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Abstract: The propagation of acceleration waves in dilute granular gases was investigated. Accel-
eration waves propagating in elastic gases, mixtures, and other materials are widely studied in the
literature, but not in granular gases. A thirteen-moment theory for granular gas was considered in
the framework of Grad’s theory. The spatially homogeneous solutions were determined, and the
hyperbolicity of the model is discussed. The propagation of acceleration waves in a non-constant
state was investigated; the amplitude of the fastest mode was derived, and the critical time was
evaluated. The acceleration wave propagation velocity in inelastic gases was shown to be lower than
in elastic gases.
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1. Introduction

Kinetic theory [1,2] is a very prolific field of applied mathematics, which models gases
as systems of particles governed by a distribution function. This function depends on
macroscopic variables, such as time and space, and microscopic variables, such as particle
velocity. The distribution function must satisfy the Boltzmann equation [1,2], which defines
the evolution in time and space of the particle distribution. The interaction between particles
of different natures is represented by the collision operator, which gives a measure of the
change in the distribution function. From the Boltzmann equation, the balance laws of the
mass density, velocity, and energy of a gas are derived under appropriate assumptions [1–3].
This is useful if one aims to study the behavior of a gas from a macroscopic point of view.
In a rarefied gas, that is when the gas molecules are subject to elastic collisions, there is
the relaxation of the gas towards a state of equilibrium, characterized by a Maxwellian
distribution function [1–3]. Instead, in this paper, we dealt with granular gases, which
are gases in which the molecules interact by inelastic collisions. In this case, the total
energy is not conserved, but part of it turns into heat, and that means a decay of the gas
temperature. Many researchers, having noticed the analogy between granular materials
and molecular fluids, have developed theoretical methods for the study of granular fluids
based on kinetic theory within the framework of the Boltzmann equation. The first works
in which granular materials have been studied in the context of kinetic theory were [4,5];
the first dealt with the theory for almost elastic granular flows, while the second took into
account granular flows with arbitrary inelasticity. Much work has been performed more
generally in granular materials, which are conglomerations of discrete macroscopic particles
characterized by collision dissipation. In [6–8], hydrodynamic equations were obtained
for granular materials. In [9], Brey introduced kinetic equations for low-density granular
flows. In [10], Garzo studied shear flow, while in [11,12], a Grad model was introduced for
inelastic granular flows. In [13], Brillantov studied in detail the kinetic theory of granular
gas. Granular materials are prevalent in various industries, for example in the chemical,
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agricultural, and food industries, but also in nature, for example in blood flows [14,15], the
asteroid belt, sand dunes, debris, lava volcanoes, biofuel [16,17].

Jenkins and Richman [4], two among the first researchers to deal with granular gases,
applied the Grad method of moments [18] to dense inelastic gaseous particles. They
developed a 13-moment theory for dense gases based on the Boltzmann equation and
specifically determined all the fluxes and production terms of the balance laws. In the
present paper, we used the field equations derived by Jenkins and Richman [4], limiting
our study to the case of dilute granular gases. So, we deal with a thirteen-moment theory,
where the unknown fields are mass density, velocity, stress tensor, and heat flux. Kremer
and Marques [19] introduced a 14-moment theory for dilute granular gases, adding to the
thirteen moments a fourth-order scalar moment. They studied the spatially homogeneous
solutions, showing that the time decay of the temperature is very close to that predicted by
Haff’s law [20]. Then, they observed that, for the thirteen-moment theory, this homogeneous
solution is unstable with respect to longitudinal and transverse waves, and this has been
carried out by other authors (see [21]). In order to recover more information about the stability
of perturbation, in this paper, we studied the condition of the stability of homogeneous
solutions with respect to acceleration waves. More precisely, we analyzed the evolution of
acceleration waves [22,23] in dilute granular gases in the framework of the Grad 13-moment
theory [4,18].

An acceleration wave or weak discontinuity [22,23] is a disturbance that propagates
in an unperturbed state through which all field variables are continuous, while the first
derivatives have a jump. The objective is to establish a critical value of the amplitude of the
wave below which the acceleration wave does not degenerate into a shock. This analysis
has also been recently investigated in different materials, such as fluids [24], bubbles [25,26],
fluid mixtures [27], and biological models [28,29].

In this perspective, we show that the equations in [4] restricted to dilute gases form a
hyperbolic set of field equations. We determined a non-constant spatially homogeneous
solution, and we analyzed the propagation of acceleration waves starting from this spatially
homogeneous solution. Normally, studies conducted on acceleration waves consider
perturbations propagating in two constant equilibrium solutions. We investigated the
stability of the acceleration waves, evaluating the critical time and the formation of shocks.

The rest of the paper is as follows: The field equations are introduced in Section 2, and
in Section 3, a spatially homogeneous solution is determined. Section 4 is devoted to the
general description of the propagation of acceleration waves, and in Section 5, the spatially
homogeneous case is analyzed. Finally, in Section 6, we discuss the conclusions and future
research perspectives.

2. Field Equations

It is possible to study the state of a dilute granular gas by describing its density ρ, its
velocity vi, its granular temperature θ, the traceless part of the stress tensor ρ<ij>, and the
components of the heat flux qi at time t and in position xk. The field equations for this gas
were obtained by Jenkins and Richman in 1985 [4] in the context of the Grad 13 theory [18].
The field equations of a dilute granular gas assume the form:



Mathematics 2023, 11, 4935 3 of 11

dρ
dt + ρ ∂vk

∂xk
= 0,

ρ dvi
dt + ∂(ρθ)

∂xi
+ ∂ρ<ik>

∂xk
= 0,

3
2 ρ dθ

dt +
∂qk
∂xk

+ ρθ ∂vk
∂xk

+ ρ<kl>
∂vl
∂xk

= −2 ρ2
√

πθ
m d2

p
(
1− e2)θ,

dρ<ij>
dt + 4

5
∂q(i
∂xj)
− 4

15
∂qk
∂xk

δij + ρ<ij>
∂vk
∂xk

+ 2ρ<k(i>
∂vj)
∂xk

+ 2ρθ
∂v(i
∂xj)

+

− 2
3

(
ρ<kl>

∂vl
∂xk

+ ρθ ∂vk
∂xk

)
δij = − 4

5
ρ
√

πθ
m d2

p(1 + e)(3− e)ρ<ij>,

dqi
dt + 5

2
∂(ρθ2)

∂xi
+ 7

2
∂(θρ<ik>)

∂xk
+ 7

5 qi
∂vk
∂xk

+ 7
5 qk

∂vi
∂xk

+ 2
5 ql

∂vl
∂xi

+

− ρ<il>
ρ

∂ρ<lk>
∂xk
− ρ<ik>

ρ
∂(ρθ)
∂xk
− 5

2 θ
∂ρ<ik>

∂xk
− 5

2 θ
∂(ρθ)

∂xi
=

= − 1
15

ρ
√

πθ
m d2

p(1 + e)(49− 33e)qi,

(1)

where m and dp are the mass and the diameter of the spherical particles and e is the normal
restitution coefficient with 0 < e ≤ 1. The case 0 < e < 1 corresponds to inelastic collisions,
while e = 1 refers to elastic collisions.

As can be easily seen, the set (1) consists of a closed system of 13 field equations in
the 13 field variables ρ, vi, θ, ρ<ij>, and qi. The first two equations of (1) represent the
conservation laws of mass and momentum. The third equation is the balance law of energy.
It is not a conservation law for the dissipation of energy due to the inelastic collisions. In
the elastic case, the production vanishes. The other equations are the balance laws for the
stress tensor and the heat flux, which, in the Grad 13-moment theory, are considered as
additional field variables.

It is possible to show that the Equation (1) can be also obtained in the context of the
Rational Extended Thermodynamics theory [3,30,31]. This macroscopic theory considers as
the field variables not only the classical ones like mass density velocity and temperature,
but also the stress tensors, the heat flux, and others. The constitutive relations are obtained
by the use of physical universal principles like the Galilean invariance and the entropy
principles. The propagation of acceleration waves in Rational Extended Thermodynamics
is well-developed, providing interesting results; see, for example, [3,24–26,28–31] and the
references therein.

In this paper, for simplicity, we restricted our analysis to the one-dimensional case. There-
fore, assuming that the fields depend only on t and x1 = x, the set of field Equation (1) becomes

∂ρ
∂t + v ∂ρ

∂x + ρ ∂v
∂x = 0,

ρ ∂v
∂t + ρv ∂v

∂x + ρ ∂θ
∂x + θ

∂ρ
∂x + ∂σ

∂x = 0,

3
2 ρ ∂θ

∂t +
3
2 ρv ∂θ

∂x + ∂q
∂x + ρθ ∂v

∂x + σ ∂v
∂x = −2

ρ2d2
p

m

√
πθ
(
1− e2)θ,

∂σ
∂t + v ∂σ

∂x + 8
15

∂q
∂x + 7

3 σ ∂v
∂x + 4

3 ρθ ∂v
∂x = − 4

5
ρd2

p
m (1 + e)(3− e)

√
πθσ,

∂q
∂t + v ∂q

∂x + 5
2 ρθ ∂θ

∂x + θ ∂σ
∂x + 5

2 σ ∂θ
∂x −

σ
ρ θ

∂ρ
∂x+

− σ
ρ

∂σ
∂x + 16

5 q ∂v
∂x = − 1

15
ρ
m

√
πθd2

p(1 + e)(49− 33e)q,

(2)

with σ = ρ<11>, q1 = q, and v1 = v.
This system can be recast in the following matrix form:

ut + A(u)ux = f (u), (3)

where the vector field u is given by

u = (ρ, v, θ, σ, q)T, (4)
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the matrix of the coefficients A is

A =


v ρ 0 0 0
θ
ρ v 1 1

ρ 0

0 2
3

(
θ + σ

ρ

)
v 0 2

3
1
ρ

0 7
3 σ + 4

3 ρθ 0 v 8
15

− θ
ρ σ 16

5 q 5
2 (σ + ρθ) θ − σ

ρ v

 (5)

while the vector with the production terms is

f = −
√

πθ
ρ

m
d2

p(1 + e)
(

0, 0,
4(1− e)

3
θ,

4(3− e)
5

σ,
49− 33e

15
q
)T

. (6)

For further purposes, we evaluated the eigenvalues and eigenvectors of the matrix A:
first of all, the characteristic polynomial associated with the system (2) has the form:

λ̄

[
λ̄4 − 2

15
31σ + 39ρθ

ρ
λ̄2 − 96

25
q
ρ

λ̄ +
3
5

7σ2 + 10ρθσ + 5(ρθ)2

ρ2

]
= 0 (7)

with λ̄ = λ− v.
This polynomial coincides with the corresponding one in the 13-moment theory of

elastic gases since the left-hand sides of the equations coincide. In fact, it does not depend
on the restitution coefficient e.

The polynomial (7) was studied in detail in [3] (p. 179). In particular, it was proven
that the first root λ = v is called the contact wave since it propagates with the same velocity
of the fluid. The remaining four roots λ̄ of (7) are real, at least in the hyperbolicity region.
Hyperbolicity guarantees finite speeds of propagation, while symmetric hyperbolic systems
imply the well-posedness of Cauchy problems (i.e., existence, uniqueness, and continuous
dependence on the data).

The eigenvectors associated with the eigenvalues λ̄ are given by

d =
(

ρ, λ̄,− 9σ−5ρλ̄2+9ρθ
9ρ , 9σ+4ρλ̄2

9 ,−5 3σ−ρλ̄2+3ρθ
6 λ̄

)T
,

l = α
(

35σ−15ρλ̄2+33ρθ

18ρλ̄
θ, 17σ−15ρλ̄2+33ρθ

18 ,− 28σ−15ρλ̄2+12ρθ

18λ̄
, 7σ−3ρλ̄2+3ρθ

18ρλ̄
,−1

)
.

(8)

The coefficient α must be determined using the condition l.d = 1. In this way, it is
possible to obtain the following value for the coefficient α:

α =
45
2

ρλ̄

315σ2 − 155ρσλ̄2 + 450ρθσ− 195ρ2λ̄2θ + 225ρ2θ2 − 216ρλ̄q
. (9)

3. Time-Dependent Solutions

Due to the dissipation of energy, the system (2) does not admit constant solutions. In
this section, we describe a homogeneous solution of the field equations already obtained
and discussed by different authors [19,21]. Indeed, assuming that the fields depend only
on time, the field Equation (2) becomes
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dρ
dt = 0,
dv
dt = 0,

dθ
dt = − 4

3
ρ
√

πθ
m d2

p
(
1− e2)θ,

dσ
dt = − 4

5
ρ
√

πθ
m d2

p(1 + e)(3− e)σ,

dq
dt = − 1

15
ρ
√

πθ
m d2

p(1 + e)(49− 33e)q.

(10)

We deduced that the density and velocity of the granular gas remain constant in time,
while the other equations form a system of coupled ordinary differential equations.

Assuming, as initial conditions, ρ(0) = ρ0, v(0) = 0, θ(0) = θ0, σ(0) = σ0 and
q(0) = q0, the equations are analytically integrated, providing the following expressions
for the density, velocity, temperature, stress tensor, and heat flux:

ρ(t) = ρ0, v(t) = 0, θ(t) = θ0(
1+ 2

3
ρ0
√

πθ0d2
p(1−e2)

m t
)2 ,

σ(t) = σ0

[
θ(t)
θ0

] 3
5

3−e
1−e , q(t) = q0

[
θ(t)
θ0

] 1
20

49−33e
1−e .

(11)

In terms of the dimensionless values:

ρ̂ = ρ
ρ0

, θ̂ = θ
θ0

, t̂ = t
t0
=

tρ0d2
p
√

θ0
m , σ̂ = σ

σ0
, q̂ = q

q0
, (12)

the solution reads

ρ̂ = 1, θ̂ = 1(
1+

2
√

π(1−e2)
3 t̂

)2 , σ̂ =
[
θ̂
(
t̂
)] 3

5
3−e
1−e , q̂ =

[
θ̂
(
t̂
)] 1

20
49−33e

1−e , (13)

which are illustrated in Figure 1. In particular, Figure 1a shows the behavior of the granular
temperature, heat flux, and stress tensor for the particular case of e = 0.95. We observed
that the stress tensor and heat flux decay to the equilibrium value. The stress tensor curve
tends to an equilibrium value more rapidly than that of the heat flux. Figure 1b illustrates
the temperature field for different values of the restitution coefficient e, in order to study the
solution of the model for different degrees of inelastic microscopic collisions. These cases
take into account also different degrees of dissipation of the total energy. By increasing the
value of the restitution coefficient, the decay of the granular temperature is less marked. In
the elastic case (e = 1), the temperature remains constant, while the stress tensor and the
heat flux have an exponential temporal decay, due to the non-vanishing initial conditions
for σ̂ and q̂.

2 6 10

t

a)

0 4 8 12

s

q

q

2 6 10

t

0 4 8 12

b)

0.95

0.85

0.75

Figure 1. (a) Temperature, heat flux, and stress tensor for e = 0.95. (b) Temperature field for different
values of the restitution coefficient e.
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We observed that the time decay of the temperature follows the law of Haff, which
describes the dissipation of the total energy in a fluid of inelastic particles through inelastic
collisions. Haff [20] discovered that, in a freely cooling granular gas (with a constant
coefficient of restitution), the decay rate of the granular temperature is given by

dθ(t)
dt

∝ −nd2
p(1− e2)θ(t)

3
2 (14)

where n is the average number density. The solution of [20] is given by

θ(t) =
θ0

(1 + t
τ0
)2

(15)

where τ−1
0 ∝ nd2

p(1− e2)
√

θ0 is an inverse time scale. This solution is known as Haff’s law
for the evolution of the granular temperature of a freely cooling granular gas. The energy’s
decay is proportional to t−2 and depends on n, the average number of collisions suffered
by a particle within time t, and also on 1− 2e2, which expresses the degree of inelasticity.

4. Acceleration Waves

In this paper, we studied particular solutions of the system (1), called weak discontinuity
waves or acceleration waves. We assumed that there exists a moving curve Σ(t), called
the wave front, of Cartesian equation ϕ(x, t) = 0, across which the field variables are
continuous, whereas their first derivatives may be discontinuous [22–24], i.e.,

[u] = 0, [ux] = Π 6= 0. (16)

The square brackets represent the jump across Σ(t), that is the difference between the
values on the two sides of the wave front:

[ ] = ( )ϕ+ − ( )ϕ− . (17)

More precisely, the superscript “+” denotes the values in the region ahead of the wave
front, where the fields are unperturbed, while “−” in the region behind it.

As is well known [22–24], the normal speed of propagation V of the wave front Σ(t) is
equal to the characteristic velocity λ evaluated in the unperturbed field u0, while the jump
Π is proportional to the right eigenvector d (corresponding to the eigenvalue λ) evaluated
in u0, that is

V = λ(u0), Π = Πd(u0). (18)

The amplitude Π of the jump satisfies a Bernoulli-like equation:

dΠ
dt

+ a(t)Π2 + b(t)Π = 0, (19)

where d/dt is the derivative along the bi-characteristic lines. In this case, since we are
dealing with only one spatial coordinate, we have d/dt = ∂/∂t + λ(u0)∂/∂x.

The coefficients a(t) and b(t) are known functions of the unperturbed fields u0, and in
the one-dimensional case, they are given by

a(t) = ϕx(∇λ · d)0,

b(t) =
{

dT
(
(∇l)T −∇l

)
du
dt + (∇λ · d)(l · ux)−∇(l · f ) · d

}
0

(20)

where ∇ is the nabla operator and l is the left eigenvector corresponding to λ satisfying
l · d = 1. The suffix “0” means that the quantities must be evaluated in the unperturbed
state u0. The coefficient ϕx can be obtained by integrating the Cauchy problem:
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{ dϕx
dt + (∇λ · ux)0 ϕx = 0,

ϕx(0) = 1.
(21)

Once the coefficients a(t) and b(t) are determined, they can be inserted into the
Bernoulli Equation (19) in order to obtain the amplitude Π as a known function of time.

In the following section, we evaluate the coefficients a(t) and b(t) considering as the
unperturbed state the homogeneous state (11). Since, in the inelastic gases, the unperturbed
state is not constant, the calculations are more complex than the elastic case [3] (p. 182).
Examples in the literature of the acceleration wave propagating into non-constant states are
the cases of a gravitating atmosphere [24] and, more recently, gas bubbles [25,26].

5. Acceleration Waves Propagating into the Homogeneous State

We considered acceleration waves propagating in the homogeneous state characterized
by the solution of (11). In this case, the eigenvalues of the matrix A, obtained as solutions
of the characteristic polynomial (7), are evidently functions of time. Therefore, also the
velocity of propagation of these acceleration waves, V, must depend on time.

In Figure 2a, the two positive solutions of (7), obtained with e = 0.75, are shown as a
function of t̂. The remaining two solutions coincide with those illustrated in Figure 2a, but
with a negative sign. This shows explicitly that all roots of the characteristic Equation (7)
evaluated in (11) are real, so we can conclude once more that the system is hyperbolic, at
least in a neighborhood of the homogeneous state (11).

3 6 15

t

a)

0 9 12

V

3

2

1

0
3 6 15

b)

0 9 12

3

2

1

0

t

V

0.99

0.95

0.85

0.75

Figure 2. (a) Velocities of propagation of the acceleration waves for e = 0.75. (b) Velocities for different
values of the restitution coefficient e.

The velocity of propagation of the fastest acceleration wave, V̂ = V/
√

θ0 decreases
when the time increases. In Figure 2b, the velocities of the fastest waves are illustrated.
They were obtained with different values of the restitution coefficient in order to put in
evidence the effect of e. As can be easily seen, when e tends to 1, the velocity V̂ tends to the

constant value
√
(13 +

√
94)/5 ≈ 2.13053 that was obtained for elastic collisions.

In order to derive the amplitude Π of the jump (18), we need to evaluate the coefficients
a(t) and b(t) from (20) and integrate the Bernoulli Equation (19).

First of all, our unperturbed state u0 depends only on t and not on x, so we have
(∇λ · ux)0 = 0, and the integration of the Cauchy problem (21) yields ϕx = 1.

The expressions of a(t) from (20)1 is obtained differentiating (7) with respect the five
field variables ρ, v, θ, σ, and q in order to obtain the five components of∇λ in terms of
λ and the five fields. Then, this vector can be evaluated in the unperturbed state u0 and
multiplied by the right eigenvector d in (8) evaluated in u0. This was performed analytically,
but for simplicity, we skip here all the analytical results and present in Figure 3 the plot of
â = a/

√
θ0 as a function of time for different values of the restitution coefficient e. It must be

observed that, except in the region 0 < t̂ < 2, where the fields σ̂ and q̂ are more pronounced,
the coefficient â(t̂) is proportional to the velocity V̂ with a constant of proportionality equal
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to 3.12707. This coefficient of proportionality was also obtained in the elastic case (see [3]
(p. 185)).

8

2

4

0

2

3 60 9 12 3 60 9 12

t t

6

0.5

1

0

1.5

a

0.99

0.95

0.85

0.75

0.99

0.95

0.85

0.75

b

Figure 3. Coefficients â(t̂) and b̂(t̂) for different values of the restitution coefficient e, as illustrated in
the same figures.

The second coefficient b(t) can be evaluated from (20)2. The calculations were carried
out analytically, but, as for a(t), we illustrate here only the numerical values in the figures.
It must be said that the derivative of the field variables in the unperturbed state u0 is
du0/dt = ∂u0/∂t, and the second term in (20)2 vanishes since u0 depends only on t and not
on x. Figure 3 illustrates b̂ = bt0 for different values of e. From this figure, it can be easily
seen that b̂(t̂) grows rapidly in the region 0 < t̂ < 1, where, again, the non-equilibrium
fields σ̂ and q̂ are more pronounced.

In Figure 4a, we illustrate the dimensionless amplitude Π̂ = Πt0
√

θ0 of the jump
solution of the Bernoulli Equation (19) for e = 0.75 and different values of the initial
value. As can be easily seen, if Π̂(0) < −0.243, the initial discontinuity in the derivatives
is too strong and cannot be damped. We observed that it becomes unbounded and the
acceleration wave evolves into a shock wave at a critical time tcr. Instead, if Π̂(0) > −0.243,
the perturbation is attenuated, and after some time, it disappears.

0.5 210 1.5

P

t

-0.6 0-0.4-1 -0.2-0.8

P(0)

-3

-2

-1

0

1

2

0

0.2

1

0.4

0.6

0.8

tcr
a b

Figure 4. (a) Amplitude Π̂ of the jump as a function of t̂ for different values of the initial discontinuity.
(b) Critical time in terms of the initial discontinuity Π̂(0) for different values of the restitution
coefficient e.

In Figure 4b, the critical time is shown in terms of the initial discontinuity for different
values of the restitution coefficient e. The dependence of the critical time on the restitution
coefficient e is not pronounced; indeed, there is only a small difference between the four
curves. This implies that, although a(t) and b(t) depend strongly on e, their ratio does
not depend on it. The condition of the stability of the homogeneous solution with respect
acceleration waves can be expressed as

Π̂(0) > − b(0)
a(0)

. (22)
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This equation is satisfied if the initial perturbation is not too pronounced. In this way,
the disturbance decays in a very short time of the same order of magnitude as the time
necessary for σ̂ and q̂ to reach the equilibrium state.

6. Possible Applications in Real Fields

Granular materials are employed in different fields: an important sector is represented
by industries, such as the chemical (coal), agricultural (fertilizer), and food industries (rice,
coffee, cornflakes). They also can be applied to nature, such as ice floes, the asteroid belt,
sand dunes, avalanches, and the variation of coastal erosion. Another application field is
human health research, such as blood flow [14,32]. Acceleration waves have been applied to
different real phenomena, such as the application of fluids in a gravitational atmosphere [24],
fluid bubbles [25], fluid mixtures [27], biological applications in chemo-taxis [28], and in
chronic wasting diseases [29].

7. Assumptions and Limitations of the Present Study

In the present paper, a dilute granular gas was considered. Clearly, denser gases need
different appropriate models. The Grad theory [4], which we used, is limited to monoatomic
gases. When polyatomic gases are investigated, other models must be taken into account.
In the derivation of field equations [4], Jenkins and Richman worked in the neighborhood
of equilibrium, so it is not possible to investigate the phenomena far from equilibrium. The
field equations are valid for all values of e between 0 and 1, but for the sake of simplicity,
we limited our attention to the range [0.75, 1]. Finally, we considered perturbations that
depend on time and only one-dimensional space. So, it could be interesting to extend the
study to the 2D case.

8. Conclusions and Final Remarks

The propagation of acceleration waves in a dilute granular gas was analyzed. To this
aim, the field equations obtained by Jenkins and Richman in the context of the 13-moment
Grad theory were used under the assumption of dilute gases. Due to the dissipation of
energy, this system does not admit a constant solution. We studied, then, acceleration waves
propagating into the non-constant and homogeneous state. The coefficients appearing in
the Bernoulli differential equation were evaluated analytically, but their numerical values
were shown for different values of the restitution coefficient. The Bernoulli equation was
integrated, and the time evolution of the amplitude of the jump was shown for different
values of the initial disturbance. The critical time, when the weak discontinuity evolves into
strong discontinuity, was evaluated in terms of the initial amplitude. Finally, the condition
of the stability of the homogeneous solution with respect acceleration waves was analyzed
and discussed.

The results herein determined have the same structure as the results for the dilute
elastic case [3]. In all figures, the results for e = 0.99 practically coincide with the elastic
solutions, expect in the narrow region 0 < t̂ < 1, where the fluxes are more pronounced.
By comparison of the elastic and inelastic cases, our analysis revealed that, when the gas
particles are more inelastic, the velocity of the acceleration waves decreases, due to the
energy dissipation (see Figure 2b). We also observed that the coefficients â and b̂ are smaller
when e decreases, but the ratio b̂

â is essentially constant in e.
In the paper, it must be also said that the values of the restitution coefficient e were

considered between 0.75 and 1. We avoided considering smaller values of e, since probably,
in these cases, more-complex models must be adopted. Probably, a theory with more
moments must be taken into account.

Furthermore, we started to evaluate the propagation of the acceleration waves in
the homogeneous state, where all variables decrease due to the dissipation of energy. It
could be interesting to study the behavior for acceleration waves propagating spatially in
one-dimensional, or two-dimensional solutions, or solutions that depend both on x and t.
These are projects for further studies.
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Finally, an effective method to model discontinuities in solid mechanics was pre-
sented in [33]. It seems to be an analog to the present study, and we think it may inspire
future research.
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