
UNIVERSITÀ DEGLI STUDI DI MESSINA 

Dipartimento di Scienze Biomediche, Odontoiatriche  

e delle Immagini Morfologiche e Funzionali 

CORSO DI DOTTORATO IN BIOINGEGNERIA APPLICATA ALLE SCIENZE MEDICHE 

XXXVI CICLO – MED/36 

 

 

 

THE PROGNOSTIC ROLE OF A NEW DEEP LEARNING 

ALGORITHM FOR THE QUANTIFICATION OF 

EPICARDIAL ADIPOSE TISSUE VOLUME THROUGH 

CMR IMAGES IN CORONARY ARTERY DISEASE 

 

Tutor: 

Chir.mo Prof. Michele GAETA 

Co-Tutor: 

Prof. Gianluca PONTONE 

Tesi di Dottorato di: 

Dott.ssa Maria Ludovica CARERJ 

Matricola 522298 

 

Anno Accademico 2022/2023 



INDEX 

INTRODUCTION…………………………………………………...1 

1. ANATOMY………………………………………………….... 3 

2. ROLE OF EAT IN CARDIOVASCULAR DISEASE……...6 

2.1. Coronary artery disease…………………………………………....6 

2.2. Atrial fibrillation…………………………………………………...7 

2.3. Heart failure………………………………………………………..9 

3. ROLE OF IMAGING IN EAT ASSESMENT………………10 

4. ARTIFICIAL INTELLIGENCE: THEORETICAL 

MACHINE LEARNING BACKGROUND………………….12 

4.1. Machine Learning………………………………………………….12 

4.2. Deep Learning…………………………………………………….. 13 

5. THE PROGNOSTIC ROLE OF A NEW DEEP LEARNING 

ALGORITHM FOR THE QUANTIFICATION OF 

EPICARDIAL ADIPOSE TISSUE VOLUME THROUGH 

CMR IMAGES IN CORONARY ARTERY DISEASE…… 15 

5.1. Aim of the study…………………………………………………...15 

5.2. Methods……………………………………………………………15 

5.2.1. Study population……………………………………………….15 

5.3. CMR Protocol……………………………………………………...17 

5.4. CMR Imaging Analysis……………………………………………18 

5.5. Deep Learning Analysis……………………………………………19 



5.6. Statistical Analysis………………………………………………... 21 

5.7. Results…………………………………………………………….. 22 

5.8. Discussion………………………………………………………… 32 

5.9. Strengths and clinical implications………………………………...35 

5.10. Limitations…………………………………………………………36 

5.11. Conclusion…………………………………………………………36 

REFERENCES……………………………………………………….38 

 

 

 

 

 

 

 

 

 

 

 



1 

 

INTRODUCTION 

 

Epicardial adipose tissue (EAT) represents the fat deposit located between the 

myocardium and the visceral pericardial layer. Human epicardial fat is a metabolically 

active organ and a source of several bioactive molecules which have numerous 

exocrine and paracrine effects.1,2 

Pericoronary adipose tissue (PCAT) of the EAT directly surrounds the coronary 

arteries. It has a complex bidirectional interaction with the underlying vascular wall.3 

In physiological conditions it is fundamental in maintaining the homeostasis of the 

vascular wall; while when dysfunctional (e.g., in inflammatory conditions) it plays a 

key role in the development and progression of atherosclerosis by the production of 

bioactive molecules (pro-inflammatory cytokines, adipocytokines, growth factors, 

etc.).3 

Over the past two decades, EAT has become the subject of increasing scientific 

investigation, with emerging evidence that it may be associated with the development 

of coronary artery disease (CAD) and major cardiovascular events.1,4–6 

Therefore, in an attempt to improve cardiovascular risk assessment, noninvasive 

imaging has been used increasingly to characterize EAT. 

Echocardiography was the first method used for the assessment of EAT, by measuring 

its thickness along the free wall of the right ventricle.7 
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Cardiac magnetic resonance (CMR) is considered the reference modality for imaging 

total body fat. CMR provides excellent visualization of the visceral and parietal 

pericardium enabling easy assessment and volumetric quantification of EAT. 

In the recent years applications of artificial intelligence in cardiac imaging have 

increasingly developed, thus enabling EAT to be quantified faster.8,9 

In this study we propose a fully automated quantification of EAT based on the analysis 

of standard routinely acquired CMR cine images. Moreover, we demonstrate that EAT 

calculated with this tool and indexed for the body mass index (BMI) is a reliable 

method for predicting myocardial infarction and cardiac death more effectively than 

other clinical and imaging variables.  

Our method does not require the administration of contrast agents. If further validated 

in other cohorts of patients, it could be applied in the CMR clinical routine to assess 

the risk of adverse cardiovascular events non-invasively and without the use of contrast 

agents or ionizing radiation. 
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1. ANATOMY 

 

 

Figure 1. Anatomy of the adipose tissue surrounding the heart. 

 

The adipose tissue (AT) surrounding the heart can be divided into (Figure 1): 

(1)-EAT is the fat deposit located between the myocardium and the visceral layer of 

the pericardium, supplied by branches of the coronary arteries, which is mostly located 

in the atrioventricular and interventricular grooves, and can be differentiated into 

pericoronary EAT (located directly around or on the coronary artery adventitia), and 

myocardial EAT; 

(2)-Pericardial Adipose Tissue (PAT) is located externally and is supplied by non-

coronary arteries. 

(3)-Paracardial Adipose Tissue is located externally to the parietal pericardium. 
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EAT is composed mainly of adipocytes but also contains nerve cells, inflammatory 

cells (mainly macrophages and mast cells), stromal cells, vascular cells and immune 

cells. 

Due to the absence of a muscle fascia between EAT and the myocardium, these two 

tissues share the same microcirculation. This is unique characteristic of EAT; no other 

visceral fat deposit has this contiguity with the target organ, without an anatomical 

barrier, allowing a crosstalk between EAT and the contiguous myocardium. 

Interestingly, epicardial and intra-abdominal fat deposits both evolve from brown 

adipose tissue.10 

EAT function and morphology change with age and under pathological conditions. 

In the childhood EAT is morphologically and functionally similar to brown adipose 

protecting the heart during unfavourable haemodynamic conditions such as ischaemia 

or hypoxia. 

During adulthood, EAT function changes from thermogenesis to energy storage 

because the proportion of brown adipocytes decreases in favour of more unilocular 

white adipocytes, more susceptible to environmental, metabolic and haemodynamic 

factors, changing the function. 

In patients with advanced or end stage organ disease, such as cardiac diseases, and in 

elderly individuals, the thermogenic function of EAT can be further decreased, with 

reciprocal increases in the expression of genes encoding profibrotic and proapoptotic 

factors. 
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In pathological conditions, such as coronary artery disease, diabetes mellitus, heart 

failure and atrial fibrillation, EAT becomes proatherogenic and proarrhythmogenic 

(Figure 2). 

 

 

Figure 2. EAT/PTCA in normal and pathological conditions. 
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2. ROLE OF EAT IN CARDIOVASCULAR DISEASE 

 

2.1. Coronary artery disease 

In the early 2000s EAT was first documented to be involved in the multifaced 

pathways causing coronary atherosclerosis. 

The mechanisms through which EAT can cause atherosclerosis are complex and 

include inflammation, innate immunity iperresponse, oxidative stress, endothelial 

damage, adipocyte stress, lipid accumulation and glucotoxicity.11 

In patients with coronary artery disease, coronary epicardial adipose tissue (EAT) has 

a dense inflammatory infiltrate with a high prevalence of pro-inflammatory M1 

macrophages. Coronary EAT secretes proinflammatory cytokines (such as CCL2, IL-

6 and tumour necrosis factor (TNF) and adipokines, such as chemerin, intelectin 1, 

also known as omentin 1, resistin and serglycin), into the coronary lumen, thereby 

contributing to systemic inflammation.12–14 Coronary EAT inflammation also 

contributes locally to coronary atherosclerotic plaque inflammation. The upregulation 

in the coronary EAT of innate immune response signalling, such as JUN N-terminal 

kinase (JNK), nuclear factor-κB (NF-κB) and Toll- like receptor (TLR) signalling, can 

also induce the secretion of inflammatory mediators from the coronary EAT. The 

excessive production of free fatty acids (FFAs) mediated by group II secretory 

phospholipase A2 (sPLA2-II), and adipocyte fatty acid binding protein (also known as 

FABP4) from epicardial adipocytes might infiltrate the adventitia and contribute to the 

lipid build-up in coronary artery atherosclerotic plaques.12–14 

The co-occurrence of coronary artery disease with chronic hyperglycaemia can 

upregulate signalling via advanced glycation end products (AGE) binding to their 
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receptor RAGE and reduce levels of glucose transporter type 4 (GLUT4), thereby 

contributing to oxidative stress and endothelial cell damage.12–14 

EAT assessment can, therefore, help to predict the risk of major coronary events, in 

this setting the use of imaging techniques for the assessment of EAT could be 

implemented as routine procedures for effective prediction and stratification of 

coronary artery disease (CAD). 

 

2.2. Atrial Fibrillation 

Atrial fibrillation increases the risk of heart failure, stroke and all-cause death.15 EAT 

has emerged as a risk factor and independent predictor of atrial fibrillation 

development and recurrence after ablation. 

The pathogenic role of EAT in atrial fibrillation could begin with its embryogenesis. 

Embryonic epicardium can generate coronary smooth muscle cells and cardiac 

fibroblast or undergo adipogenic differentiation.16 Atrial EAT adipocytes originate 

from the differentiation of progenitor cells resident in the epicardium and from the 

secretome of atrial myocytes.14,16 

Peri-atrial EAT has a specific gene expression signature compared with periventricular 

and pericoronary EAT.14,17 

EAT infiltrating the atrium has increased expression of genes encoding proteins 

involved in oxidative phosphorylation, muscular contraction and calcium signalling 

compared with periventricular and pericoronary.14,17 

The absence of a fascia separating peri-atrial EAT from the underlying left atrial 

myocardium and a shared blood supply provide a milieu for bidirectional 

communication. 
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Pro-inflammatory and profibrotic cytokines, such as interleukins and TNF, and 

profibrotic factors, such as matrix metalloproteinases (MMPs) and activin A, can 

diffuse from EAT into the adjacent atrial myocardium and promote arrhythmias.14,17 

Fibrosis also has an important pathogenic role in the development of atrial 

fibrillation.18 

EAT can also influence the local electrophysiological properties of the atrial and 

pulmonary veins, such as the refractory period, and therefore sustain atrial 

fibrillation.19 

Investigations with cultured human induced pluripotent stem cell-derived 

cardiomyocytes indicate that local peri-atrial EAT accumulation, rather than global 

cardiac adiposity, contributes to conduction abnormalities underlying the atrial 

fibrillation substrate.14,20 

Peri-atrial EAT accumulation can slow conduction and prolong cardiomyocyte field 

potential duration through two mechanisms: by physical conduction block caused by 

extensive fibrosis, and by local EAT infiltration of the adjacent atrial myocardium, 

which causes conduction heterogeneity and electrophysiological changes through the 

paracrine release of cytokines that induce inter-cardiomyocyte adhesion disruption and 

abnormal cell coupling, alter ionic currents and myocardial metabolism, and promote 

inflammation.20,14 

EAT contains sympathetic and parasympathetic nerve fibers that contribute to overall 

cardiac autonomic neuronal output.  

Interestingly, botulinum injection into EAT during cardiac surgery can suppress 

ganglionated plexi, reduce autonomic21 nervous activity and have long-term beneficial 

effects on atrial fibrillation.14 
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The infiltration of adipocytes into the atrial myocardium disorganizes the 

depolarization wavefront, inducing micro re-entry circuits and local conduction 

blocks.14 

EAT thickness and volume are greater in patients with persistent atrial fibrillation, than 

in those with paroxysmal atrial fibrillation independent of obesity, age, sex, or 

presence of CAD, diabetes, dyslipidaemia or hypertension.14,22,23 Several studies have 

highlighted the use of EAT measurement in predicting outcomes after catheter ablation 

for paroxysmal or persistent atrial fibrillation.21,24,25 Peri-atrial EAT volume is greater 

in patients with atrial fibrillation and is associated with recurrence after catheter 

ablation.14,24,25 EAT volume is associated with atrial fibrillation persistence 

independent of other risk factors or BMI.26 

 

2.3. Heart failure 

EAT has been suggested to have a role in heart failure, particularly in patients with 

preserved ejection fraction (HFpEF).14,27–29 The volume of EAT is significantly higher 

in patients with HFpEF than in healthy individuals.28,29 

EAT can affect cardiac function in the setting of heart failure via several mechanisms, 

such as increased inflammation, fibrosis and autonomic dysregulation as well as 

through the mechanical effects of a large, fibrotic fat pad.14 
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3. ROLE OF IMAGING IN EAT ASSESMENT 

 

Multiple types of equipment can be used to evaluate EAT, including CT, CMR, and 

echocardiography.8 

The thickness of EAT can be visualized and measured with standard 2D 

echocardiography. EAT thickness is measured perpendicularly on the free wall of the 

right ventricle at end-systole when both walls collapse and allow the widest 

measurement. EAT is identified as the echo-free space between the outer wall of the 

myocardium and the visceral layer of the pericardium, but EAT can also appears as an 

echo-dense space when inflammation or large amounts of EAT are present. 1,14 

Echocardiographic measurement of EAT thickness is a marker of visceral adiposity, 

and EAT thickness variability (ranging from 1 mm to 25 mm) reflects the variation in 

intra-abdominal fat accumulation. Even if excellent interobserver and intraobserver 

agreement is reported, echocardiography is still an operator-dependent technique.1,8 

Cardiac multidetector CT and cardiac MRI can provide volumetric measurement of 

EAT and additional functional information by detecting deep regional EAT that is not 

accessible with transthoracic echocardiography.9,30 

Visualizing peri-atrial and pericoronary EAT is important in understanding, predicting 

and possibly preventing the effects of EAT in atrial fibrillation and CAD.14,24,31 

Both contrast-enhanced and non-contrast-enhanced, cardiac-gated multidetector CT 

are used to quantify EAT.14,30 
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The combination of high spatial resolution, volume coverage of the entire heart and 

increasing availability of software analysis tools makes the use of CT to measure EAT 

ideal. However, differences exist in the CT attenuation (a measure of EAT density, 

expressed in Hounsfield units (HU)) characteristics of EAT depending on the presence 

or absence of iodinated contrast and inflammatory status.14,32 EAT density is a marker 

of both EAT and general inflammation.33,34  EAT attenuation ranges between – 45 HU 

and –195 HU, where a lower negative means higher density.32–34  

Although 18F-FDG-PET-CT can detect EAT inflammatory activity, this modality is 

not cost-effective or readily available.12 

With the increasing potential of AI in disease assessment, the role of AI in the 

assessment of EAT and PCAT has attracted increasingly more attention.35 
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4. ARTIFICIAL INTELLIGENCE: THEORETICAL 

MACHINE LEARNING BACKGROUND 

 

4.1. Machine Learning  

Machine Learning (ML) is a subfield of artificial intelligence (AI) which is founded 

on the basis that machines should be able to learn and adapt through experience.36  

Thus, ML is a method of data analysis that automatizes analytical model building.  

More precisely, the underlying algorithm is selected or designed by humans, but the 

algorithm automatically learns from data about the parameters that will shape a 

mathematical model. In this way, humans do not know how the model is internally 

built by the machine. 37Model building starts with the selection of the ML algorithm 

to use, such as decision trees, support vector machines or artificial neural networks. 

The algorithm must be chosen based on interpretability, simplicity, accuracy, speed of 

training, testing, processing and scalability. The starting point for ML process is raw 

data and the end point is a model derived from that data. The larger is the amount of 

data, the better the results are likely to be. Moreover, the quality, preparation, and 

selection of data are critical to the success of an ML solution. According to Mitchell 

(1997)38, machines learn by detecting patterns in data and apply known rules to 

categorise, make predictions, detect anomalous behaviours and identify unknown 

relationships. More generally, there are two ways in which machines learn: supervised 

learning, in which models are trained based on input data with the corresponding 

desired output, and unsupervised learning, where no output labels are provided. 

Supervised learning problems include classification and regression, while 
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unsupervised learning is mostly used to automatically discover groups in data 

(clustering) or extract hidden associations between variables association rules.39 In the 

last few years, ML has become much more popular for faster processing of massive 

amounts of structured, unstructured and semi-structured data. In particular, ML 

algorithms have been successfully deployed in a large variety of applications such as 

text analysis, translation, speech recognition, image and video 18 analysis, with an 

important contribution in the biomedical field and medical diagnosis.  

 

4.2. Deep Learning 

Deep Learning (DL) is a subset of ML. DL consists of multiple hidden layers of 

information existing in an artificial neural network.40 Essentially, DL attempts to 

simulate how the human brain processes information. DL can be implemented by 

means of several different algorithms, all of which are marked by a cascade of many 

processing layers organized in a hierarchical structure. Each of these layers add a level 

of abstraction to the overall representation. More precisely, DL obtains a set of features 

learned directly from observations of the input dataset. Layers close to the input deal 

with low-level features such as edges and texture in images, while deep layers extract 

complex higher-level features.41 Therefore, it is possible to consider the deep layers of 

a CNN as a feature extractor. The key advantage of DL is that the features are 

automatically extracted from the data by the neural network, while in ML hand-crafted 

features are used, designed by experts to extract a given set of chosen characteristics.42 

For DL models, huge amounts of training data is necessary. The advent of the big data 

era resulted in an increasing use of these methods. Two other key premises were the 

availability of low-cost machines with powerful arithmetic units and the possibility of 
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applying the already known learning techniques to nonlinear systems composed of 

several layers of processing. Another key advantage of DL is represented by transfer 

learning. The basic concept is that first-layer features appear not to be specific to a 

particular dataset or task, but general in that they are applicable to many datasets and 

tasks. On the other hand, features computed by the last layer of a trained network 

depend greatly on the chosen dataset and task. Thus, it is possible to first train a base 

network on a base dataset and task; successively, the learned features can be 

repurposed or transferred to a second target network to be trained on a different target 

dataset and task. The remaining layers of the target network are then randomly 

initialized and trained toward the target task. Then, the errors from the target network 

can be backpropagated into the base (transferred) features to fine-tune them to the new 

task, or the transferred layers can be left frozen, with no change during training.43 

Some examples in which DL is being employed are automatic language translation, 

image recognition, spam filtering, fraud detection, computer vision and medical 

diagnoses.36 
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5. THE PROGNOSTIC ROLE OF A NEW DEEP LEARNING 

ALGORITHM FOR THE QUANTIFICATION OF 

EPICARDIAL ADIPOSE TISSUE VOLUME THROUGH CMR 

IMAGES IN CORONARY ARTERY DISEASE 

 

5.1. Aim of the study 

Our study aims: 

a)  to develop and apply a new deep-learning (DL) algorithm, for fully automated 

EAT segmentation; 

b) to evaluate the prognostic role of EAT volume in CMR images. 

 

5.2. Methods 

5.2.1. Study population 

This was a retrospective study in a cohort of consecutive patients with suspected or 

known coronary artery disease (CAD) who were referred for cardiac magnetic 

resonance (CMR) at “IRCCS Centro Cardiologico Monzino” in Milan.  

Between January 2011 and December 2014, 836 patients were evaluated for the study. 

Exclusion criteria were:  

- heart failure or known infiltrative or hypertrophic cardiomyopathy (n=48); 

-  severe claustrophobia (n=32); 

-  presence of an implantable device (n=20); 
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-  estimated glomerular filtration rate ≤30 mL/min (n=12), and impaired image 

quality of CMR images (n=22).  

The Institution’s ethical committee approved the protocol, and all patients gave their 

written informed consent.  

The clinical variables collected for each patient included demographic data, prior 

cardiac history (history of CAD or previous revascularization with percutaneous 

coronary intervention or coronary artery bypass graft), hypertension (blood pressure 

>140/90 mmHg or use of antihypertensive agents), current or previous smoking, 

hyperlipidemia (low-density lipoprotein cholesterol LDL >116 mg/dL), diabetes 

mellitus (fasting glucose level >110 mg/dL or need for insulin or oral hypoglycemic 

drugs). 

All patients were followed from the time of CMR imaging. Outcome events were 

obtained by clinical visits or telephone interviews; contact with the patient’s primary 

care physician or cardiologist was performed in case of death.  

Major adverse cardiovascular events (MACE) were defined as a combined endpoint 

of: 

1) Non-fatal myocardial infarction defined according to the 4th universal definition of 

myocardial infarction (12) as a rise and/or fall of troponin values with at least 1 

value above the 99th percentile upper reference limit (URL) and with at least 1 of 

the following: 

- Symptoms of acute myocardial ischemia; 

- New ischemic electrocardiographic (ECG) changes; 

- Development of pathological Q waves; 
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- Imaging evidence of new loss of viable myocardium or new regional wall 

motion abnormality in a pattern consistent with an ischemic etiology; 

- Identification of a coronary thrombus by angiography including 

intracoronary imaging. 

2) Sudden cardiac death defined as symptoms suggestive of myocardial ischemia 

accompanied by presumed new ischemic ECG changes or ventricular fibrillation, 

with death before blood samples for biomarkers can be obtained, or before 

increases in cardiac biomarkers can be identified, or myocardial infarction is 

detected by autopsy examination.9 

 

5.3. CMR Protocol  

CMR studies were performed with a 1.5-T Discovery MR450 (G.E. Healthcare, 

Milwaukee, Wisconsin). Studies used dedicated cardiac software, phased-array 

surface receiver coils, and electrocardiogram triggering. Breath-hold steady-state free-

precession (SSFP) cine imaging was performed in vertical and horizontal long- and 

short-axis orientations.  

SSFP cine sequences were acquired using the following parameters: echo time 1.57 

ms, 15 segments, repetition time 46 ms without view sharing, slice thickness 8 mm, 

field of view 350×263 mm, and pixel size 1.4×2.2 mm. 

A contrast-enhanced breath-hold segmented T1-weighted inversion-recovery 

gradient-echo sequence was used for the detection of late gadolinium enhancement 

(LGE).  
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LGE imaging was performed 10 to 20 min after administration of an intravenous bolus 

of gadolinium at a flow rate of 4 mL/s followed by saline flush. The inversion time 

was individually adjusted to null normal myocardium (usual range 220 to 300 ms). 

The following parameters were used: FOV: 380 to 420 mm; TR/TE: 4.6/1.3 ms; α: 

20°; matrix: 256 × 192; slice thickness: 8 mm and no interslice gap.  

 

5.4. CMR Imaging Analysis 

CMR datasets were transferred to a dedicated workstation and analyzed with a 

commercially available cardiac software (Circle CVI42® 5.13.9 software). 

The following parameters were measured: left end-diastolic (LVEDV) and end-

systolic (LVESV) volumes, left (LVEF) and right (RVEF) ejection fraction; left 

ventricle mass (LV mass). LVEDV, LVESV, LV mass, RVEDV and RVESV were 

indexed for the body surface area. 

The EAT contours were manually contoured at end-diastole, starting at the mitral valve 

level and moving upwards to the inferior margin of adipose tissue as previously 

described9. 

LGE was defined as a myocardial segment with a signal intensity increase >5 S.D., 

above the mean signal intensity of remote myocardium. The absolute number and 

percentage of patients with LGE and as well as of myocardial mass showing LGE, 

were assessed.  
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All the analyses were performed by four readers with two to four years of experience 

in CMR and reviewed by two expert readers, with more than 8 years’ experience, 

blinded to the outcome data.  

EAT volume index (ml m2/kg) was defined as the ratio between EAT volume and the 

patient BMI. 

 

5.5. Deep Learning Analysis 

For automated CMR image analysis, a fully-convolutional network architecture44 was 

implemented to perform pixelwise segmentation from an input image. The structure 

of the network was implemented from the UNet45, which has achieved remarkable 

success on medical images, and it consists of an encoder-decoder structure to combine 

high-level semantics with low-level fine-grained surface information.  

As shown in Figure 3, the network architecture includes two-dimensional (2D) and 

three-dimensional (3D) branches processing information. 
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Figure 3. Overview of the proposed workflow for automated EAT volume segmentation on short-axis 

cine CMR images. 

 

The proposed workflow for EAT volume quantification from short-axis cine images 

is shown in Figure 4.  

First, the training set of 300 patients with labeled CMR imaging (ground truth) was 

randomly split (patient-wise) into development (n=240, 80%) and held-out testing 

(n=60, 20%) cohorts.  

After the model was trained and evaluated, we applied our segmentation network to a 

validation set of 402 patients with unlabeled data for automated EAT segmentations. 

Finally, we applied the DL algorithm to the overall study cohort of 702 patients. The 

obtained measures were then used to assess the prognostic role of EAT over standard 

clinical and imaging parameters.  
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Figure 4. The main architecture diagram which combines 2D and 3D convolutions for epicardial 

adipose tissue segmentation from a cardiovascular magnetic resonance cine image. (b) The BiFusion 

Block which has two branches for its 2D and 3D input (c) ConvMixer Block which is used to extract 

features from an input image. 

 

5.6. Statistical Analysis 

Continuous variables were reported as mean±SD or median (25th–75th percentile), as 

appropriate and categorical variables, and as absolute numbers and frequencies. 

Accordingly, Student’s independent t-test, Chi-square, or Fisher’s exact, were used to 

compare the distribution of variables between groups.  

Interobserver variability for the evaluation of EAT volume, as well as the performance 

of human vs. DL, were compared on the test set by using intraclass correlation 

coefficient (ICC), Bland–Altman analysis and coefficient of variation (CV). The time 
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to the first event was considered in our analysis. Univariable Cox proportional hazard 

models were used to assess the association between clinical and imaging data with the 

risk of MACE (presented as hazard ratio [HR] and 95% confidence interval [CI]). 

After correlation examination, variables with p<0.05 at univariable analysis were then 

included as covariates in multivariable Cox proportional hazard models, using a 

stepwise adjusted approach to test association with MACE events. In addition, the 

discriminative ability of variables to diagnose MACE was evaluated by Harrell’s C 

statistic and compared with the De-Long test. The cumulative survival rate was 

assessed with the Kaplan-Meier method for all subjects and compared by log-rank test. 

EAT volume, as mentioned before, was corrected for body mass index (EAT volume 

index) and dichotomized into high versus low volume, using a threshold of ≥2.2 

mLm2/Kg determined by maximum Youden’s index (defined as sensitivity + 

specificity -1).  

Finally, the incremental prognostic value of CMR variables in predicting MACE by 

stepwise inclusion of each candidate variable was assessed by the change in likelihood 

ratio Chi-square using the Omnibus test of model coefficients.  

All tests were 2-tailed, and p<0.05 was considered statistically significant. Statistical 

analyses were performed on SPSS (version 27.0) and Python with scikit-learning 

package (version 0.22.2, https://scikit-learn.org/stable/). 

 

5.7. Results 

Seven hundred-two patients (age 63±10 years) were enrolled. The mean follow-up 

time to event, for patients experiencing events, was 32 months (range, 2–81), while 

https://scikit-learn.org/stable/
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the mean follow-up duration in patients with no events was 71 months (range, 1–91). 

No patients were lost to follow-up. 

Time to event was calculated as the period between the CMR study and the first 

occurrence of a MACE.  

 Fifty-two patients (7.4%) developed MACE during follow-up (41 non-fatal 

myocardial infarctions and 11 cardiac deaths).  

Baseline characteristics of patients with and without MACE are reported in Table 1. 

Prevalence of hypertension, diabetes mellitus, hyperlipidemia, and previous 

revascularization were higher in patients with events than in those with no events. 

Patients experiencing MACE were more often treated with beta-blockers, angiotensin-

converting enzyme inhibitors, diuretic agents, and statins because they were more 

complex. No differences were found in terms of demographic characteristics between 

groups. 

As compared to patients without MACE, patients experiencing MACE showed higher 

LVEDV index (94 ± 34 vs. 82 ± 23 ml/m2, p =0.016) and LVESV index (51±34 vs. 

38±20 ml/m2 p=0.008), lower LVEF (49.4 ± 15.2 vs. 55.6 ± 11.6 %, p=0.006), and 

higher per-patient prevalence of LGE (77% vs. 48%, p < 0.001). EAT volume index 

was significantly higher in patients with MACE than those without (2.3±0.5 vs. 

1.9±0.5 mL*m2/Kg; p=0.003).   
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Table 1: Baseline Characteristics  

 Total 

Subjects 

N=702 

MACE  

N=52 

NO MACE 

N=650 

p-value 

Demographics 

   Age, years 63 ± 10 62 ± 10 63 ± 10 0.417 

   Male 593(84%) 44(85%) 549(84%) 0.976 

   BMI, Kg/m2 26.4 ± 3.6 25.8 ± 3.7 26.1 ± 3.6 0.331 

   BSA, m2 1.9 ± 0.2 1.9 ± 0.2 1.9 ± 0.2 0.382 

Cardiovascular risk factors 

   Family history 129(18%) 8(15%) 121(19%) 0.563 

   Smoking 188(27%) 19(36%) 169(26%) 0.099 

   Hypertension 309(44%) 35(67%) 274(42%) <0.001* 

   Diabetes mellitus 103(15%) 13(25%) 90(14%) 0.029* 

   Hyperlipemia 310(44%) 34(65%) 276(42%) 0.001* 

   CABG 101(14%) 11(21%) 90(14%) 0.149 

   Previous PCI 466(66%) 47(90%) 419(64%) <0.001* 

Medications 

   Beta-blockade 297(42%) 32(61%) 265(41%) 0.004* 

   ACE inhibitors/AT1 

blockers 

273(39%) 28(54%) 245(38%) 0.021* 

   Diuretics 78(11%) 11(21%) 67(10%) 0.017* 

   Ca-antagonists 100(14%) 8(15%) 92(14%) 0.807 

   Anti-thrombotic agents 390(56%) 33(63%) 357(55%) 0.233 

   Nitrates 59(8%) 6(11%) 53(8%) 0.397 

   Statin 325(46%) 32(61%) 293(45%) 0.022* 

   Anti-arrhythmic 38(5%) 2(4%) 36(5%) 1.000 

CMR characteristics 

   LVEDV index (mL/m2) 83 ± 24 94 ± 34 82 ± 23 0.016* 

   LVESV index (mL/m2) 39 ± 21 51 ± 34 38 ± 20 0.008* 

   LVEF (%) 55.2 ± 12.0 49.4 ± 15.2 55.6 ± 11.6 0.006* 

   LV mass index (g/m2) 65 ± 18 71 ± 21 65 ± 18 0.061 

   RVEDV index (mL/m2) 68 ± 16 65 ± 16 69 ± 16 0.165 

   RVESV index (mL/m2) 27 ± 10 26 ± 11 27 ± 10 0.470 

   RVEF (%) 62.2 ± 23.7 60.9 ± 8.3 62.3 ± 24.6 0.682 

   LGE, presence 353(50%) 40(77%) 313(48%) <0.001* 

   LGE mass (g) 9.1 ± 14.8 15.0 ± 18.5 8.6 ± 14.3 0.018* 

   EAT volume (mL) 49.7 ± 18.0 54.0 ± 16.2 68.6 ± 33.6 0.125 

   EAT volume index≥1.8 

mL*m2/Kg 

305(43%) 30(58%) 275(42%) <0.001* 

Results are shown as mean±SD or n(%) 

 

A cohort of 300 patients were used as a training dataset to develop a DL algorithm. 

The training cohort’s baseline characteristics are described in Table 2. 
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Table 2. Baseline Characteristics of the Training Cohort 

 

 

 Total 

Subjects 

N=300 

MACE 

N=21 

No MACE 

N=279 

p value 

Demographics 

   Age, years 63 ± 10 60 ± 10 64 ± 10 0.175 

   Male 259(86%) 19(90%) 240(86%) 0.563 

   BMI, Kg/m2 26.6 ± 3.7 26.0 ± 4.0 26.7 ± 3.7 0.453 

   BSA, m2 1.9 ± 0.2 1.9 ± 0.1 1.9 ± 0.2 0.381 

Cardiovascular risk factors    

   Familiar history 69(23%) 4(19%) 65(23%) 0.649 

   Smoking 99(33%) 9(43%) 90(32%) 0.325 

   Hypertension 163(54%) 15(71%) 148(91%) 0.106 

   Diabetes mellitus 56(19%) 9(43%) 47(17%) 0.003* 

   Hyperlipidemia 178(59%) 15(71%) 163(58%) 0.249 

   CABG 42(14%) 5(24%) 37(13%) 0.182 

   Previous PCI 206(69%) 20(95%) 186(67%) 0.007* 

Medications 

   Beta-blockers 171(57%) 18(86%) 153(55%) 0.006* 

   ACE inhibitor/AT1 blockers 159(53%) 13(62%) 146(52%) 0.406 

   Diuretics 51(17%) 5(24%) 46(16%) 0.394 

   Ca-antagonists 54(18%) 3(14%) 51(18%) 0.641 

   Anti-thrombotic agents 225(75%) 18(86%) 207(74%) 0.249 

   Nitrates 47(16%) 5(24%) 42(15%) 0.291 

   Statin 189(63%) 19(90%) 170(61%) 0.007* 

   Anti-arrhythmic 22(7%) 1(5%) 21(7%) 1.000 

CMR characteristics 

   LVEDV index (mL/m2) 82 ± 23 87 ± 22 81 ± 23 0.304 

   LVESV index (mL/m2) 37 ± 21 44 ± 24 37 ± 20 0.093 

   LVEF (%) 56.5 ± 12.0 51.3 ± 14.9 56.9 ± 11.7 0.041* 

   LV mass index (g/m2) 60 ± 12 64 ± 13 60 ± 12 0.136 

   RVEDV index (mL/m2) 68 ± 15 61 ± 12 68 ± 15 0.030* 

   RVESV index (mL/m2) 26 ± 9 23 ± 6 26 ± 9 0.112 

   RVEF (%) 64.1 ± 35.7 61.9 ± 9.0 64.3 ± 37.0 0.763 

   LGE, presence 150(50%) 16(76%) 134(48%) 0.013* 

   LGE mass (g) 7.0 ± 12.2 7.9 ± 9.6 6.9 ± 12.3 0.732 

   EAT volume (mL) 

   EAT volume index mL*m2/Kg 

57.0 ± 17.2 

2.1 ± 0.6 

61.4 ± 13.1 

2.4 ± 0.6 

56.7 ± 17.4 

2.1 ± 0.6 

0.224 

0.051* 

   EAT volume index≥2.2 

mL*m2/Kg 

214(71%) 20(95%) 194(69%) 0.010* 
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Figure 3 shows the Bland−Altman plots of the EAT volume and compares automated 

segmentation to manual segmentation and segmentations by different human observers 

on the test set. The automated method was shown in a strong correlation (ICC = 0.90) 

with limited bias and narrow limits of agreement, demonstrating that for the EAT 

volume, the computer-human difference is comparable with the human-human 

difference. 

 

 

Figure 3. Bland Altman plots. 

 

Mean analysis time of a single subject for the automated method was significantly 

faster than the manual approach (0.4 sec vs. 249 sec, p=<0.001).  
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Examples of EAT segmentation results of our proposed network on short-axis cine 

CMR images are illustrated in Figure 5. 

 

Figure 5.  Example of segmentation results of the epicardial adipose tissue on cardiac magnetic 

resonance short-axis cine images using the proposed network compared to the manually traced 

contours. 
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Table 3. Univariable and Multivariable Cox model for MACE 

 

 

The Table 3 shows the hazard ratio (HR) of various risk factors on MACE by 

univariate and stepwise multivariable Cox proportional hazards model analysis of the 

overall population. MACE was significantly associated with EAT volume index. The 

HR was higher in patients with reduced LVEF (≤50%), left ventricle dilation, LGE, 

hypertension, diabetes, hyperlipemia, and with previous percutaneous 

 Univariable analysis Multivariable analysis 

 HR (95% CI) p value HR (95% CI) p value 

Demographics    
   Age 0.991 (0.966-1.016) 0.457   
   Male 1.018 (0.479-2.162) 0.963   
   BMI 0.951 (0.863-1.048) 0.309   
   BSA 0.449 (0.078-2.579) 0.369   

Cardiovascular risk factors    
   Familiar history 0.758 (0.356-1.611) 0.471   
   Smoking 1.567 (0.891-2.757) 0.119   
   Hypertension 2.646 (1.480-4.728) 0.001   
   Diabetes mellitus 2.016 (1.076-3.778) 0.029   
   Hyperlipidemia 2.333 (1.315-4.140) 0.004   
   CABG 1.728 (0.888-3.363) 0.107   
   Previous PCI 5.086 (2.023-12.788) 0.001   

Medications    
   Beta-blockade 2.092 (1.194-3.665) 0.010   
   ACE inhibitor/AT1 blockers 1.761 (1.019-3.045) 0.043   
   Diuretics 2.111 (1.083-4.113) 0.028   
   Ca antagonists 1.102 (0.519-2.342) 0.800   
   Anti-thrombotic agents 1.300 (0.737-2.295) 0.365   
   Nitrates 1.323 (0.564-3.105) 0.520   
   Statin 1.780 (1.016-3.119) 0.044   
   Anti-arrhythmic 0.682 (0.166-2.804) 0.596   

CMR characteristics    
   LVEDV index 1.017 (1.008-1.026) <0.001   
   LVESV index 1.020 (1.012-1.029) <0.001   
   LVEF ≤50% 2.046 (1.184-3.538) 0.010 1.939 (1.093-3.441) 0.024 
   LV mass index 1.017 (1.002-1.032) 0.028   
   RVEDV index 0.987 (0.969-1.005) 0.167   
   RVESV index 0.990 (0.961-1.020) 0.516   
   RVEF 0.989 (0.954-1.026) 0.553   
   LGE, presence 3.426 (1.797-6.532) <0.001 2.806 (1.439-5.473) 0.002 
   LGE mass (g) 1.022 (1.009-1.036) 0.001   
   EAT volume (mL) 
   EAT volume index 

1.011 (0.997-1.026) 
3.032 (1.910-4.815) 

0.135 
0.018 

  

   EAT volume index ≥2.2 5.324 (1.623-17.462) 0.006 7.890 (4.385-14.195) <0.001 
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revascularization. Regarding medical therapy, beta-blockers, angiotensin-converting 

enzyme inhibitors, diuretic agents, and statins were also predictors of MACE, because 

they were mainly administered in more complex patients. 

In multivariable analysis, EAT volume index was the strongest independent predictor 

of MACE (HR: 7.890; 95% CI: 4.385-14.195), along with LVEF (HR: 1.939; 95% CI: 

1.093-3.441) and LGE detection (HR: 2.806; 95% CI: 1.439-5.473).  

Finally, the incremental value in predicting the endpoint by stepwise inclusion of LGE 

and EAT volume index, in addition to LVEF, is shown in Figure 6.  

 

Figure 6. Chi-Square Improvement Analysis. Incremental value in predicting outcome by stepwise 

inclusion of late gadolinium enhancement (LGE) and epicardial adipose tissue (EAT) volume index in 

addition to left ventricular ejection fraction (LVEF). 

The addition of LGE to LVEF was identified as an incremental predictor of events 

(p=0.033), with further enhancement when EAT volume index was added to the model 

(p<0.001). Adding EAT volume index in the presence of LGE to the model, including 

LVEF, provided an improvement in predicting the endpoint with a Harrell C statistic 

of 0.75 (Figure 7). 
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Figure 7. The figure shows a more AUC with the model LVEF<= 50%, LGE+, High EAT volume index. 

 

In the Figure 8 are reported the Kaplan-Meier survival curves for MACE, according 

to LVEF (Panel A), LGE detection (Panel B), EAT volume index (Panel C), and their 

combination (Panel D). Event-free survival rate was 77% for high-risk patients (i.e., 

with reduced LVEF, LGE, and high EAT volume index); 92% for intermediate-risk 

patients (i.e., reduced LVEF, LGE, low EAT volume index); and 96% for low-risk 

patients (i.e., reduced LVEF, without LGE, low EAT volume index). 
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Figure 8. Kaplan–Meier curves for major adverse cardiac events (MACE) based on left ventricle 

ejection fraction (LVEF; A), late gadolinium enhancement (LGE) detection (B), epicardial adipose 

tissue (EAT) volume index (C), and the combination of LVEF and LGE detection plus EAT volume index 

(D). Low EAT volume <2.2 mL*m2/Kg, high EAT volume≥2.2 mL *m2/Kg. 
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5.8. Discussion 

The main findings of this study are that in patients with known or suspected CAD 

undergoing CMR: 

1) EAT can be automatically and accurately quantified using a new DL algorithm on 

standard short-axis cine CMR images with a performance comparable to human expert 

assessment. 

2) EAT volume index is a strong and independent predictor of MACE with an 

incremental prognostic role on top of standard clinical and CMR parameters such as 

LVEF and LGE. 

As anticipated EAT covers 80% of the heart surface and is more represented in the 

atrioventricular and interventricular grooves and around the epicardial coronary 

arteries 46. Differently from the adipose tissues of other organs of the organism, EAT 

has specific anatomical and functional characteristics,  it consists of adipocytes with 

brown or beige features and it is an active endocrine organ.47 

A growing body of evidence suggests that EAT may contribute to developing 

obstructive CAD48 and even acute coronary syndromes.49 As a result of adversely 

remodeled and dysfunctional EAT, proinflammatory cytokines are released.  It is well 

established that inflammation is strongly associated with all phases of CAD, from early 

atherogenesis to atherosclerotic plaque progression and, ultimately plaque rupture. 13,32 

CMR is considered the most effective non-invasive methods for measuring EAT and 

to distinguish it from paracardial adipose deposit.50 In contrast to echocardiography, 
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CMR allows a 3D analysis of the EAT volume; moreover, differently from CCT, it 

does not require ionizing radiation.40 

Yet, the use of CMR for EAT quantification appears to be limited and several authors 

have focused their efforts in quantifying EAT with non-contrast CCT.30 Nelson 

described an accurate and reproducible CMR technique capable of measuring EAT.9 

The method, validated ex vivo in an ovine model, consists in tracing adipose tissue on 

consecutive SSFP cine end diastolic short-axis images, beginning with the most basal 

slice at the level of the mitral valve and moving apically to the most inferior margin of 

adipose tissue. The volume is then derived using a modified Simpson’s rule.9 Applying 

this method, CMR derived EAT has been investigated in small cohorts as an adverse 

cardiovascular imaging marker.   

In a study on 64 heart failure patients with LVEF >40% undergoing routine CMR, 

patients with heart failure had more EAT compared to controls, despite similar body 

mass index. Moreover, EAT volume was associated with the presence of atrial 

fibrillation (AF), type 2 diabetes mellitus and with biomarkers related to myocardial 

injury.28,51 Wang et al. studied 110 patients undergoing first-time AF ablation, 

demonstrating that EAT is associated with the presence of AF, the severity of AF, left 

atrial volumes, and poorer outcomes after AF ablation.23 EAT volume has been also  

correlated with larger infarct size, microvascular obstruction, and greater ST-

deviation.52  

The time required for manual quantification of EAT is a limiting factor to the use of 

CMR for this purpose and, in contrast to CCT53, there is little data on the use of 

artificial intelligence for quantifying EAT in CMR and on its potential prognostic role. 



34 

 

Ding et al. developed an algorithm for automated pericardial fat quantification based 

on water/fat-resolved whole-heart coronary magnetic resonance angiography.54 In his 

study, however, only ten patients were analyzed. An expert reader segmented the 

images of just four patients, and the algorithm was applied to the remaining six 

subjects.54 

Recently, a DL algorithm has been proposed for a fully automated quantification of 

the pericardial adipose tissue surrounding a standard CMR four-chamber.55 The 

algorithm has subsequently been then applied to 42598 studies in the U.K. biobank56 

and has revealed an association between the pericardial adipose tissue measured with 

CMR and adverse cardiovascular structure (greater wall thickness, higher left ventricle 

mass, more concentric patterns of left ventricle remodeling), poorer left ventricle and 

left atrium function and lower arterial compliance.56 Moreover, larger pericardial 

adipose tissue was associated with cardiometabolic diseases and blood biomarkers 

suggestive of poorer glycemic control, abnormal serum lipids, and proinflammatory 

markers.56 

It should be noted that the pericardial fat measured in this latter study encompassed 

paracardial (adipose tissue situated between the visceral and parietal layers of the 

pericardium), epicardial, and pericardial fat (adipose tissue located externally to the 

parietal pericardium), whereas previous literature has identified EAT as the 

compartment more associated with cardiovascular risk and morbidity.56 Furthermore, 

the pericardial adipose tissue was measured based on the area of fat rather than 

providing volumetric measurements. Finally, the study was conducted in the healthy 

population of the U.K. biobank, and no information about myocardial tissue 

characterization with CMR is provided.56  
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5.9. Strengths and clinical implications 

Our study presents important elements of novelty in comparison to previous papers. 

To begin with, it is the first study to demonstrate that the EAT volume can be 

accurately segmented and measured with fully automated DL algorithms on CMR cine 

SSFP images without additional time required for scanning or analysis.  

Secondly, we have shown that CMR-derived EAT volume index has an additional 

predictive role for MACE over and above standard clinical and imaging parameters in 

a large population of patients with known or suspected CAD. In particular, we tested 

the additional role of EAT measurements in comparison with other common outcomes 

predictors including CMR tissue characterization with LGE technique. Surprisingly, 

we found an additional predictive role of EAT volume index even above LGE which 

is recognized as the strongest predictor of adverse cardiovascular events in both non-

ischemic and ischemic cardiomyopathy.57 

The results of our study may have important clinical implications. Indeed, by 

incorporating this DL algorithm into CMR imaging, EAT could be accurately and fully 

automatedly quantified by providing a robust method to assess patient’s risk. There 

are virtually no limitations to the application of this algorithm to CMR studies. EAT 

is measured using short-axis cine SSFP stacks, which are routinely acquired in any 

CMR study for calculating biventricular dimension and function without the need for 

contrast agents. Furthermore, unlike manual quantification of EAT, which is time-

consuming, the proposed algorithm allows epicardial fat to be quantified within a few 

seconds. 
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5.10. Limitations 

Our study presents some limitations. Firstly, it is a single-center study with potential 

referral bias. In particular, we retrospectively enrolled patients with clinically 

indicated CMR with potential inclusion bias. In spite of this, our results are 

representative since we included a large number of patients and followed them for an 

extended period.  

Secondly, the clinical utility of CMR derived from EAT will need to be demonstrated 

in other independent cohorts before it can be applied to clinical practice.  

Thirdly, we did not use mapping sequences to characterize the myocardium. however, 

we tested the predictive role of EAT against LGE sequences which represent a known 

strong predictor of MACE. Eventually, CMR is, on average, less accessible compared 

to CCT scan and requires longer scan times.  

In addition, there are specific CMR contraindications, such as patients with non-

compatible devices or with claustrophobia, that do not limit the performance of CCT. 

Yet, the main advantage of CMR over CCT is that it does not use ionizing radiation. 

 

5.11. Conclusion 

EAT volume index measured with a DL algorithm in standard cine CMR images 

represents a robust independent predictor of MACE in patients with known or 
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suspected CAD. EAT volume index owns an additional prognostic role on top of 

standard clinical and imaging parameters.  
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