. Moreover, an early outline evaluation of the genotyping costs and methods was taken in consideration. With the availability of individual pharmacogenomic profiles, the oncologists will have new means to make treatment decisions for their patients that maximize benefit and minimize toxicity. With this purpose in mind, the clinician and lab manager should cooperate to evaluate the advantages and limitations, in terms of costs and applicability, of the most appropriate pharmacogenomic tests for routine incorporation into clinical practice. © 2013 Wolters Kluwer Health | Lippincott Williams & Wilkins.
2013
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3189881
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 14
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 43
social impact