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A B S T R A C T   

Drought and water stress negatively affect many human activities, with agriculture playing a crucial role in 
ensuring food security. The drought vulnerability assessment of agricultural systems has been widely investi
gated in the past and the relationship between drought hazard and losses has been traditionally expressed 
through vulnerability curves. This study develops maize drought vulnerability curves tailored to the context of 
the Po River Basin (Northern Italy) which is the largest Italian agricultural area and accounts for 35% of national 
crop production. The curves express the relationship between crop water stress and maize yield losses. Four crop 
growth stages are considered (establishment, vegetative, flowering and yield formation) since the sensitivity of 
maize to water stress is strictly related with the plant growth stage. In addition, the influence of soil texture on 
the maize response to water stress is investigated. The Agricultural Production System sIMulator (APSIM) is used 
to simulate the crop yield and the water stress. APSIM is calibrated on observed yield and the model skill in 
reproducing maize yield is satisfactorily verified (Pearson correlation coefficient equals to 0.87). Flowering is the 
most sensitive stage to water deficit independently from the soil texture, while the yield formation phase is most 
sensitive to water stress than the vegetative in the case of Loam soils. The achieved results suggest the importance 
of the use of appropriate irrigation strategies. Water should be provided to maize in case of a water stress during 
the flowering phase to avoid irreparable yield losses.   

1. Introduction 

Impacts from recent climate-related hazards have revealed the sub
stantial vulnerability of many human systems to floods and droughts 
(Cesarini et al., 2021; Lu et al., 2021; von Christierson et al., 2012). 
Drought affects a wide range of human systems and economic activities, 
such as power generation, tourism and obviously agriculture. The 
agricultural sector is particularly exposed to precipitation shortages, 
high temperatures and insufficient soil moisture, which lead to yield 
losses and crop failure (Monteleone et al., 2020). The Food and Agri
culture Organization estimated that worldwide 83% of all documented 
drought-caused economic losses were absorbed by agriculture, with a 
price tag of $29 billion in developing countries (andAgricultureOrga
nization, 2012,andAgricultureOrganization, 2017,andAgricultureOrga
nization, 2017). The assessment of drought vulnerability of the 
agricultural sector has been widely investigated in the past. Already 
twenty years ago Wilhelmi and Wilhite (2002) proposed a framework to 
derive an agricultural drought vulnerability map through developing a 

numerical weighting scheme to evaluate the drought potential of 
various biophysical and social factors. Understanding the response of 
crops to droughts and water deficit is of key importance to estimate the 
effects of future droughts on agricultural production. Various studies 
explored the response of crops to drought: Yang et al. (2020) evaluated 
the response of winter wheat to water deficit in the North China Plain, 
Kamara et al. (2003) investigated the response of different maize hy
brids to water stress in Sudan, Korres et al. (2017) reviewed drought 
impacts on rice production and proposed mitigation strategies to deal 
with the increase in drought frequency that is expected in a climate 
change context. Traditionally, the relationship between drought hazard 
and losses is expressed through vulnerability functions (Papatho
ma-Köhle, 2016), sometimes called drought damage functions. These 
functions are continuous curves relating the drought intensity, 
expressed through a drought index or indicator, and the negative effects 
of the drought (Bachmair et al., 2017). The development of drought 
vulnerability curves is challenging due to the limited availability of 
drought damage data (Bachmair et al., 2016). However, the attention on 
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developing these functions for the agricultural sector has increased over 
the last years. Crop specific drought vulnerability functions have been 
proposed in various studies. Steduto et al. (2012) proposed linear 
functions that relate crop yield with the ratio between actual and po
tential evapotranspiration during various growing stages, which depend 
on the crop. The methodology was then implemented in the AquaCrop 
crop model, which is the FAO’s crop water productivity simulation 
model (Food and Agriculture Organization, 2017). The major limitation 
of the linear functions described by Steduto et al. (2012) and used by the 
AquaCrop model lies in the fact they are not tailored to a specific 
geographical context. The crop response to water varies according to the 
climatic features of the considered area, the soil texture and the crop 
seasonality. Besides the abovementioned FAO study, further studies 
implemented crop drought vulnerability functions in specific national or 
regional contexts (Table 1). In addition, due to the scarcity of yield data, 
many of the cited studies use crop models to evaluate the relationship 
between weather and soil variables and crop yield. 

Bennett and Harms (2011) applied the methodology described in 
Allen et al. (1988) to derive linear relationships between crop yield and 
evapotranspiration for the crops grown in Southern Alberta (Australia); 
Jia et al. (2012) applied the EPIC (Environmental Policy Integrated 
Climate) crop model to simulate the physical vulnerability curve of a 
typical maize variety traditionally planted in China. Jayanthi et al. 
(2014) applied a probabilistic approach to evaluate agricultural drought 
risk to maize (Southern Africa) and millet (Western Sahel), using 
observed yield data retrieved at country level and satellite observations 
to evaluate drought hazard intensity. Yin et al. (2014) proposed the 
GEPIC V-R model to construct vulnerability curves through setting 
irrigation scenarios. The EPIC model is used to evaluate the crop 
response to environmental parameters. The proposed vulnerability 
curves show the relationship between a Drought Hazard Index (DHI) and 
yield loss for many world zones. Zhang et al. (2015a), Yin et al. (2015) 
and Zhang et al. (2015b) mapped the drought risk of wheat, maize and 
rice respectively at global level applying the methodology described in 
Yin et al. (2014), and provided vulnerability functions for different 
zones around the globe. Naumann et al. (2015) evaluated the relation
ship between cereal yields and various drought indexes (Standardized 
Precipitation Index (SPI), Standardized Precipitation 

Evapotranspiration Index (SPEI) and Reconnaissance Drought Index 
(RDI) aggregated at 3, 6 and 12 months) in many European countries. 
The functions proposed in the study have different shapes, which can be 
explained by each country’s specific drought vulnerability or adaptive 
capacity. Guo et al. (2016) shows a new method based on vulnerability 
surfaces to assess vulnerability quantitatively and continuously. Global 
maize drought risk was estimated based on these surfaces. Kamali et al. 
(2018) developed a physical crop drought vulnerability index through 
linking the drought exposure index (DEI) with the Crop Sensitivity Index 
(CSI) in Sub-Saharan Africa. Wang et al. (2019) used a two-dimensional 
normal information diffusion method to construct the vulnerability 
relationship between meteorological drought degree (MDD) and relative 
meteorological yield to obtain the probability distribution curve of MDD 
and relative meteorological yield in the eastern part of Northwest China. 
More recently, Su et al. (2021) used precipitation fluctuations and the 
coefficient of variation (CV) of yield as indicators to construct a 
vulnerability curve for the CV of yield and precipitation fluctuations in 
the context of the North-eastern USA. Wu et al. (2021) investigated the 
vulnerability curve feature extraction and spatial difference analysis 
method in Europe and took into consideration the European winter 
wheat. Again, EPIC was the selected crop model. Finally, Zhu et al. 
(2021) applied the AquaCrop model to simulate the water stress of 
maize in China under different irrigation scenarios and the corre
sponding production. This study is highly interesting since it evaluates 
the effect of water stress occurring at various growth stages on the final 
crop production. As clearly shown by Steduto et al. (2012), the time of a 
drought during crop growth plays a significant role in yield reduction. In 
fact, some stages, such as flowering, are more sensitive to water stress 
and drought events occurring at that time can result in relevant yield 
losses. In addition, soil texture plays a relevant influence on crop 
response to water stress. A proper identification of soil features is then a 
fundamental issue. Commonly, soil type classification relies on the 
relative fractions of soil particles of different sizes to establish soil 
textural class boundaries (Soil Science Division Staff, 2017). The clas
sification is convenient because grain size distribution can be measured 
relatively easily and can be estimated quickly and accurately in the field. 
Soil texture classification is traditionally used within agricultural, 
geotechnical, hydrological, and other related disciplines from the ’20s 
(Davis and Bennett, 1927). The key issue of proper soil textures repre
sentation has been approached in different ways in hydrological 
modelling, characterizing soils with parameters to be calibrated (Borzì 
et al., 2019; Croke et al., 2002; Jakeman and Hornberger, 1993; Ivković, 
2006; Werner et al., 2006) or, in absence of data information, assimi
lating with catchments with similar characteristics (Blöschl et al., 2013; 
Viglione et al., 2013), or with the usage of big-scale distributed land 
surface parameter dataset (Schaperow et al., 2021. Groenendyk et al. 
(2015) recently focused on the use of soil texture as a proxy for soil 
hydraulic properties. This has become increasingly common with the 
growth in coverage and widespread use of global circulation models, 
which require spatially distributed soil properties over large areas 
(Saxton et al., 1986; Webb et al., 1993; Wilson and Henderson-Sellers, 
1985). Specifically, soil maps have been widely used to identify 
boundaries where hydraulic properties can be assumed to be constant 
(Borzì and Bonaccorso, 2021; Borzì et al., 2020; Shaban et al., 2006; 
Storck et al., 1998) and to provide guidance for parametrization of nu
merical models. This paper aims at developing crop specific drought 
vulnerability curves for maize in the context of the Po River basin 
(Northern Italy). In line with the research of Zhu et al. (2021), the study 
assesses maize response to water during various crop growth stages to 
identify the critical periods during which lack of water can have severe 
impacts in yield losses. The Agricultural Production System sIMulator 
(APSIM) crop model simulates the yield. APSIM, with respect to Aqua
Crop, has been specifically designed to provide accurate predictions of 
crop production in relation to climate, soil and management factor, 
while addressing the long-term resource management issues. APSIM has 
been preferred to Aquacrop because the latter is well suited for areas 

Table 1 
List of studies implementing crop drought vulnerability curves. List and details 
on the studies that shows the implementation of crop drought vulnerability 
curves.  

Reference Country Crop Crop 
model  

Steduto et al. 
(2012) 

Global Various None  

Guo et al. (2016) Global Maize EPIC  
Jayanthi et al. 
(2014) 

Western 
Sahel 

Maize and millet None  

Jia et al. (2012) China Maize EPIC  
Kamali et al. (2018) Sub-Saharan 

Africa 
Maize EPIC +

Su et al. (2021) North East 
USA 

Maize EPIC  

Wang et al. (2019) Northwest of 
China 

Maize None  

Wu et al. (2021) Europe Winter wheat EPIC  
Yin et al. (2014) Global Maize G-EPIC  
Zhang et al. (2015a, 
2015b); Yin et al. 
(2015) 

Global Wheat, Rice, Maize G-EPIC  

Zhu et al. (2021) China Maize AquaCrop  
Naumann et al. 
(2015) 

Europe Cereals None  

Bennett and Harms 
(2011) 

Australia Alfalfa, barley, canola, 
corn, dry bean, grass, 
potato, sugar beet, soft 
spring wheat 

None  
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where water is a key limiting factor in crop production, which at present 
is not the case in the context of the Po River basin. The analyses are 
conducted at specific stage scale to identify which growth stage is more 
sensitive to water crises in terms of yield reduction and related water 
stress. This approach has been chosen in the perspective of practical 
applications of this study, to support water managers and farmers to a 
proper and more sustainable resources management during drought. In 
addition, the influence of soil texture on the crop response to water 
stress is evaluated. This last aspect has never been considered in the 
previous studies on crop specific drought vulnerability curves and rep
resents the most innovative feature of the present work. In fact, soil 
texture plays an important role determining the available crop water 
and therefore has a critical influence on the final yield (Shaxson and 
Barber, 2003). Finally, a vulnerability matrix is proposed to classify the 
crop vulnerability according to the soil texture during the considered 
crop growth stages. The matrix can be useful to explore the effects of 
future droughts on maize yield in the various provinces of the Po Valley. 

2. Case study 

The Po Basin is located in Northern Italy and develops around the Po 

River, which is the longest river in Italy and flows eastward across 
northern Italy starting from the Cottian Alps (Fig. 1a). The basin has an 
extension of about 74,000 km2, of which about 71,000 km2 across the 
Italian territory. The Basin covers seven regions in Italy: Piemonte, Valle 
d’Aosta, Lombardia, Veneto, Liguria, Emilia-Romagna and the Trento 
Autonomous Province and has also small areas located in Switzerland 
and France that have not been considered in the present study. The basin 
plays a key role in the economy of Italy: it produces 40% of national GDP 
and consumes 48% of the national produced energy. Around 16 million 
of people live inside the Basin. The Po valley is the largest agricultural 
area in Italy and accounts for 35% of Italian agricultural production. The 
main crops grown in the region are cereals, covering about 85% of the 
irrigated agricultural area (maize, rice and wheat), and arboreal crops 
(fruit orchards and horticulture) (Musolino et al., 2018). The basin is 
characterized by the presence of various climatic zones (Beck et al., 
2018). The main one is temperate and characterized by the absence of a 
dry season and a hot summer. Part of the basin is located on the Alps, 
and has therefore a cold climate, with no dry season and a warm summer 
or a Polar climate. The basin has experienced multiple droughts since 
1983, as reported by Baronetti et al. (2020), who evaluated the severity 
and duration of the various drought episodes using both SPI and SPEI. 

Fig. 1. Location of the case study area (the Po River basin), the provinces of interest, agricultural areas, and harvested area and yield of the provinces. (a) Location of 
the Po River basin (Italy) inside Europe. (b) Details on the ten provinces considered in the study, their agricultural areas and their soil texture. (c) Average maize 
harvested area over the 2006–2020 period (d) Average maize yield over the 2006–2020 period. 
Data retrieved from Italian National Institute of Statistics (2021) AT: Asti, AL: Alessandria, BS: Brescia, CR: Cremona, FE: Ferrara, MO: Modena, PC: Piacenza, PN: 
Pordenone, PV: Pavia, RO: Rovigo. 
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The long and severe drought from 2003 to 2008 caused relevant impacts 
to the agricultural sector. The total economic impact of the 2005–2007 
drought was estimated to be around 1.850 M€ (Musolino et al., 2017). 
Climate change projections over the Italian peninsula from the PRU
DENCE regional experiments (Palatella et al., 2010) showed that the 
frequency and the severity of droughts in Northern Italy will increase in 
the next century due to a decrease in precipitation during critical crop 
growing seasons (spring and summer). In addition, the analysis done by 
Crespi et al. (2020) showed a significant drying tendencies in both SPI 
and SPEI over shorter time windows (20–30 years) starting in 1980 and 
in 1970 for spring and summer, respectively. 

The estimation of drought impacts on agriculture is fundamental to 
foresee the effects that future droughts will have on the sector, which 
plays a crucial part in the economy of the area. The main crops produced 
in the Po Valley are cereals (mainly maize, rice and winter wheat), 
together with orchards and vineyards. The National census (ISTAT, 
Italian National Institute of Statistics) reports data on crop production 
and harvested area over the period from 2006 to 2020 for each province 
(Italian National Institute of Statistics, 2021). Details on maize har
vested area and yield for the ten provinces shown in Fig. 1b, are reported 
in Fig. 1c and d, respectively. 

3. Methodology 

In the present study the development of maize drought vulnerability 
curves specific for the Po River basin context is carried out following the 
methodological framework shown in Fig. 2. At first the areas suitable for 
agriculture in the Po Valley are extracted from a land use dataset, then 
meteorological parameters and soil texture of the agricultural areas are 
derived for each of the ten considered provinces described in Section 2. 
Crop management practices traditionally employed in the Po valley are 
also identified. All the three inputs are used to calibrate the APSIM crop 
model. The evaluation of the model ability in reproducing observed 
yield over each province is then assessed. APSIM is calibrated over the 
period 2006–2011 and validated over the 2012–2020 period. Once that 
the model skill in reproducing the observed yield is verified, APSIM is 
used to simulate: 

Fig. 2. Flowchart of the proposed methodology. Overview of the input data 
and the logic sequence of the main steps of the approach followed to develop 
maize stage- specific maize vulnerability curves. Starting from rainfall data, soil 
texture and crop management practices retrieved over the agricultural area of 
the Po basin the reference yield and the reduced yield are simulated. The 
reference yield is the yield in the absence of any water stress during the entire 
growing season, the reduced yield is the yield at the end of a season affected by 
a water deficit in one of the growth stages (establishment, vegetative, flowering 
and yield formation). The water deficit experienced by the crop is also simu
lated. Crop water stress is retrieved from the water deficit and the yield 
reduction with respect to reference yield is derived. These last two parameters 
are used to derive the curves. 

Table 2 
Crop management practices. Crop management practices (sowing 
window, density and depth, row spacing and input of nitrogen (N) 
fertlizers as reported in the guidelines for farmers drown up by the 
Lombardy region (Regione Lombardia, 2020a, 2020b).   

Maize 

Season Spring 
Sowing window 1–30 April 
Sowing density (plants/m2) 8 
Row spacing (mm) 500 
Sowing depth (mm) 50 
Input of N fertilizer (kg∕m2) 0.024  

Fig. 3. Performance of the APSIM crop model in reproducing the observed yield in the ten selected provinces. Results of the APSIM calibration (a) and validation (b) 
over the observed yield retrieved from the Italian national institute of statistics. The correlation coefficient R2 is reported in red and is equal to 0.75 in both cases with 
a p < 0.01. AT: Asti, AL: Alessandria, BS: Brescia, CR: Cremona, FE: Ferrara, MO: Modena, PC: Piacenza, PN: Pordenone, PV: Pavia, RO: Rovigo. 
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(1) a reference yield, i.e., the crop yield in normal conditions at a 
given location (Jayanthi et al., 2014) in each specific crop growth 
stage;  

(2) a reduced yield, i.e., the crop yield under water stress conditions 
during a specific crop growth stage;  

(3) the crop water stress during a specific growth stage. 

Four crop growth stages are considered as proposed in Food and 
Agriculture Organization, 2012:  

(1) establishment is the period immediately after sowing,  
(2) the vegetative phase is the stage in which the crop develops,  
(3) flowering includes the flag leaf stage and  
(4) yield formation is the final stage in which the maize grain fill. 

The following sections provide details about the various steps described 
in the flowchart. 

3.1. Extraction of agricultural areas 

Agricultural areas in the Po River basin are identified using the 2018 
Corine Land Cover produced in the framework of the Copernicus Land 
Monitoring Services European Environment Agency (EEA), 2018. Corine 
Land Cover consists of an inventory of land cover in 44 classes. The map 
has a 100x100 m spatial resolution. Agricultural areas belonging to the 
classes ’Non irrigated arable land’, ’Permanently irrigated land’, 
’Annual crops associated with permanent crops’ and ’Complex cultiva
tion patterns’ are extracted from the dataset (Fig. 1b). Only the selected 
areas are considered suitable for maize and wheat cultivation. 

3.2. Meteorological parameters 

Daily weather parameters are retrieved from the Ensembles daily 
gridded Observational dataset (E-OBS) (Cornes et al., 2018). E-OBS has a 
10 − km grid resolution and provides daily values for multiple weather 
variables from 1951 to 2020. The dataset is based on the interpolation of 
measurements directly retrieved from meteorological stations. The sta
tions coverage over the case study area, the Po river basin, is accurate for 
both rainfall and temperature (Cornes et al., 2018). Weather parameters 
(rainfall, maximum and minimum daily temperature and radiation) are 
extracted for the 2006–2020 period and aggregated at province level 
over the agricultural areas retrieved from the Corine Land Cover. 

3.3. Soil texture 

Soil texture of the agricultural areas is derived from the International 
Soil Reference and Information Centre (ISRIC) soil dataset described in 
Hengl et al. (2017). Soil textures are classified according to the United 
Stated Department of Agriculture (USDA) methodology (Soil Science 
Division Staff, 2017), based on the percentage of clay, silt and sand. 
Seven soil layers are considered in the ISRIC dataset: .  

(1) Layer 1: 0–5 cm;  
(2) Layer 2: 6–15 cm;  
(3) Layer 3: 16–30 cm;  
(4) Layer 4: 31–60 cm; 

Fig. 4. Stage specific drought vulnerability curves for maize in Rovigo, RO (a), 
Ferrara, FE (b) and Pavia, PV (c). The green line represents the vegetative stage, 
the red the flowering and the blue the yield formation phase. The curves have 
been fitted on the values represented by the dots using the Michaelis-Menten 
equation for the vegetative and the flowering stage and the asymmetric logis
tic equation for the yield formation phase. Water deficit, Defw, going from 0 to 
1, is computed as 1 minus the ratio between crop water uptake from soil and 
crop water demand, while yield loss, Yl, going from 0 to 1, is computed as 1 
minus the ratio between the reduced yield and the reference yield. 

Table 3 
R2 values relative to the goodness of fit of the data points to the selected func
tions for the ten considered provinces and the three growth stages.  

Province Vegetative Flowering Yield formation 

Alessandria  0.943  0.968  0.928 
Asti  0.892  0.953  0.903 
Brescia  0.890  0.940  0.885 
Modena  0.848  0.931  0.881 
Rovigo  0.895  0.968  0.912 
Pavia  0.951  0.974  0.919 
Pordenone  0.849  0.938  0.937 
Cremona  0.877  0.970  0.941 
Ferrara  0.817  0.908  0.858 
Piacenza  0.826  0.950  0.917  
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(5) Layer 5: 61–100 cm;  
(6) Layer 6: 101–200 cm;  
(7) Layer 7: deeper than 201 cm. 

The soil texture of each soil layer is analysed over the agricultural 
areas of the ten considered provinces. Fig. 1b shows the soil texture of 
the agricultural areas of the ten considered provinces. Four provinces 
have a loam soil over the entire profile, three a clay loam soil over the 
entire profile and three have a loam over a clay loam soil. 

3.4. Crop management practices 

Crop management practices in place in the Po Valley are retrieved 
from a guideline for farmers released by the Lombardy region (Regione 
Lombardia, 2020a, 2020b). According to that reference, maize is sown 
in April and harvested between August and September. The recom
mended sowing density, row spacing, sowing depth and amount of ni
trogen fertilizers are summarized in Table 2 and used as set up 
parameters for model simulations. 

3.5. Yield modelling 

APSIM is used to simulate crop yield both in ideal conditions, in 
which the crop has full water availability, and during periods of water 
stress. APSIM, described in Keating et al. (2003), has been developed by 
the Agricultural Production Systems Research Unit, a collaborative 
group made up from the Commonwealth Scientific and Industrial 
Research Organisation (CSIRO) and Queensland State Government 
agencies. The crop model has been implemented specifically to provide 
accurate predictions of crop production in relation to climate. Various 
parameters are required to initialize a simulation: .  

(1) Daily weather data  
(2) Soil texture  
(3) Crop type  
(4) Crop management practices 

Daily weather data are obtained from the E-OBS dataset, that has a 
10x10 km grid resolution. Weather data have been aggregated at prov
ince level; average values over agricultural areas of each province have 
been used to run the simulations. Soil texture was retrieved from the 
ISRIC dataset and is homogeneous over agricultural areas at province 
scale. Three generic soils have been selected in APSIM to represent the 
specific soil texture. The choice is based on the information about soil 
parameters such as bulk density, field capacity and soil water content 
reported in Costantini et al. (2013). A Clay Loam generic (n.500) soil has 
been selected as representative of the clay loam soil texture, a generic 
loam over clay (n.375) represents the soil texture loam over clay loam 

and a generic loam (n. 659) soil represents the loam soil texture. Crop 
management practices are retrieved from the Lombardy region guide
lines and described in Table 2. 

The outputs provided by the APSIM are: .  

(1) Crop yield Y (kg∕km2)  
(2) Crop water supply Ws (mm)  
(3) Crop water demand Wd (mm) 

Based on the input daily weather data (rainfall, maximum and 
minimum temperature, solar radiation), APSIM calculates effective 
precipitation purging evapotranspiration from rainfall. The software 
applies the Hargraves equation: 

Ep = 0.0022 RA δ
′0.5
T (T + 1) (1)  

where: RA is the mean extra-terrestrial radiation (mm/day), which is a 
function of the latitude; δ′0.5

T is the difference between mean daily 
maximum temperature and mean daily minimum temperature for the 
day of interest in ∘C; T is the mean air temperature in ∘C; Crop yield Y is 
computed according to a crop-specific methodology, that takes into 
account the characteristics of the considered plants. This approach was 
first proposed in Monteith and Greenwood (1986). The yield Y is 
expressed as a function of various parameters: 

Y = f (D,PAR, fs, crop parameters) (2)  

where D is the daylength, PAR is the photosyntetically active radiation, 
fs is the stress factor,and the crop specific parameters such as the sowing 
date, the length of its cycle, etc (APSIM, 2018). 

Crop water supply of the layer i, Ws(i) is computed according to the 
SOILWAT2 module (APSIM, 2018) as: 

Ws(i) =

⎧
⎪⎨

⎪⎩

KL(i)[SW(i) − LL(i)], if i ≤ I − 1

Dr(i)
Ds(i)

KL(i)[SW(i) − LL(i)], if i = I

⎫
⎪⎬

⎪⎭
(3)  

where i is the soil layer, I is the deepest soil layer in which roots are 
present, which depends on the crop type, SW(i) is the soil water content 
of layer i, LL(i) is the lower limit of plant extractable soil water in layer i, 
KL(i) is the root water extraction values in layer i, Dr(i) is the root depth 
within the soil layer i where roots are present, and Ds(i) is the thickness 
of layer i. The cumulative crop water supply Ws is computed as: 

Ws =
∑I

i=1
Ws(i) (4)  

KL is empirically determined and defines the fraction of available water 
able to be extracted per day. Root water extraction values must be 
defined for each combination of crop species and soil type. SW and LL 

Fig. 5. Soil classification and soil hydraulic conductivity from Groenendyk et al. (2015). Soil classifications plotted based on USDA soil classification (a) and hy
draulic conductivity (Ks) on the uppermost 30 cm (b). 
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depend on the soil type, while Dr depend on the crop type. 
Crop water demand Wd is computed according to Tanner and Sinclair 

(2015): 

Wd =
ΔQr − R

TE
(5)  

where R is the respiration rate and is equal to 0 in the used version of 
APSIM (Zheng et al., 2015), Qr is the radiation-limited dry-biomass 
accumulation and TE is the transpiration efficiency. Qr is derived as 
follows: 

ΔQr = Intrad RUE fd fs fc (6)  

where Intrad is the intercepted radiation, RUE is the radiation use effi
ciency, fd is the diffuse factor, fs is the stress factor and fc is the carbon 
dioxide factor. The radiation use efficiency is modelled according to the 
crop type, while fd = 1 in APSIM 7.10 (Zheng et al., 2015). The stress 
factor fs is the minimum value between a temperature factor fT and a 
nitrogen factor fN: 

fs = min(fT , fN) (7)  

where the temperature factor is a function of daily mean temperature 
(Eq. 8) and hT is a multiplier used to set fT = 0 when T < 0 or T > 35 and 
fT = 1 when 10 > T > 25: 

fT = hT
Tmax + Tmin

2
(8)  

The nitrogen stress factor is the difference between leaf nitrogen con
centration and leaf minimum and critical nitrogen concentration: 

fN = RN

∑ CN − CN,min

CN,crit − CN,min
(9)  

where RN is a multiplier for nitrogen deficit effect on phenology and is 
equal to 1.5 (Zheng et al., 2015) and CN is the leaf nitrogen concentra
tion, CN,min is the minimum leaf nitrogen concentration and CN,crit is the 
critical leaf nitrogen concentration (Zheng et al., 2015). 

The carbon factor fC is calculated by a function of environmental CO2 
concentration (C, ppm) and daily mean temperature (Tmean) as published 
by Reyenga et al. (1999): 

fC =
(C − Ci)(350 + 2Ci)

(C + 2Ci)(350 − Ci)
(10)  

in which Ci is a temperature dependant CO2 compensation point equal to 

Ci = (163 − Tmean)∕(5 − 0.1 Tmean) (11) 

The transpiration efficiency TE is derived according to the following 
equation: 

TE = fC,TE
fTE
VPD

(12)  

where fC,TE is the CO2 factor for transpiration efficiency, which is a 
function of carbon dioxide concentration that linearly increases from 1 
to 1.37 when CO2 concentration increases from 350 ppm to 700 ppm 
(Reyenga et al., 1999), fTE is the coefficient of transpiration efficiency 
that varies in relation with the growth stage, and VPD is the vapour 
pressure deficit derived as in Tanner and Sinclair (2015). 

Finally, the water uptake Wu of the crop is the minimum between the 
soil water supply Ws and the crop water demand Wd. 

Wu = min(Ws,Wd) (13) 

The crop water deficit fs is given by: 

fs =
Wu

Wd
(14)  

Fig. 6. Maize drought vulnerability curves for the ten considered provinces for 
the vegetative (a), flowering (b) and yield formation (c) growth stages. Dotted 
lines indicate provinces with a clay loam soil texture, dashed lines provinces 
with a loam over clay loam soil texture and continuous lines provinces with a 
loam soil texture. The curves have been fitted to the data points using the 
Michaelis-Menten equation for the vegetative and the flowering stage and the 
asymmetric logistic equation for the yield formation phase. Water deficit, Defw, 
going from 0 to 1, is computed as 1 minus the ratio between crop water uptake 
from soil and crop water demand, while yield loss, Yl, going from 0 to 1, is 
computed as 1 minus the ratio between the reduced yield and the reference 
yield. AT: Asti, AL: Alessandria, BS: Brescia, CR: Cremona, FE: Ferrara, MO: 
Modena, PC: Piacenza, PN: Pordenone, PV: Pavia, RO: Rovigo. 
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The value ranges from 0 to 1, where 1 means the crop is not experiencing 
a water deficit. 

3.6. Derivation of the vulnerability curves 

Vulnerability curves for each growth stage are derived according to 
the following procedure. At first the reference yield for each season s, 
Yref,s, i.e., the yield in the absence of water stress during all the crop 
growth stages, is computed. Then, the reduced yield for the same season, 
Yred,s, is derived introducing a water stress in a single growth stage (g) by 
progressively reducing the precipitation amount during the growth 
stage g. Yred,s,g is the reduced yield evaluated at the end of the growing 
season hit by a water stress during the growth stage g. The yield loss, Yl 
for the season s hit by a water stress during and the growth stage g is 
therefore: 

Yl = 1 −
Yred,s,g

Yref ,s
(15) 

To derive vulnerability curves in which a reduction of 0 in the yield 
corresponds to the absence of water deficit, a new parameter, the water 
deficit,Defw is computed as: 

Defw = 1 − fs (16)  

The curves obtained for the considered crops and the analysed growing 
stages are derived by fitting the most appropriate functions to the model 
output data. Fig. 3. 

4. Results and discussion 

4.1. Model calibration 

At first APSIM is calibrated to evaluate the model’s ability in 

reproducing the observed yield in the Po River basin area. Observed 
yield are retrieved from the Italian National Institute of Statistics 
(ISTAT) over the period from 2006 to 2020. Data are aggregated at 
province level. The period from 2006 to 2013 is used to calibrate the 
model, while the years from 2014 to 2020 are used for the validation. 
The use of observed yield data for the crop model calibration process is a 
common practice, as underlined by Seidel et al. (2018), who reports that 
nearly 90% of crop model users rely on observed yield to calibrate their 
model. Fig. 4 reports the results of crop model calibration (a) and vali
dation (b). The R2 over all the considered provinces for both the cali
bration and the validation stage is equal to 0.75. When single provinces 
are considered, the R2 for the calibration stage ranges from 0.64 (Por
denone) to 0.98 (Cremona), the R2 for the validation stage from 0.66 
(Pordenone) to 0.97 (Ferrara). The discrepancies between the observed 
and the reported yield for the Pordenone province can be attribute to 
issues in the reporting of the observed production and harvested area by 
the Italian Institute of Statistics. Both variables were estimated by expert 
knowledge during the years from 2009 to 2012 and 2018–2019. How
ever, the results of both model calibration and validation show that the 
APSIM model can reproduce the observed yield in the Po River basin 
area, and therefore the model can be used to design maize drought 
vulnerability curves. 

4.2. Vulnerability curves for maize 

Based on the water deficit and the associated yield losses computed 
for the three selected growing stages (e.g., vegetative, flowering and 
yield formation), drought vulnerability curves for maize were developed 
as described in Section 3.6. The obtained data points have been fitted to 
the most appropriate functions. In the case of the vegetative and flow
ering stages the Michaelis-Menten equation (Eq. 17) has been used: 

Fig. 7. Vulnerability matrix. The matrix shows the sensitivity to water stress of the individual growth stages (establishment, vegetative, flowering and yield for
mation) with respect to the soil textures of the ten considered provinces (loam, loam over clay loam and clay loam). Mean Values are used to derive the yield losses 
expressed in percentage. 

Table A.1 
Constants of the maize vulnerability curves for the ten considered provinces and the three maize growth stages. Constants of the Michaelis-Menten equation for the 
vegetative phase (g1, h1) and the flowering phase (g2, h2) and for the asymmetric logistic equation (a,b,c and d) for the ten considered provinces. The vulnerability 
curves express the relationship between water deficit Defw (1 minus the ratio between the soil water supply and the crop water demand) and the yield loss Yl (1 minus 
the ratio between the reduced yield and the reference yield). The reference yield is the yield in the absence of any water stress and the reduced yield is the yield 
obtained at the end of the season hit by a drought in a specific crop growth stage.   

Vegetative Flowering Yield formation  

g1 h1 g2 h2 a b c d 

Alessandria  0.57  0.15  0.90  0.24  -3.08  0.72  -4353.67  0.55 
Asti  0.53  0.21  0.96  0.34  -1.86  1.07  -648.67  0.51 
Brescia  0.43  0.24  1.59  0.87  0.08  15.06  -0.12  0.30 
Modena  0.97  0.76  0.97  0.42  -4.33  0.55  -27865.03  0.47 
Rovigo  0.54  0.15  1.07  0.40  -6.42  0.38  -46283.35  0.54 
Pavia  0.74  0.37  1.45  0.75  -6.42  0.38  -35949.55  0.39 
Piacenza  0.61  0.30  0.88  0.29  -2.80  0.84  -18333.11  0.44 
Pordenone  0.56  0.15  2.28  1.57  0.08  17.84  -0.09  0.38 
Cremona  0.50  0.22  2.62  1.76  -7.35  0.30  -4604.23  0.41 
Ferrara  1.03  1.02  1.09  0.53  -4.84  0.50  -36677.04  0.43  
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y =
gx

h+ x
(17)  

while in the case of the yield formation stage the asymmetric logistic has 
been preferred (Eq. 18): 

y = c+ (d − c)(1 − e− eb(x− a)
) (18) 

Fig.5 shows the curves derived from the water deficit and yield losses 
for three provinces, one for each soil type. Specifically, Rovigo (loam 
over clay loam soil), Ferrara (clay loam soil) and Pavia (loam soil) have 
been selected. Curves for the vegetative stage, the flowering and the 
yield formation phases have been retrieved. 

The data points exhibit a good fit with the selected functions as 
demonstrated by the high R2 values, which are significant at 0.01 
(Table 3). 

Results show that maize is more sensitive to water deficit during the 
flowering stage, as already reported by Steduto et al. (2012) and 
underlined by Zhu et al. (2021). The curves for the vegetative stages 
show similar behavior in all three provinces. The sensitivity to water 
deficit of the vegetative and yield formation phase is similar in Rovigo 
(Fig. 4a) and Ferrara (Fig. 4b), while in Pavia (Fig. 4c) the vegetative 
phase is more sensitive to water deficit than the yield formation phase. 
This can be related to the fact that the grain yield is already formed 
during the yield formation phase, and even high water deficits do not 
affect the crop yield excessively. The results here obtained can be 
compared with the ones reported in Zhu et al. (2021), even if the study 
considers four growth stages which do not overlap exactly with the ones 
of this work and evaluates the yield losses with respect to the DHI, which 
is an average of the Crop Water Stress Indicator (CWSI) over the growth 
stage. CWSI is computed as the ratio between actual and potential 
evapotranspiration through the Aquacrop model. The four stages re
ported in Zhu et al. (2021) are stage 1, corresponding to the period from 
sowing to the seventh leaf stage, stage 2 going from the seventh leaf 
stage to the tasselling stage, stage 3 from the tasselling to the milk stage, 
and stage 4 from the milk stage to the physiological maturity of the crop. 
The four growth stages considered in the present study are establish
ment, which goes from sowing to the plant full emergence from the soil, 
vegetative, which lasts until the first flowers start to appear, flowering, 
which includes tassel and silking and yield formation, which includes 
grain filling and ripening. In the case of the Po river basin, the plant 
never experience a water stress during the first growth stage (estab
lishment or stage 1), while low yield reduction are reported in Zhu et al. 
(2021). During stage 2 (vegetative) yield losses in Zhu et al. (2021) 
reach 60% while in this study are around 40%, while in stage 3 (flow
ering) maximum yield reduction in this study is high (around 85%) with 
respect to Zhu et al. (2021), in which yield losses amount at about 60%. 
Yield losses in the final stage are again higher in this study (between 
40% and 60%) than in Zhu et al. (2021), where in the final growth stage 
no losses are reported for every value of the DHI. 

The differences between the two studies can be attributed to various 
reasons. At first, as already described, the four stages do not overlap 
exactly. Secondly, the climate and the rainfall patterns of China are 
different from the ones of the Po River basin. Finally, as underlined by 
Zhu et al. (2021), in the Chinese case study the amount of sunlight and 
quality of soil are poor for maize growing. 

The soil texture influences the response of the crop to the water 
deficit in the flowering and the yield formation phases. In the flowering 
stage for low water deficit, the provinces with a loam soil show lower 
yield reduction than others, while for high water deficit, the yield 
reduction is lower in provinces with a clay loam soil texture. A different 
situation happens during the yield formation phase: in this case for all 
the water deficits, the provinces with a loam over clay loam soil show a 
higher yield reduction than the others. This behaviour can be explained 
by the properties of the different soil textures. To this end, Groenendyk 
et al. (2015) examined whether soil textural classifications could be 
useful proxies for hydraulic properties over a range of hydrologic 

conditions and developed an alternative approach to soil classification 
that can improve both quantitative analyses and visual interpretations of 
landscape function. Fig. 5a illustrates the USDA soil classification, 
whereas Fig. 5b shows the hydraulic conductivity for different soil tex
tures retrieved from simulations considering only the uppermost 30 cm 
of soil (Groenendyk et al., 2015). 

The two panels show differences in hydraulic conductivity between 
loam and clay loam soils. The loam soil type has a greater hydraulic 
conductivity than the clay loam one. Groenendyk et al. (2015) work 
shows also that soils with a greater value in hydraulic conductivity have 
also a greater capacity in infiltration and drainage. Oppositely, soils with 
a lower value of hydraulic conductivity, have the capability to retain 
water at a microscopic scale, thus guaranteeing water availability for 
plants’ roots for longer periods of time than other kind of soils. During 
drought or water stress periods, this feature results in a longer water 
availability at the root zone, meaning that these kinds of soils have the 
ability to support plants’ resilience to prolonged water stress. In our 
case, this finding can explain why for, higher values of water deficits, 
clay loam soils show less yield reduction than the other ones, especially 
in the flowering growth stage. During the vegetative stage the soil 
texture does not play a significant influence on the response of maize to 
water stress, probably because this growth stage shows less sensitivity to 
water stress, and consequently the influence of soil texture is less 
evident. As shown in Fig. 6, the maximum yield loss that can be obtained 
during the vegetative stage ranges from 0.26 (Brescia) to 0.42 (Modena). 
Flowering remains the most critical stage in all the provinces, with the 
maximum yield losses ranging from 0.67 (Modena) to 0.94 (Cremona). 
The yield formation phase shows the highest variability. Maximum yield 
losses range from 0.35 (Brescia) to 0.54 (Alessandria). Fig. 7 shows a 
vulnerability matrix that summarizes the main results when the 
maximum water stress (Water deficit equal to 1) is considered. Yield 
losses are computed through Eq. 17 for the vegetative and flowering 
phase and Eq. 18 for the yield formation phase using the constant values 
reported in Table A.1. Yield losses in the vulnerability matrix are 
expressed as percentage and the values represents the average yield loss 
over provinces with the same soil texture. The establishment phase 
never went under water stress in the Po River basin in the considered 
simulations, therefore no yield losses are assigned to this phase. During 
the establishment, maize needs small amount of water that can be easily 
provided by all the three different considered soil types, which, as 
already mentioned, have the capability to retain water due to their 
characteristic values of hydraulic conductivity. Flowering is the most 
sensitive stage to water deficit, and high yield losses are reported in case 
of water stress during this period, particularly in case of loam and loam 
over clay loam soils. The vegetative stage is not highly influenced by the 
soil texture, while the yield formation phase is less sensitive to water 
deficit in case of a loam soil texture. The proposed classification could be 
used to support water management strategies to improve cooperation 
among stakeholders, which is essential to ensure water and food security 
in the area (Lu et al., 2021). 

5. Conclusions 

Stage specific drought vulnerability curves for maise tailored to the 
Po River basin context have been developed. Establishment, Vegetative, 
Flowering and Yield formation stages have been considered. The curves 
have been developed for ten provinces with different soil texture. APSIM 
was used to compute the reference yield (the yield in the absence of any 
water stress during all the crop growth stages), the yield losses due to 
water stress and the water deficit associated with periods of drought 
happening during each of the crop growth stages. The results of APSIM 
calibration and validation were satisfactory. The water deficit and the 
associated yield losses have been used to construct the vulnerability 
curves for the four growth stages. The establishment phase never went 
under waters stress in the climatic conditions of the Po Valley, because 
the amount of the water required by the crop in this phase is small and 
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can be easily provided by the soil. Overall, flowering has turned out to 
be the most sensitive stage to water deficit in all the provinces, in 
agreement with other studies, while the yield formation and the vege
tative stage were less sensitive to the water stress. The soil texture plays 
an influence on the response of the crop to the water deficit, mainly in 
the flowering and the yield formation phases. During flowering, for high 
water deficits the yield reduction is lower in the provinces with a clay 
loam soil texture with respect to the others, while for low water deficits 
the provinces with a loam soil show lower yield losses. In the yield 
formation phase the provinces with a loam soil show a lower yield 
reduction than the provinces with a loam over clay loam soil for all the 
water deficits. During the vegetative phase the soil texture did not play a 
significant role in determining the yield reduction associated with high 
water deficits. The achieved results could foster a sustainable use of 
water resources in agriculture by suggesting the most appropriate time 
to rely on irrigation. 
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