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Abstract: In this paper, we deal with the renowned problem of plastic pollution caused by food
consumption and its conservation. Specifically, we consider the producer/reseller decision problem
of industrial organizations in conditions of perfect competition within small oligopoly clusters.
Indeed, very often, one major sustainability problem is that the presence of direct competitors in
the same market determines entrepreneurship choices which lower production costs and packaging
costs at the expense of the environment and public health. For this purpose, in order to show
economic scenarios in which the respect and preservation of the environment and natural resources
are quantitatively compatible with profits and economic growth, we present a provisional coopetitive
model of the strategic interaction of two food enterprises, in direct duopoly competition, through
investments in sustainable-packaging technologies. The macroeconomic goal is to propose possible
actions to reduce carbon footprints and the inflow of plastics to the marine environment, following
the environmental targets established by the United Nations, also in the presence of direct perfect
oligopolistic competition in the same market. From a microeconomic point of view, we assume
the existence of two competitors selling a very similar type of food in the same market; therefore,
within a competitive interaction, we adopt a classic “Cournot duopoly” core upon which we define a
parametric game, namely, a coopetitive game, together with its possible dynamical scenarios and
solutions. We should notice that beyond the parameter arising from the cooperation construct, we
introduce a matrix of stochastic variables, which we can also consider as the state of the world.
Moreover, we numerically examine one possible state of the world to exemplify our model proposal.
We determine, analytically and graphically, the optimal investment in the cooperative strategy,
the purely coopetitive solution and some super-cooperative solutions. The cooperative strategy
represents the common investment chosen to acquire advanced green technologies for innovative
packaging, while the fourth component of any solution in the strategy space represents the state
of the world at the end of the coopetitive process in which, finally, we can see the profits and costs
deriving from the adoption of the green technologies.

Keywords: plastic reduction; computational logistic; green packaging; water saving; green coopeti-
tion; industrial symbiosis; climate change

MSC: 91A05; 91A10; 91A12; 91A25; 91A80

1. Introduction
1.1. United Nations Environmental Goals

The main environmental goals, established by the United Nations for worldwide
sustainable development, embrace the sustainable management of water, sustainable
energies, actions for combating climate change, sustainable consumption and production
patterns, the conservation and sustainable employment of the oceans, and sustainable
management of terrestrial ecosystems and forests (see the targets of the 17 United Nations
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Sustainable Development Goals at https://www.globalgoals.org/goals/ (last accessed
31 October 2022)).

All these issues are strictly linked to each other and refer to the critical problem of
global food production.

In addition, the Courtauld Commitment 2025 agreement (The Courtauld Commitment
2025, available online at https://www.wrap.org.uk/food-drink/business-food-waste/
courtauld-2025 (Last access 31 October 2022)) was established to reduce, in the UK, the
environmental impact of food, in terms of a reduction in food waste, reduction in the
greenhouse-gas intensity of food and reduction in impact associated with water use in the
supply chain.

1.2. Motivations

The Global Risks Report 2019, published by the World Economic Forum, reports
increasing concern about environmental policy failure.

Pollution represents an environmental global risk, with damaging consequences for
societies, human health and economic systems. Plastic use still represents a problem
for environmental policies, which require multiple instruments addressing externalities
determined by the plastic lifecycle. Food and drink supply chains play a significant role in
plastic pollution.

Well-addressed actions can also help meet the UN Sustainable Development Goals
(SDGs) [1–4]. The Department of Economic and Social Affairs of the UN indicates a clear
and robust link between SDG 12, “Sustainable consumption and production”, and SDG
14.1 (Reduce marine pollution) [5]. A reduction in pollution can occur through a choice
of new production methods (including food packaging) considering the sustainability of
natural resources, as well as waste reduction, see [6]. Furthermore, SDG 12 is linked to 14.4
(Restore fish stocks): changes in consumption behavior affect the demand for food and can
increase or decrease pressure on fish stocks.

The OECD emphasizes the need for combining consistent, growth-enhancing policies
with well-aligned policy devoted to investment in low-carbon, climate-resilient infrastruc-
tures and new technologies [7].

It is essential, thus, to move towards a socio-ecologic transition, with actions that
encourage a reduction in carbon footprint and the sustainable use of natural, non-renewable
resources. Concerning the marine ecosystem, preventive strategies, i.e., the reduction in
the inflow of plastics to the marine environment [8], are the most effective mitigation
strategies. To this end, political interventions focused on single-use plastics [9] or recyclable
packaging [10] are of primary importance. The Chinese government, for instance, enacted
a ban on using multiple single-use plastics and non-degradable food containers [9]. Other
possible mitigation policies for a sustainable ocean are ex-post interventions based on
marine plastic-waste cleanup with the use of new technologies and strategies of regional
cooperation [11–13]. Cooperation is, therefore, the basis for evolutionary success [14],
creating to a win-win growth situation.

1.3. The Problem of Global Food Production

Global food production is one of the central issues in recent times, and this is due to
increasing demand from the world population and the consequent reduction in natural
resources to satisfy this demand. Indeed, when we talk about food production and con-
sumption, we should consider several aspects. The problems caused to the environment by
food production include:

• The land used for livestock and crops for human consumption with the associated
conversion of forests and grasslands into cropland or pasture.

• Pollution arising from farming (ruminant livestock produces methane through their
digestive processes) and fishing (fuel consumption from fishing vessels) and the use
of fertilizers.

• The use of large amounts of water for cultivation and irrigation.

https://www.globalgoals.org/goals/
https://www.wrap.org.uk/food-drink/business-food-waste/courtauld-2025
https://www.wrap.org.uk/food-drink/business-food-waste/courtauld-2025


Mathematics 2022, 10, 4553 3 of 20

Moreover, problems in terms of energy and resource inputs for food processing (convert-
ing produce from the farm into final products), transport, packaging and retail have to
be considered.

It is essential, therefore, to determine the quantity of food that should be produced—
based on demand—in order to avoid surplus and the adoption of methods of food preser-
vation in order to avoid waste deriving from poor conservation.

Indeed, the Food and Agricultural Organization of the United Nations (FAO) has
pointed out that one third of food produced is wasted—representing the superfluous use of
1.4 billion hectares of cropland [15]. Moreover, food waste determines methane emissions
from landfills, as well as pollution for hauling and putting it in the landfill.

1.4. Possible Actions for Mitigating Global Food Scarcity

Some of these problems can, in part, be mitigated with a more sustainable food diet
by eating less meat; see [16,17]. Some resources can be preserved by investing in the
development of sustainable machinery with low CO2 emissions or machinery that allow
the reuse or recycling of natural resources. Furthermore, it is also possible to think that
eating local is the key to a low-carbon diet and, in such a way, transport costs can be
reduced by assuming a local production and consumption strategy. According to the
above analysis—and following the basic principles of the circular economy (optimization of
resources, minimization of waste)—we propose a model of cooperation, between fast-food
companies. The proposed model shows possible optimal scenarios concerning the quantity
of food production and concerning the investments in sustainable packaging technologies,
which guarantee benefits for companies and for the environment.

1.5. Aims of the Paper

In this article, specifically, we consider the coexistence of competing fast-food actors,
through green coopetitive agreements among the competitors themselves, and some paper
factories. We show possible scenarios in which all participants and the environment could
benefit from a green coopetitive interaction.

From an economic-theory point of view, we assume the existence of two competitors
selling a very similar type of food on the same market, so that, from a competitive perspec-
tive, we construct a classic “Cournot duopoly core” upon which we define a parametric
game, namely, a coopetitive game, together with its possible dynamical scenarios and solu-
tions. We should notice that beyond the parameter arising from the cooperation strategy,
we introduce a matrix of stochastic variables, which we can also consider as a state vector of
the world. Moreover, we examine numerically one possible state of the world to exemplify
our model proposal.

2. Methods and Theoretical Background

Since we propose a coopetitive game model using concepts from non-cooperative
game theory, quantitative bargaining theory, coopetition, industrial symbiosis, and logistics,
we need to present a brief account of the previous theoretical developments adopted here.

2.1. Game-Theory Approach

Much attention has been paid in recent years to trying to reduce the environmental
impacts of human activities. To this end, it is important to recycle or reuse waste as much
as possible or to create non-polluting or degradable waste. Industrial ecology, for instance,
explains how it is possible to use waste from one process as raw materials in another [18].
Game theory is largely used, in the literature, for the study of the deeper interaction
between many subjects, such as industries, governments, environment and society, and can
explain the macro-level collective dynamics of social systems [19].

There exist several type of the game-theory approach, which are applied to the study of
different contexts. Specifically, in cooperative games, the values of the players are calculated
with respect to possible coalitions of participants [20], while in non-cooperative finite games,
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the goal is to search for possible balances and optimal gains for the participants; see [21].
Another line of research adopts evolutionary game theory for the analysis of growth
dynamics over time, in order to understand which components may be winning or losing
in the short and medium term; see, for instance, [22].

2.2. Game Theory in Environmental Preservation

Concerning the environmental context, several studies have used game-theory mod-
els for solving and optimizing logistics problems, proving that collaboration between
players allows the optimization of logistic operations and gains. For instance, recently,
Mouatassim et al. adopted a hybridized game-theory model to form coalitions and optimize
transport costs in the case of a blood supply chain [23], while [24] proposed an integrated fi-
nancial game-theory model for humanitarian organizations. Shi and Voß used game theory
to model and analyze the behaviors of players in the shipping industry, considering game
theory as a decision-making methodology which can usefully analyze interdependencies
and interrelations in network-based services [25]. Reyes used game theory for solving the
trans-shipment problem for maintaining stable conditions in a logistics network [26].

In the textile industry, Jafari considers some recyclables resources such as the plastic
and metal bottles used as substitutable materials for the production of cotton [27]. Li et al.
study the problem of pollution from non-biodegradable-plastic food containers, suggesting
the use of degradable food packaging through a study of an evolutionary game-theory
model between OFD platforms and restaurants [9]. Wang et al. focus on the sustainability
problem associated with the takeout-food industry [10]. Indeed, they propose a construction
of a recycling industry chain in order to fight the increasing amount of non-degradable
waste coming form plastic bags and packing boxes.

2.3. Coopetitive Games

The novelty of the game-theory approach proposed in this article lies in the additional
application of the coopetition in studying the problem of recyclable food packaging. How-
ever, in this article, we apply not only game theory, but also coopetition. Our approach
aligns with the Brandenburger–Nalebuff idea of coopetition (see, e.g., [28,29]). We chose,
as a possible model of Brandenburger and Nalebuff’s idea, that the “parametric manifold
of non-cooperative games indexed by a shared cooperative strategy space”, introduced by
Carfì in [30]. The model of coopetitve games can represent competitive and cooperative
intercaction simultaneously. This new approach has been applied in the study of different
environmental problems (ocean degradation [31] or urban-waste recycling [32]). In addi-
tion, recently, Pedreira and Melo have used coopetition in supply chains [33], studying two
food manufacturing companies in Brazil and evaluating the quantitative benefits in terms
of CO2 emissions and transportation costs.

3. The Economic Model: Coopetitive Agreement between Food Competitors

In this paper, we present a coopetitive interaction, based on a Cournot duopoly,
between two food resellers, through investments in innovative paper packaging and
reselling of fresh food with low environmental impact.

In more specific terms,

• We define a suitable parametric game with a core “a la Cournot” between two similar
large food producers/retailers (fast food) in local competition.

• We assume the presence of innovative factories producing paper, cardboard and
new green-effective packaging (for instance, LEIPAflat (see the sustainable packag-
ing solution for fresh food at https://multivac-group.com/it/news-e-eventi/news/
detail/2019/04/1012-sustainable-packaging-solution-for-fresh-food/ (last accessed
31 October 2022))).

• The innovative packaging is produced using cardboard and recycled paper, character-
ized by a negligible amounts of plastic, easily separable by consumers and ready for a
quick recycling process.

https://multivac-group.com/it/news-e-eventi/news/detail/2019/04/1012-sustainable-packaging-solution-for-fresh-food/
https://multivac-group.com/it/news-e-eventi/news/detail/2019/04/1012-sustainable-packaging-solution-for-fresh-food/
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• In our model, the paper waste from food enterprises is used as raw material for
innovative factories.

• In order to compensate for the higher cardboard and paper consumption for their
fresh-food packaging, the two enterprises agree to offer a significant percentage of
food with low environmental impact.

3.1. General Description

• Our economic model can be considered a two-player non-cooperative family G of
games parameterized by a cooperative strategy belonging to a fixed compact interval
of the real line.

• The two players are fast-food enterprises and the cooperative strategy consists of
possible common investments into innovative green packaging for food products,
together with the agreement that a significant percentage of food sold comes from
sources with low environmental impact (vegetable-based proteins).

In other words, we are defining a compact smooth parametric curve of non-cooperative
games, parameterized by a cooperative compact strategy interval C.

• Moreover, we consider curve G as a stochastic curve, defined also upon a real four-
dimensional compact state-of-the-world space M.

• The elements of the space M are four-dimensional matrices individually representing
the actual observable “efficiency” of the cooperative strategy (we simplify efficiency
into a pair of interest rates and a pair of cost coefficients).

• Formally, our game G can be defined as a vector function

G : S×M→ R2 : (x, y, z, µ) 7→ ( f 1
µ(x, y, z), f 2

µ(x, y, z)),

where

– S is the strategy set of the two players, decomposable in the cartesian product

S = E× F× C;

– M is the space of all real (2,2) matrices;
– R2 is the payoff universe of the game;
– f 1

µ and f 2
µ are the two payoff functions of the players, respectively, when the state

of the world µ is realized.

Any stochastic matrix µ ∈ M determines how much a common investment z ∈ C
(of the two coopeting players) is actually influencing the payoffs (revenues and costs
determined by the common investment z) of the players.

Resuming, the two players of the game are two fast-food enterprises, cooperatively
investing in the development of sustainable packaging production, conceived and produced
by an innovative paper factory in the nearby area.

Specifically, their cooperative deal consists of the common investment in innovative
paper packaging and reselling of low-environmental-impact fresh food.

Concerning the definition of payoff functions, we start from a classic duopoly interac-
tion (Cournot model—see [34]) and we extend the classic core with a non-linear translation
depending both upon the chosen common investment and the realized state of the world.

3.2. Strategies

The strategies of the model are:

1. Strategies
x ∈ E := U = [0, 1],

representing any food quantity produced by the first fast-food enterprise (the unity
of the above strategy interval represents the Cournot critical quantity defined and
discussed in economic literature and in [34]);
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2. Strategies
y ∈ F := U = [0, 1],

representing any food quantity produced by the second fast-food enterprise;
3. Shared strategies

z ∈ C := ẑU = [0, ẑ],

representing the collective cooperative green strategy space. We simply assume that
the chosen strategy set C is a compact interval and, consequently, we denote by ẑ the
maximum of that interval. The two players determine together the strategy space C.

3.3. Cooperative Strategy Space

Any strategy z in the compact C represents the aggregate investment for the environ-
mentally sustainable packaging. Specifically,

z ∈ C = [0, ẑ]

represents the common investments for adopting advanced innovative alternative packag-
ing from recycled paper waste.

This strategy can be implemented by adopting a compact thermoforming packaging
machine allowing the generation of a sustainable, green cardboard composite, used for
packing fresh food.

This multilayer composite is made of up to 90 percent renewable raw materials. In
order to compensate for the used renewable raw materials, the two producers agree to offer
a meaningful percentage of products from low-impact sources.

3.4. Payoff Functions

We propose a classic Cournot-type vector function

c : E× F → R2 : (x, y) 7→ (4x(1− x− y), 4y(1− x− y))

perturbed by a non-linear stochastic function v, as the payoff function of our game.
The non-linear stochastic perturbation v is defined by

v : R2,2 × C → R2

with

vµ(z) = µ

(
z
z2

)
=

(
µ11 µ12
µ21 µ22

)(
z
z2

)
=

(
µ11z + µ12z2

µ21z + µ22z2

)
,

for every square matrix µ ∈ R2,2 and z ∈ C.
Setting M = R2,2, the parametric payoff function of food enterprise 1 is the function

f 1 of the parallelepiped
S×M = E× F× C×R2,2

into the real line, defined by

f 1
µ(x, y, z) = 4x(1− x− y) + µ11z + µ12z2, (1)

for every quadruple (x, y, z, µ) in S×M.
Clearly, we are choosing a very specific Cournot core c; we decided to adopt a core c

proportional to the normalized symmetric Cournot duopoly core, by a factor of 4. Here:

• The term µ11 > 0 represents the interest rate associated with the first player, on the
collective investment decided by the two food resellers in the innovative paper pack-
aging (meaning that the term µ11z is the net profit of the first player coming from the
investment z);
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• The term µ12 ∈ [−1, 0] represents a coefficient-cost relative to the same investment and
we assume, in f 1, a quadratic dependence upon z, just to fix an order of polynomial
approximation.

The payoff function of food enterprise 2 is the function f 2 of the parallelepiped S×M
into the real line, defined by

f 2
µ(x, y, z) = 4y(1− x− y) + µ21z + µ22z2 (2)

for every quadruple (x, y, z, µ) in S×M. Here:

• The term µ21 > 0 represents the interest rate associated with the second player on the
collective investment decided by the two resellers in the innovative paper packaging;

• The term µ22 ∈ [−1, 0] represents a coefficient-cost relative to the same investment
and we assume, in f 2, a quadratic dependence upon z.

Resuming, the payoff function of the coopetitive game G is given by

fµ(x, y, z) =
(

4x(1− x− y)
4y(1− x− y)

)
+ µ

(
z
z2

)
= c(x, y) + vµ(z) (3)

for every quadruple (x, y, z, µ) in the strategy parallelepiped S×M.

4. Results
4.1. Study of the Coopetitive Game G by Translations

Now, let us fix, for the moment, a stochastic matrix µ. Let z be a cooperative strategy
belonging to the interval C = [0, ẑ]. The game

Gµ(z) = (pµ,z,≥),

characterized by the payoff function pµ,z, which is defined on the square U2 through

pµ,z(x, y) = fµ(x, y, z),

for every (x, y, z) ∈ S, is the translation of the game Gµ(0) by the vector

vµ(z) = µ

(
z
z2

)
.

Therefore, we can analyze the initial game Gµ(0) and, then, we translate the features
of the initial game Gµ(0) by the vector vµ(z).

4.2. Study of the Game Gµ for a Specific State of the World µ

From now on, we concentrate on the particular exemplary case in which the state of
the word is

µ =

(
4 −3/5

3/2 −1/10

)
.

4.2.1. The Initial Cournot Core

We start with the Cournot payoff space

im(c) = c(E× F),

and the that is the image of the strategy square E× F, under the Cournot core c (Figure 1).
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Figure 1. Topological boundary of the initial Cournot payoff space im(c). That is, boundary of the
payoff space of game Gµ(0).

4.2.2. Translation Using the Vector Family vµ

We translate using the vector family

vµ =
(
vµ(z)

)
z∈C,

(see Figure 2), and obtain the coopetitive dynamical path of the initial payoff space, which
is the image of the function fµ:

fµ(E× F× C) = im(c) + vµ(C).

Figure 2. Representation of vector family vµ : C → R2 : z 7→ µ(z, z2) as a parametric curve.

In Figure 3, we show the construction of the payoff space of game Gµ. The coopetitive
dynamical path of the initial Cournot payoff space is represented in Figure 4.
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Figure 3. Construction of the payoff space of the parametric game Gµ. Here, we represent the games
Gµ(z) for some values of z.

Figure 4. Payoff space of the coopetitive game Gµ; that is, the union of all payoff spaces of the games
Gµ(z), with z ∈ C.

4.2.3. Choice of the Cooperative Strategy Set C

Above, we chose the maximum of interval C exactly equal to

ẑ = 20/3,

since ẑ = 20/3 is the unique positive solution of the equation

f 1
µ(0, 0, ẑ) = 0.

In other terms, we are choosing the value of the shared investment that returns the profits
of the first player to the initial state (that is, the non-cooperative state).

4.3. Possible Solutions of the Game Gµ

We propose different types of possible solutions for the parametric game Gµ.
These types of possible solutions fall in two families: the family of purely coopetitive

solutions and the family of fully collaborative scenarios.

• The first ones are the solutions in which the only allowed collaboration consists of the
cooperative frame determined by the investment, the common investment, in green
technologies and green habits).

• The second ones are solutions in which the two enterprises can also collaborate at the
level of the initial non-cooperative strategies; that is, at the level of
production quantities).
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4.3.1. Purely Coopetitive Solutions

We consider the following purely coopetitive payoff solutions:

• The Pareto boundary of the Nash payoff (equilibrium) path;
• The collectively optimal Nash payoff N′(z∗µ), which is by itself a purely coopetitive

payoff solution;
• A purely coopetitive payoff solution Pµ, collectively equivalent to the optimal Nash

equilibrium N′(z∗µ), starting from the threat point N′(0).

4.3.2. Fully Cooperative Scenarios

Among the various possible solutions in a fully cooperative payoff scenario, we
selected the following ones:

• A super-cooperative payoff solution K′(z∗µ);
• A super-cooperative payoff solution K′0(z

∗
µ).

4.4. The Nash Trajectory of the Coopetitive Game Gµ

In Figure 5, we show the Nash trajectory of the coopetitive game Gµ.

Figure 5. Nash trajectory N′ : z→ N′(z) = (4/9, 4/9) + µ(z, z2).

In Figure 6, we show the Pareto boundary of the Nash payoff equilibrium path.
That Pareto boundary is the portion of the curve N′(C) constituted by the points N′ of

z with z ∈ [z0, ẑ], where
z0 = − µ11

2µ12
= 10/3.

Figure 6. Pareto boundary of the Nash payoff path.
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4.5. The Collective Optimal Nash Payoff and the Optimal Parameter z∗µ
We find the collectively optimal Nash payoff N′(z∗µ) in Figure 7, where N′ is the

parametric Nash payoff trajectory and

N(z∗µ) = (1/3, 1/3, z∗µ)

is the triple of maximum collective gain within the Nash equilibrium zone.

Figure 7. Collectively optimal Nash payoff N′(z∗µ).

The optimal parameter z∗µ is obtained by maximizing the collective payoff function,

f 1
µ + f 2

µ ,

of the two players upon the constraint N′(C). Hence, we readily obtain

z∗µ = − µ11 + µ21

2(µ12 + µ22)
= 55/14.

4.6. Analytical Form of Purely Coopetitive Solutions

The unique collectively optimal Nash payoff is

N′(z∗µ) = N′(0) + z∗µ
(

1
z∗µ

)
,

therefore, our unique purely coopetitive solution with maximum collective gain is the Nash
equilibrium N(z∗µ).

In Figure 8, we show another purely coopetitive sharing, represented by the payoff
Pµ, of the maximum collective gain obtained by the two players falling on the purely
coopetitive solution N(z∗µ).
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Figure 8. Purely coopetitive sharing Pµ.

4.7. Interpretations of Purely Coopetitive Solutions

We emphasize that the above two payoff sharings, N′(z∗µ) and Pµ, are very different
from each other. Indeed, the first solution belongs to the payoff space of the game; on the
contrary the second one does not, as shown in Figure 9. Moreover, it is clear that the
solution N′(z∗µ) represents a natural economic outcome when the two players know a
priori the state of the world µ and then they fall naturally into the Nash equilibrium N(z∗µ).
On the contrary, when the two players do not know a priori the state of the world µ they
are facing, during their coopetitive interaction, it seems quite natural to consider, as the
unique possible starting point of the bargaining problem, the very well-known Cournot
Nash equilibrium N(0). In this last scenario, the scenario of an unknown future, the only
reasonable action for the two players is to agree ex-ante on a fair sharing (1/2, 1/2), of the
future payoff profile N′(z∗µ). Practically, they had to choose their respective equilibrium
strategy and, after obtaining the optimal Nash payoff, they need to fairly share the gains
half and half.

Figure 9. Proposed solutions of game G.

4.8. Super-Cooperative Solutions

In a super-cooperative scenario, we propose the payoff solutions K′(z∗µ) in Figure 10
and K′0(z

∗
µ) in Figure 11.

For the above two cooperative solutions, we could repeat word for word the remarks
of the above subsection concerning the purely coopetitive scenarios.
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Figure 10. Super-cooperative payoff solution K′(z∗µ) = fµ(1/4, 1/4, z∗µ).

Figure 11. Super-cooperative solution K′0(z
∗
µ), possible sharing of the collective gain realized in

K′(z∗µ).

4.9. Analytic Determination of the Purely Coopetitive Solutions

Again, in a purely coopetitive mood, we suggest the Nash strategy

N(z∗µ) = (1/3, 1/3, z∗µ),

with corresponding payoff profile

N′(z∗µ) = N′(55/14) =
(

4/9
4/9

)
+

11
142 × 2

(
230
155

)
.

and it is the reciprocal image of the payoff N′(z∗µ), which belongs to the space f (S).
The collective gain at the Nash equilibrium N(z∗µ) is

( f 1
µ + f 2

µ)(N(z∗µ)) = 8/9 +
385× 11
142 × 2

.

The Purely Coopetitive Payoff Solution Pµ

From the knowledge of the profile strategy N(z∗µ), we can immediately generate
another purely coopetitive payoff profile

Pµ =

(
( f 1

µ + f 2
µ)(N(z∗µ))
2

,
( f 1

µ + f 2
µ)(N(z∗µ))
2

)
≈ (5.85, 5.85),
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obtained from the payoff N′(z∗µ) by calculating the collective gain at N(z∗µ) and sharing it
fairly by a straightforward Kalai–Smorodinsky method, using as a threat point the initial Nash
payoff N′(0). Clearly, N′(z∗µ) is the solution when we use as a threat point N′(z∗µ) itself.

4.10. Analytic Determination of the Super-Cooperative Solutions

From a super-cooperative perspective, considering N′(z∗µ) as a threat point (see
Figure 10), we can suggest the profile strategy

K(z∗µ) = (1/4, 1/4, z∗µ),

which clearly belongs to our strategic space S. The corresponding payoff is

K′(z∗µ) = f (K(z∗µ)) = K′(0) + z∗µ
(

1
z∗µ

)
≈ (6.95, 4.84),

where K′(0) is the initial standard Cournot bargaining payoff (1/2, 1/2).
Again, from a super-cooperative perspective, considering N′(0) as a threat point (see

Figure 11), we can suggest the profile strategy

K′0(z
∗
µ) =

(
( f 1

µ + f 2
µ)(K(z∗µ))
2

,
( f 1

µ + f 2
µ)(K(z∗µ))
2

)
≈ (5.9, 5.9),

which belongs to the straightline of maximum collective gains, but does not belong to the
payoff space of the game Gµ.

4.11. The Main Result

We should notice that we determined the closed form for the above solutions and
optimal values for any possible state of the world. We recap the obtained results in the
following, Theorem 1.

Theorem 1. Let µ ∈ R2,2 be an invertible matrix with positive first column and negative second
column. Then, the coopetitive game defined by

Gµ : S→ R2 : (x, y, z) 7→ fµ(x, y, z) =
(

4x(1− x− y)
4y(1− x− y)

)
+ µ

(
z
z2

)
(4)

admits one unique purely coopetitive solution with maximum collective gain, the strategy profile

N(z∗µ) = (1/3, 1/3, z∗µ).

In particular:

• The optimal investment (the investment of maximum collective gain) in the cooperative
strategy is

z∗µ = min
{
−1

2
µ11 + µ21

µ12 + µ22
,−µ11

µ12
,−µ21

µ22

}
;

• The purely coopetitive solution in the payoff space is

N′(z∗µ) = N′(0) + z∗µ µ

(
1
z∗µ

)
;

• The fifty–fifty sharing of the purely coopetitive solution (in the payoff space) is

Pµ =
1
2

(
f 1
µ + f 2

µ , f 1
µ + f 2

µ

)
(N(z∗µ)).
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Moreover, the game Gµ admits one unique best compromise super-cooperative solution, which is the
strategy profile

K(z∗µ) = (1/4, 1/4, z∗µ).

In particular:

• The corresponding super-cooperative solution in the payoff space is the pair

K′(z∗µ) = K′(0) + z∗µ µ

(
1
z∗µ

)
where K′(0) is the initial standard Cournot bargaining payoff 4(1/8, 1/8);

• The fifty–fifty sharing of the super- cooperative solution (in the payoff space) is

K′0(z
∗
µ) =

1
2

(
f 1
µ + f 2

µ , f 1
µ + f 2

µ

)
(K(z∗µ)).

5. Discussion
5.1. Two Possible Maximum Collective Gains

The results of the analysis prove that we can find, in the strategy space, two win–win
maximum collective gain payoff solutions for the firms involved: one purely coopetitive
solution and one super-cooperative solution.

We emphasize that these solutions are maximum collective gain solutions in their
respective Pareto boundaries (the Pareto boundary of Nash coopetitive equilibria and the
Pareto boundary of the entire game).

The above solutions also include advantages for the environment, for human health
and for the climate-change crisis.

5.2. Interpretation of the Space S×M

We want to stress that:

• The first component of any strategy profile, which belongs to the strategic interval
[0, 1], represents any food quantity produced by the first fast-food enterprise;

• The second component of any strategy profile, which belongs to the strategic interval
[0, 1], represents any food quantity produced by the second fast-food enterprise;

• The third component of any strategy profile, which belongs to the strategic interval C,
represents the common investment chosen to acquire advanced green technologies for
innovative packaging derived from recycled paper waste;

• Any parameter belonging to the matrix space M—those matrices which are invertible
and with a positive first column and negative second column—represents the state of
the world at the end of the coopetitive process in which, finally, we can see the profits
and costs deriving from the adoption of the green technologies.

5.3. Interpretation of the Payoff Solutions

The two components of the payoff solutions N′(z∗µ), Pµ, K′(z∗µ) and K′0(z
∗
µ) represent

gains. Specifically, the first component represents the income of the first player and the
second component represents the income of the second player. However, Pµ and K′0(z

∗
µ) are

only indications of how to share the collective gains obtained, respectively, in the payoffs
N′(z∗µ) and K′(z∗µ). Indeed, there exist no strategy profiles leading to those gains directly,
while the payoffs N′(z∗µ) and K′(z∗µ) come directly from N(z∗µ) and K(z∗µ).

5.4. Advantages for the Environment

The first strategy profile N(z∗µ) means that food enterprise 1 decides to produce
exactly 1/3 of the Cournot critical quantity production and also food enterprise 2 decides
to produce exactly 1/3 of the Cournot critical quantity production. At the same time, the
two players decide together to invest the optimal money amount z∗µ, while facing the state
of the world µ.
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Even more respectful for the environment (because of the reduction in required pro-
duction) is the super-cooperative solution K(z∗µ), which suggests, for food enterprise 1,
producing exactly 1/4 of the Cournot critical quantity production and, symmetrically, for
food enterprise 2, producing, again, exactly 1/4 of the Cournot critical quantity production.
Therefore, the two enterprises can gain a little bit more with respect to the (collectively)
optimal Nash solution, producing less food, less waste, less pollution and diminishing the
probability and amount of food-waste.

5.5. Stability of the Payoff Solution K′0(z
∗
µ)

From a mathematical–economics perspective, once the binding contract is signed,
the solution payoff K′0(z

∗
µ) is more “stable with respect to convenient small production

oscillations” because of the presence of a maximum collective gain plateau (an indifference
straight-line segment) in the payoff Pareto boundary of the game Gµ, just around the profile
outcome K′(z∗µ) (see Figure 9).

5.6. Two Possible Types of Sharing

We consider two possible types of solutions, which are very different from each other.
The first solution type belongs to the payoff space of the game; on the contrary, the second
one does not, as shown in Figure 9. Solutions N′(z∗µ) and K′(z∗µ) represent natural economic
outcomes when the two players know a priori the state of the world µ they are facing during
the coopetitive process and, consequently, they fall naturally to the Nash equilibrium N(z∗µ)
or to the associated best compromise solution K(z∗µ). On the contrary, when the two players
do not know a priori the state of the world µ they are facing during their coopetitive
interaction, it seems quite natural to consider, as the unique possible starting point of the
bargaining problem, the very well-known Cournot–Nash equilibrium N(0), which is also
equivalent to starting from the conservative strategy profile (0,0). In the latter scenario (the
scenario of a fully unknown future), the only reasonable action for the two players remains
to agree ex-ante on a fair sharing, (1/2, 1/2), of the future payoff profile N′(z∗µ) or K′(z∗µ).
Practically, they had to choose their respective optimal strategies and, after obtaining the
corresponding optimal payoffs, they need to fairly share the gains half and half.

Figure 9 shows all the proposed solutions in the same graph.

6. Conclusions
6.1. Micro-Economic Point of View: The Sustainability of Natural Resources and
Perfect Competition

In this paper, from a microeconomic point of view, we presented a coopetitive model
of the strategic interaction of two food enterprises through investments in sustainable-
packaging technologies.

Specifically, we consider the producer/reseller decision problem of an industrial
organisation in conditions of perfect competition within small oligopoly clusters.

Indeed, very often, one major sustainability problem is that the presence of direct com-
petitors in the same market determines entrepreneurship choices which lower production
costs and packaging costs at the expense of the environment and public health.

6.2. Macro-Economic Point of View: Plastic Pollution and Food Marketing

From a macroeconomic point of you, we dealt with the renowned problem of plastic
pollution caused by food consumption and its conservation.

For this purpose, in order to show economic scenarios in which the respect and
preservation of the environment and natural resources are quantitatively compatible with
profits and economic growth, we present a provisional coopetitive model of the strategic
interaction of two food enterprises, in direct duopoly competition, through investments in
sustainable-packaging technologies.

As a solution of the coopetitive interaction, we determined possible “fair coopetitive
agreements”, allowing:
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• The actors to increase the gains with respect to a classic situation of non-collaboration;
• A reduction in production costs, by using raw materials;
• A reduction in environmental costs, by using low-carbon new technologies and lower-

ing the inflow of plastics to the environment.

6.3. The Coopetitive Model

We assume the existence of two competitors selling a very similar type of foods on
the same market so that, from a competitive perspective, we construct a classic “Cournot
duopoly core” upon which we define a parametric game, namely, a coopetitive game,
together with its possible dynamical scenarios and solutions.

We should notice that beyond the parameter arising from the cooperation construct,
we introduce a matrix of stochastic variables, which we can also consider as a state of
the world.

Moreover, we examine numerically one possible state of the world to exemplify our
model proposal. We determine analytically and graphically the optimal investment in the
cooperative strategy, the purely coopetitive solution and some super-cooperative solutions.

The cooperative strategy represents the common investment chosen to acquire ad-
vanced green technologies for innovative packaging, while the fourth component of any
solution in the strategy space represents the state of the world at the end of the coopetitive
process in which, finally, we can see the profits and costs derived from the adoption of the
green technologies.

6.4. Solutions

We showed the complete analysis of our proposed game and we suggested some of its
possible solutions. In particular, we propose:

• Two pure coopetitive solutions —solutions in which the only allowed collaboration
consists of the cooperative frame determined by the investment, the common invest-
ment, in green technologies and green habits;

• Two super-cooperative solutions —solutions in which the two enterprises can also
collaborate at the level of the initial non-cooperative strategies (that is, at the level of
production quantities) on the coopetitive maximal Pareto boundary of our interaction.

In both cases, in order to quantitatively determine the desired solutions we adopt
the Kalai–Smorodinsky method (otherwise, we could use, for example, the classic Nash
bargaining solution).

6.5. Economic Interpretation

We emphasise that the non-cooperative part of the solution indicates the classic pro-
duction quantity while the cooperative part of the solution indicates the necessary common
investment needed to obtain the final gains.

We, moreover, emphasise that after the two players train the maximum collective gain
on the Nash equilibrium curve or the Parado boundary, they need to cooperate again to
share the pie in the most fairly way.

6.6. Environmental Impact of the Model and Its Solutions

We observed that the sustainable packaging suggested by our model and its solutions,
and the possible lower production in the super-cooperative scenarios (Cournot model
of pure competition requires equilibrium production quantities greater than our super-
cooperative production quantities), contribute to the transition towards low-carbon and
green economies. The reduction in the environmental impact associated with the more
sustainable food packaging persists throughout the supply chain, in terms of lowering the
plastic pollution and using renewable raw materials. The lower use of plastic reduces the
greenhouse gas emissions in food marketing (use of low-carbon technologies), and creates
less impact on oceans (use of the minimal quantity of plastic), less impact on forests (use of
recycled paper), and less air pollution, while respecting the market laws.
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7. Matlab Code

Here we present the code written for the study of the game, the graphical representa-
tion of the payoff space and the proposed solutions (Listing 1).

Listing 1. Code of the game.

syms(‘x’,‘y’,‘z’)
m11 = 4;
m12 = −0.6;
m21 = 1.5;
m22 = −0.1;
%payoff functions
f1 = 4*x.*(1 − x − y) + m11.*z + m12.*z.ˆ 2;
f2 = 4*y.*(1 − x − y) + m21.*z + m22.*z.ˆ 2;
f = [f1; f2];
v = [x y];
J = jacobian(f,v)
D = det(J)
g = solve(D,y) % critical zone
% graphical representation of the payoff space
for z = [0:40/3600:40/6] %z maximum
%AB
x = linspace(0,1)
y = 0
X1 = 4*x.*(1 − x − y) + m11.*z + m12.*z.ˆ 2;
Y1 = 4*y.*(1 − x − y) + m21.*z + m22.*z.ˆ 2;
plot(X1,Y1,‘b’)
hold on
%BC
y = linspace(0,1)
x = 1
X2 = 4*x.*(1 − x − y) + m11.*z + m12.*z.ˆ 2;
Y2 = 4*y.*(1 − x − y) + m21.*z + m22.*z.ˆ 2;
plot(X2,Y2,‘b’)
%CD
x = linspace(0,1)
y = 1
X3 = 4*x.*(1 − x − y) + m11.*z + m12.*z.ˆ 2;
Y3 = 4*y.*(1 − x − y) + m21.*z + m22.*z.ˆ 2;
plot(X3,Y3,‘b’)
%AD
y = linspace(0,1)
x = 0
X4 = 4*x.*(1 − x − y) + m11.*z + m12.*z.ˆ 2;
Y4 = 4*y.*(1 − x − y) + m21.*z + m22.*z.ˆ 2;
plot(X4,Y4,‘b’)
%HK
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Listing 1. Cont.

x = linspace(0,1/2)
X5 = 4*x.*(1 − x − (1/2 − x)) + m11.*z + m12.*z.ˆ 2;
Y5 = 4*(1/2 − x).*(1 − x − (1/2 − x)) + m21.*z + m22.*z.ˆ 2;
plot(X5,Y5,‘b’)
end
%Nash curve
a = 40/6
z = linspace(0,a)
x = 1/3
y = 1/3
N1 = 4*x.*(1 − x − y) + m11.*z + m12.*z.ˆ 2;
N2 = 4*y.*(1 − x − y) + m21.*z + m22.*z.ˆ 2;
plot(N1,N2,‘r’)
%maximum collective gain Nash equilibrium
z = −(m11 + m21)/(2*(m12 + m22))
x = 1/3
y = 1/3
N1 = 4*x.*(1 − x − y) + m11.*z + m12.*z.ˆ 2;
N2 = 4*y.*(1 − x − y) + m21.*z + m22.*z.ˆ 2;
plot(N1,N2,‘bx’)
%Kalai-Smorodinsky curve
z = linspace(0,a)
x = 1/4
y = 1/4
N1 = 4*x.*(1 − x − y) + m11.*z + m12.*z.ˆ 2;
N2 = 4*y.*(1 − x − y) + m21.*z + m22.*z.ˆ 2;
plot(N1,N2,‘go’)
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