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Abstract: A double-star Sq1,q2 is the graph consisting of the union of two stars, K1,q1 and K1,q2 , together
with an edge joining their centers. The spectrum for Sq1,q2 -designs , i.e., the set of all the n ∈ N such
that an Sq1,q2 -design of the order n exists, is well-known when q1 = q2 = 2. In this article, S2,2-designs
satisfying additional properties are investigated. We determine the spectrum for S2,2-designs that
can be transformed into (K4 − e)-designs by a double squash (bi-squash) passing through middle
designs whose blocks are copies of a bull (the graph consisting of a triangle and two pendant edges).
Here, the use of the difference method enables obtaining cyclic decompositions and determining
the spectrum for cyclic S2,2-designs that can be purely bi-squashed into cyclic (K4 − e)-designs (the
middle bull designs are also cyclic).
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1. Introduction

For any graph G, let V(G) and E(G) be the vertex-set and the edge-set of G, respec-
tively. Throughout the paper, Kv denotes the complete graph on v vertices, while Kv \ Kh
denotes the graph with V(Kv) as a vertex-set and E(Kv) \ E(Kh) as an edge-set (this graph
is sometimes referred to as a complete graph of the order v with a hole of size h). The graph
Kn1,n2,...,nt is the complete multi-partite graph with t parts of size n1, n2, . . . , nt; the complete
multi-partite graph with u parts of size g is more simply denoted by Ku(g).

Let G and H be simple finite graphs, a G-decomposition of H is a pair (X,B) where
X = V(H), and B is a collection of isomorphic copies (called blocks) of G whose edges
partition E(H). When H = Kn, we also refer to such a decomposition as a G-design of the
order n. A G-decomposition of Ku(g) is known as a group divisible design (G-GDD in short)
of type gu; the parts of size g are called the groups of the GDD. A G-decomposition of H is
cyclic if there exists a labeling of V(H) with the elements of the group of integers modulo
Zn such that the label permutation x → x + 1 preserves the blocks of the decomposition. A
G-decomposition of H is balanced if each vertex of H occurs in the same number of blocks.
If a G-decomposition is cyclic, then it is balanced.

Fixing a graph G, a natural problem that arises is to determine the spectrum for G-designs
(or, more simply, for the graph G), which is the set of all n ∈ N such that a G-design of the
order n exists. If a G-design of the order n exists, then some necessary conditions must
be satisfied ([1]): |V(G)| ≤ n; n(n−1)

2|E(G)| ∈ N (the number of blocks); and n−1
d ∈ N, where

d is the gcd of the degrees of the vertices in G. In addition, if a G-design of the order
n is balanced, then (n−1)|V(G)|

2|E(G)| ∈ N (the number of blocks in which each vertex of Kn

occurs). The spectrum problem has been investigated for a large number of graphs, and
numerous articles have dealt with the existence of G-designs, including several surveys
(see [2]). A great deal of work has also been conducted on variations and generalizations
regarding G-designs, and on G-designs with additional properties. The interest in graph
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decompositions is motivated by several applications in many areas of mathematics, as well
as in other disciplines, including computer science and social science. The significance of
graph decompositions is well-explained in [3].

In the context of graph decompositions, one of the mostly investigated families of
graphs have been trees. A tree is a connected graph without cycles. Special trees are
caterpillar graphs. A caterpillar is a graph consisting of a path on r ≥ 2 vertices x1, x2, . . . , xr
and r stars K1,qi (qi ≥ 0), i = 1, 2, . . . , r such that the central vertex of the star K1,qi is attached
to the i-th vertex xi of the path. By definition, the set of caterpillars includes all the paths,
stars, and double-stars. A double-star is the caterpillar graph, usually denoted by Sq1,q2 ,
which consists of the union of two stars, K1,q1 and K1,q2 , together with an edge joining their
centers. Caterpillar graphs have increased in popularity since the 1970s and are still being
studied. Currently, they are a useful tool in coding theory, especially in the development
of technologies for post-quantum cryptography, but they are also popular in chemistry,
where they are used to describe the structure of molecules. In particular, a special class of
trees (phylogenetic trees) is used in computational biology to represent the evolutionary
relationships of a set of extant species, and the most basic piece of phylogenetic information
is the quartet graph, which is the term used in phylogenetics to refer to the double-star S2,2
(see [4]). The spectrum problem for trees with at most nine vertices has been completely
solved by Huang and Rosa ([5]). Numerous existence results for G-designs, in particular
when G is a tree, have been proved by the use of graph labelings, which were introduced
by Rosa ([6]) in 1967 and are very useful in constructing cyclic decompositions (see [7]).

In this paper, we determine the spectrum for S2,2-designs satisfying additional prop-
erties. It is well-known that the spectrum for S2,2-designs is precisely the set of n ≡ 0, 1
(mod 5), n ≥ 6 ([2]). Here, we determine the spectrum for S2,2-designs that can be trans-
formed into (K4 − e)-designs by a double squash passing through bull designs (with regard
to the problems concerning the possibility of transforming a G-design of the order n into a
G′-design of the same order, the reader should refer to, for example, [8–12]). In order to
solve our problem, we extensively apply the difference method (see [13]), an efficient tool to
obtain cyclic designs and, in general, to describe graph decompositions.

In what follows, we will denote the following:

• the double-star S2,2 consisting of the central edge {a, b} and the four pendant edges
{a, a1}, {a, a2}, {b, b1}, and {b, b2} by (a, b; a1, a2, b1, b2);

• the bull graph consisting of the triangle (a, b, c) and the pendant edges {a, a1} and
{b, b1} by (a, b, c; a1, b1);

• the graph K4 − e obtained from the complete graph on the vertices a, b, c, d by deleting
the edge {c, d} by (a, b, c; d).

A double-star S is said to be squashed into a bull if we identify a pair of pendant
vertices not in the same star and name one of them with the other. In turn, a bull can be
squashed into a K4 − e by identifying the pair of pendant vertices. If the double-star S
is squashed into a K4 − e by two consecutive squashes, then we say that S is bi-squashed
(see Figure 1).
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Figure 1. Bi-squash.

We remark that the double-star (a, b; a1, a2, b1, b2) can be squashed in eight different
ways depending on the pair of vertices we squash and on the vertex we keep. For instance,
in Figure 1, we have applied the squash b1 7→ a1 (i.e., we rename b1 with a1) and obtain
(a, b, a1; a2, b2), but we could also apply the squash a1 7→ b1 and obtain (a, b, b1; a2, b2).
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Therefore, for each pair of pendant vertices not in the same star, we have two different
bulls. Likewise, to the bull (a, b, a1; a2, b2), we can apply the squash b2 7→ a2 or a2 7→ b2 and
obtain (a, b, a1; a2) or (a, b, a1; b2), respectively.

Let (X,B) be an S2,2-design of the order n. We say that (X,B) can be bi-squashed into
a (K4 − e)-design of the order n if it is possible to squash each block B ∈ B into a bull S1(B)
and then to squash S1(B) into a copy S2(B) of a K4 − e such that the resulting collections
S1(B) = {S1(B) : B ∈ B} and S2(B) = {S2(B) : B ∈ B} are the block-set of a bull design
and a (K4 − e)-design, respectively.

It is well-known that a (K4 − e)-design of the order n exists if and only if n ≡ 0, 1
(mod 5), n ≥ 6 (see [11], for example). The bull designs share the spectrum with both
S2,2-designs and (K4 − e)-designs (see [14]; in addition, a bull design of the order n = 5
exists). Moreover, it is easy to see that the necessary conditions for the existence of a
cyclic G-design of the order n are n ≡ 1 (mod 5) when G = S2,2, K4 − e and n ≡ 1, 5
(mod 10) when G is a bull. Therefore, a cyclic S2,2-design could be bi-squashed into a cyclic
(K4 − e)-design, but the middle bull design might not be cyclic (see Example 1).

Example 1 (A cyclic S2,2-design of the order 6 that can be bi-squashed into a cyclic
(K4 − e)-design). Let X = Z6 and

B:

"
"

"

b
b

b
"
"

"

b
b

b

t0t
1

t2

t3 t
5

t4j

"
"

"

b
b

b
"

"
"

b
b
b

t1t
2

t3

t4 t
0

t5

Y

"
"

"

b
b

b
"
"

"

b
b

b

t2t
3

t4

t5 t
1

t0j

S1(B):

"
"

"

�
�
�

T
T

T

b
b

b

t4
t0t

1

t3 t
5

Y

b
b

b
"

"
"

T
T
T

�
�

�

t1
t
2

t3

t4 t5j

"
"

"

�
�
�

T
T

T

b
b

b

t0
t2t

3

t5 t
1

Y

S2(B):

T
T
T

�
�
�

T
T

T

�
�

�

t4
t0

t
1

t3
T
T
T

�
�
�

T
T

T

�
�

�

t5
t1

t
2

t4
T
T
T

�
�
�

T
T

T

�
�

�

t0
t2

t
3

t5

When all three decompositions involved in the process of squashing are cyclic, we will
say that the cyclic S2,2-decomposition has been purely bi-squashed into a cyclic (K4 − e)-
decomposition. In this paper, as the main result, we prove the following theorem.

Theorem 1 (Main Theorem). For every n ≡ 0, 1 (mod 5), n ≥ 6, there exists an S2,2-design
of the order n that can be bi-squashed into a (K4 − e)-design of the order n. Moreover, for every
n ≡ 1 (mod 10), there exists a cyclic S2,2-design of the order n that can be purely bi-squashed into
a cyclic (K4 − e)-design of the order n.
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We remark that the reverse process of a squash can also be considered (called detachment)
where a vertex of degree 2 is split into two pendant vertices. So, starting from a copy of
K4 − e, we can obtain a bull graph and then a double-star S2,2 by two consecutive detachments
(bi-detachment). A similar result as Theorem 1 could be reformulated in terms of bi-detachment
by going from (K4 − e)-designs to S2,2-designs through bull designs.

2. Preliminaries

In this section, we provide a solution for small orders and provide ad hoc decomposi-
tions to use as ingredients in the following construction.

Theorem 2 (Filling Construction). Let h be a non-negative integer and n, g, and u be positive
integers such that n = gu + h. If there exist

• an S2,2-GDD of type gu that can be bi-squashed into a (K4 − e)-GDD;
• an S2,2-decomposition of Kg+h \ Kh that can be bi-squashed into a (K4 − e)-decomposition of

Kg+h \ Kh; and
• an S2,2-design of the order g + h that can be bi-squashed into a (K4 − e)-design;

then so does an S2,2-design of the order n that can be bi-squashed into a (K4 − e)-design.

Proof. Let (X,B) be an S2,2-GDD of type gu that can be bi-squashed into a (K4 − e)-GDD;
say Gi, i = 1, 2, . . . , u, its groups. Let H be a set of size h such that H ∩ X = ∅. For each
i = 2, 3 . . . , u, let (Gi ∪ H,Bi) be an S2,2-decomposition of Kg+h \ Kh (with H as hole) that
can be bi-squashed into a (K4 − e)-decomposition of Kg+h \ Kh. By the assumption, on
G1 ∪ H, we can also construct an S2,2-design (G1 ∪ H,B1) of the order g + h that can be
bi-squashed into a (K4 − e)-design. It is easy to check that (H ∩ X,B ∪ (∪u

i=1Bi)) is the
required design.

Remark 1. The “filling” technique allows us to construct an S2,2-design of the order n + h that
can be bi-squashed into a (K4 − e)-design whenever we have an S2,2-decomposition of Kn+h \ Kh
and an S2,2-design of the order h, which are both bi-squashable.

From now on, in order to say that a block B = (a, b; a1, a2, b1, b2) is bi-squashed
by b1 7→ a1 (first squash) and then by b2 7→ a2 (second squash), we will write
B = (a, b; ȧ1, ä2, b1, b2). Likewise, by the notation B = (a, b; ȧ1, a2, b1, b̈2), we will mean that
B is bi-squashed by b1 7→ a1 (first squash) and then by a2 7→ b2 (second squash). Note
that, in B = (a, b; ȧ1, ä2, b1, b2), we keep vertices belonging to the same star (we speak
of a block of type I), while in B = (a, b; ȧ1, a2, b1, b̈2) the vertices kept belong to different
stars (block of type II). Although each double-star can be squashed into eight different
bulls and each bull into two different copies of a K4 − e, the two above notations will be
sufficient to list the blocks of an S2,2-decompostion and say they can be bi-squashed into
a (K4 − e)-decomposition, without listing the bull-blocks and the (K4 − e)-blocks they
have been squashed into. As an example, in the following lemma, we list the blocks of the
S2,2-design of the order 6 described in Example 1 (here, the blocks are all of type II).

Lemma 1. There exists a cyclic S2,2-design of the order 6 that can be bi-squashed into a cyclic
(K4 − e)-design.

Proof. Let X = Z6 and B = {(3, 0; 4̇, 5, 2, 1̈), (1, 4; 2̇, 3, 0, 5̈), (5, 2; 0̇, 1, 4, 3̈)}.

In what follows, if G is a graph whose vertices belong to Zn, then we will call orbit of
G under Zn the set of the translates of G, i.e., Orb(G) = {G + i : i ∈ Zn}, where G + i is the
graph with V(G + i) = {a + i : a ∈ V(G)} and E(G + i) = {{a + i, b + i} : {a, b} ∈ E(G)}.
If the orbit of G under Zn has cardinality n, then the orbit is full; otherwise, it is short. If
(Zn,B) is a cyclic G-decomposition of a graph H, then B can be partitioned into orbits
and described by a set of orbit representatives (base blocks). Likewise if V(G) ⊆ Zn × Zt,
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then by G + i we mean the graph obtained from G by (j, k) 7−→ (j + i, k) and we speak
of translates and orbit of G under Zn with obvious meaning of the terms. If, further,
V(G) ⊆ Zn ×Zt ∪ {∞}, then we can again speak of translates and orbit of G under Zn by
means of (j, k) 7−→ (j+ i, k) and ∞+ 1 7−→ ∞. In what follows, the element (j, k) ∈ Zn ×Zt
will be denoted by jk.

Lemma 2. For n = 10, 20, there exists an S2,2-decomposition of Kn \ K6 that can be bi-squashed
into a (K4 − e)-decomposition of Kn \ K6.

Proof. Let H = {a1, a2, . . . , a6}. For n = 10, let X = Z4 ∪ H and consider the
blocks (0, 1; ȧ1, ä2, a5, a6), (2, 3; ȧ1, ä2, a3, a4), (1, 2; ȧ3, ä4, a5, a6), (0, 3; ȧ3, ä4, a1, a2),
(0, 2; ȧ5, ä6, a3, a4), and (3, 1; ȧ5, ä6, a1, a2). For n = 20, let X = Z14 ∪ H and con-
sider the orbit of (2, 0; 5̇, 6̈, 9, 8) under Z14, together with the blocks (2j, 1 + 2j; ȧ1, ä2, a5, a6),
(2 + 2j, 1 + 2j; ȧ3, ä4, a1, a2), and (8 + 2j, 1 + 2j; ȧ5, ä6, a3, a4) for j = 0, 1, 2, 3, 4, 5, 6.

Lemma 3. There exists an S2,2-design of the order n = 10, 20 that can be bi-squashed into a
(K4 − e)-design.

Proof. It follows from Lemmas 1 and 2 together with Remark 1.

The following lemma provides a solution for the smallest order for which there exists
a cyclic S2,2-design that can be purely bi-squashed into a cyclic (K4 − e)-design. Fron now
on, when we will speak of type of a base block, we will mean that all its translates have the
same type, unless specified otherwise.

Lemma 4. There exists a cyclic S2,2-design of the order n = 11 that can be purely bi-squashed into
a cyclic (K4 − e)-design.

Proof. Let X = Z11 and take (1, 0; 3̇, 5̈, 8, 6) as a base block.

Lemma 5. There exists an S2,2-decomposition of K15 \ K5 that can be bi-squashed into a (K4 − e)-
decomposition of K15 \ K5.

Proof. Let X = Z10 ∪ H, H = {a1, a2, a3, a4, a5}, and consider the blocks

(1, 6; ȧ4, 8, 5, ä5), (6, 2; 3̇, a3, 4, 1̈0), (7, 2; 4̇, a1, 3, 9̈) (6, 9; ȧ2, 10, 1, ä3), (a1, 6; 5̇, 9, a4, 7̈),
(a1, 1; 2̇, 1̈0, 5, a3), (3, 9; 1̇, ä1, a2, 7), (4, 8; 6̇, ä1, a2, a5), (2, 5; ȧ2, ä3, a4, a5), (3, 8; ȧ2, ä3, 6, 10),
(10, 7; ȧ2, ä3, a4, a5), (4, 1; ȧ2, ä3, 2, 10), (10, 5; ȧ4, ä5, a2, a3), (3, 7; ȧ4, ä5, a2, a3), (2, 8; ȧ4, ä5, 5, a1),
(9, 4; ȧ4, ä5, 5, 10), (7, 1; 5̇, 8̈, a2, a5), (3, 4; 5̇, 1̈0, a4, a5), (9, 8; 5̇, 1̈0, a4, a3).

Lemma 6. There exists an S2,2-design of the order 15 that can be bi-squashed into a (K4 − e)-design.

Proof. Let X = Z7 × Z2 ∪ {∞} and consider the orbits of (01, 11; 3̇1, 0̈0, 61, 60),
(21, 50; 6̇0, 3̈0, ∞, 00), and (51, 00; ∞̇, 40, 10, 3̈0) under Z7.

Lemma 7. There exists a cyclic S2,2-design of the order 21 that can be purely bi-squashed into a
cyclic (K4 − e)-design.

Proof. Let X = Z21 and consider the base blocks (1, 0; 7̇, 5̈, 14, 16) and (11, 0; 9̇, 8̈, 12, 13).

Lemma 8. There exists an S2,2-design of the order 25 that can be bi-squashed into a (K4 − e)-design.

Proof. Let X = Z12 ×Z2 ∪ {∞} and consider the orbits of (71, 00; 1̇01, 2̈1, 41, 81), (11, 01; 8̇0,
4̈0, 20, 100), (60, 01; 1̇0, 9̈0, ∞, 110), and (00, 01; ∞̇, 1̈10, 10, 90) under Z12, along with the
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twelve blocks (6k, 0k; 8̇k, 10k, 4k, 2̈k) + i, (2k, 8k; 4̇k, 6k, 0k, 1̈0k) + i, (10k, 4k; 0̇k, 2k, 8k, 6̈k) + i,
where i = 0, 1, i ∈ Z12 and k ∈ Z2.

Lemma 9. For every k ≥ 3, there exists a cyclic S2,2-GDD of type 10k that can be purely bi-
squashed into a cyclic (K4 − e)-GDD.

Proof. Let X = Z10k, k ≥ 3. For k = 3, consider the base blocks (0, 5; 4̇, 1̈6, 6, 24) and
(0, 20; 1̇3, 2̈2, 27, 18). For k = 4, consider the base blocks (0, 33; 3̇, 3̈4, 23, 32), (0, 38; 1̇5, 9̈, 21, 27),
and (0, 35; 1̇4, 1̈3, 16, 17). For k ≥ 5, consider the following k − 1 base blocks, which are all
of type I:

(3k + 2 + i, 0 ; 4 + 2i, 5k − 3 − i, 10k − 4 − 2i, 5k + 3 + i), i = 0, 1, . . . , k − 5, i ̸= ⌊ k−4
2 ⌋, i ∈ Z10k,

(3k + 1, 0 ; 5k − 2, 5k − 1, 5k + 2, 5k + 1),
(4k − 2, 0 ; k − 1, 2k − 4, 9k + 1, 8k + 4),
(2, 0 ; 3, 4k + 1, 10k − 3, 6k − 1),(⌊

9k−1
2

⌋
, 0 ;

⌊
5k+1

2

⌋
,
⌊

13k+1
2

⌋
,
⌊

15k
2

⌋
,
⌊

7k
2

⌋
).

The orbits of the above base blocks provide the required GDD, whose groups are the cosets
of the subgroup H = kZ10k in Z10k, i.e., Gi = kZ10k + i for i = 0, 1, . . . , k − 1.

3. Main Result

By using the basic results in Section 2, we are now able to obtain our main result,
i.e., to prove that the spectrum for (cyclic) S2,2-designs that can be (purely) bi-squashed
into (cyclic) (K4 − e)-designs is precisely the set of all n ≡ 0, 1 (mod 5) (respectively, n ≡ 1
(mod 10)), n ≥ 6.

As an additional result, for every n ≡ 6 (mod 20), we construct a cyclic S2,2-design of
the order n that can be (not purely) bi-squashed into a cyclic (K4 − e)-design of the order n
(leaving open the problem of constructing such a design for n ≡ 16 (mod 20)). To begin
with, we prove this result, which will also be useful in the proof of Theorem 1.

Proposition 1. For every n ≡ 6 (mod 10), there exists an S2,2-design of the order n that can be
bi-squashed into a cyclic (K4 − e)-design of the order n. Moreover, for every n ≡ 6 (mod 20),
there exists a cyclic S2,2-design of the order n that can be bi-squashed into a cyclic (K4 − e)-design
of the order n.

Proof. Write n = 10k + 6, k ≥ 0. Let X = Z10k+6 and B = B1 ∪ B2, where B1 is the union
of the orbits of the following base blocks of type I

Bi = (3k + 3 + i, 0; 2 + 2i, 5k + 2 − i, 10k + 4 − 2i, 5k + 4 + i), i = 0, 1, . . . , k − 1,

while the definition of B2 depends on the parity of k. If k is even, then B2 is the short orbit
of the block B = (5k + 3, 0; 7k + 4, 8k + 5, 3k + 2, 2k + 1), whose translates are all of type II
as long as you rewrite and partition them as follows:

(5k + 3 + j, j; 7k + 4 + j, 8k + 5 + j, 3k + 2 + j, 2k + 1 + j), j = 0, 2, . . . , 5k + 2,
(j, 5k + 3 + j; 2k + 1 + j, 3k + 2 + j, 8k + 5 + j, 7k + 4 + j), j = 1, 3, . . . , 5k + 1.

If k is odd, then B2 is the set of the following blocks of type II

P1 : (j, 5k + 3 + j; 2k + 1 + j, 8k + 5 + j, 3k + 2 + j, 7k + 4 + j), j = 0, 1, . . . , 2k,
P2 : (7k + 4 + j, 2k + 1 + j; 4k + 2 + j, j, 5k + 3 + j, 9k + 5 + j), j = 0, 1, . . . , k,
P3 : (8k + 5 + j, 3k + 2 + j; 5k + 3 + j, k + 1 + j, 6k + 4 + j, j), j = 0, 1, . . . , k − 1,
P4 : (9k + 5 + j, 4k + 2 + j; 6k + 3 + j, 7k + 4 + j, 2k + 1 + j, k + j), j = 0, 1, . . . , k.
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Note that, as a result of a squash, a graph G loses an edge, say ϵ−(G), and obtains a new
edge, say ϵ+(G); for a set Γ of graphs, let E−(Γ) = {ϵ−(G) : G ∈ Γ} and E+(Γ) = {ϵ+(G) :
G ∈ Γ}. Now, it is easy to check that by the first squash

E+(P1) = E−(P2) ∪ E−(P3),
E+(P2) = E−(P4),
E+(P3) ∪ E+(P4) = E−(P1),

and by the second squash

E+(S1(P1)) = E−(S1(P2)) ∪ E−(S1(P3)),
E+(S1(P2)) = E−(S1(P4)),
E+(S1(P3)) ∪ E+(S1(P4)) = E−(S1(P1)),

so that B2 can be bi-squashed into the orbit of (0, 5k + 3, 2k + 1; 7k + 4). (X,B) is an S2,2-
design of the order n = 10k + 6 that can be bi-squashed into a cyclic (K4 − e)-design. If k is
even, then (X,B) is also cyclic.

Remark 2. In the proof of Proposition 1, the union of the orbits of Bi, i = 0, 1, . . . , k − 1, and the
short orbit of B provide a cyclic S2,2-design of the order n ≡ 16 (mod 20) that can be squashed into
a cyclic (K4 − e)-design by two simultaneous squashes; i.e., no middle bull design can be obtained.

Proof of Theorem 1 (Main Theorem). Distinguish the following congruence classes.

(a) n ≡ 0 (mod 5). For n = 10, 15, 20, 25, the result follows from Lemmas 3, 6, and 8. For
n ≥ 30, write n = 10k + h, where k ≥ 3 and h = 0, 5. Let X = Z10k ∪ H, |H| = h,
H ∩Z10k = ∅. Apply the Filling Construction to the S2,2-GDD of type 10k provided by
Lemma 9 by using as ingredients copies of an S2,2-decomposition of K10+h \ Kh from
Lemmas 3 (for h = 0) or 5 (for h = 5) and an S2,2-design of the order 10 + h provided
by Lemmas 3 or 6.

(b) For n ≡ 1 (mod 5), consider the following two subcases.

– n ≡ 6 (mod 10). It follows from Proposition 1.
– n ≡ 1 (mod 10). Write n = 10k + 1, k ≥ 1. For k = 1, 2, the result follows from

Lemmas 4 and 7. For k ≥ 3, let X = Z10k+1 and consider the base blocks of type I

(3k + 2 + i, 0; 2 + 2i, 5k − 1 − i, 8k + 1 − 2i, 5k + 2 + i), i = 0, 1, . . . , k − 3,
(1, 0; 2k + 2, 2k − 1, 8k − 1, 8k + 2), (2k, 0; 5k + 1, 6k + 1, 5k, 4k),

whose translates are the blocks of a cyclic S2,2-design of the order 10k + 1, which
can be purely bi-squashed into a cyclic (K4 − e)-design of the order 10k + 1.

4. Conclusions

In this article, we determine the spectrum for S2,2-designs that can be bi-squashed
into (K4 − e)-designs. A complete solution is also provided for the existence problem of
a cyclic S2,2-design that can be purely bi-squashed into a cyclic (K4 − e)-design (which
means that the middle bull design is also cyclic), while a partial answer is provided for the
existence problem of a cyclic S2,2-design that can be (not purely) bi-squashed into a cyclic
(K4 − e)-design because we prove that such a design exists for every n ≡ 6 (mod 20),
while the problem of its existence is still open for n ≡ 16 (mod 20).

Open Problem 1. Determine the set of all n ≡ 16 (mod 20) such that there exists a cyclic
S2,2-design of the order n that can be bi-squashed into a cyclic (K4 − e)-design of the order n.

Finally, it is an open problem to determine the spectrum for S2,2-decompositions of
λKn (the complete graph whose edges are replicated λ times) that can be bi-squashed into
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(K4 − e)-decompositions of λKn. Moreover, decompositions with the additional property
to be cyclic could be investigated and an analogous result to Theorem 1 could be obtained.

Open Problem 2. Fixing any integer λ > 1, determine the set of all n ∈ N such that there
exists a (cyclic) S2,2-decomposition of λKn that can be (purely) bi-squashed into a (cyclic) (K4 − e)-
decomposition of λKn.

As a final note, we want to point out that, by applying the Theorem 1, Proposition 1,
and Remark 2, we also provide a complete solution to the existence problem of cyclic
G-designs when G = S2,2, K4 − e by proving that a cyclic G-design of the order n exists if
and only if n ≡ 1 (mod 5), n ≥ 6.
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