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Abstract: This study aimed to evaluate the concentration of reactive oxidative metabolites, the
antioxidant barrier, thiol groups of plasma compounds, and high-mobility group box 1 in shelter dogs
naturally infected with helminths. In addition, the correlation between clinical signs and oxidative
stress was investigated. Sixty-six (41 male and 25 female) adult mixed-breed dogs housed in a
shelter with the diagnosis of gastrointestinal nematodes (i.e., Ancylostoma spp., Uncinaria stenocephala,
Toxocara canis, Toxascaris leonina, or Trichuris vulpis) were enrolled in Group 1 (G1) and twenty healthy
adult dogs were included in Group 2 (G2), which served as the control. A clinical assessment was
performed using a physician-based scoring system. Oxidative stress variables and high-mobility
group box 1 were assessed and compared by the means of unpaired t-tests (p < 0.05). Spearman’s
rank correlation was performed to calculate the correlation between oxidative stress variables, high-
mobility group box 1, hematological parameters, and clinical signs. The results showed statistically
significant values for reactive oxidative metabolites, thiol groups of plasma compounds, and high-
mobility group box 1 in G1. Negative correlations between thiol groups and the number of red cells
and hemoglobin were recorded. These preliminary results support the potential role of oxidative
stress and HGMB-1 in the pathogenesis of gastrointestinal helminthiasis in dogs.

Keywords: gastrointestinal nematodes; reactive oxidative metabolites; antioxidant barrier; thiol
groups of plasma compounds; high-mobility group box 1; dogs

1. Introduction

Dogs are continuously exposed to parasitic infections, with gastrointestinal helminths
being particularly prevalent [1–9] and with some of them being of zoonotic concern [10].
A recent epidemiological survey conducted throughout Europe has shown that intestinal
nematode infections remain a common occurrence in dogs. This has also been demonstrated
by Rehbein and collaborators [11] in a study conducted on 1390 owned dogs, which
reported that more than a third of them were shedding eggs/cysts of endoparasites.

The risk of parasitic infection is higher in animals living in communities (e.g., kennels
or shelters) and/or with access to the outdoors compared to owned dogs [12]. However,
some owned dogs, those used for work in particular (for instance, hunting dogs), can also
be threatened by a wide range of parasite species. In a survey conducted in southern Italy,
a frequency of intestinal parasites was observed that ranged from 14.6% to 48.8%, and the
frequency was considerably higher in hunting dogs living in kennels, with 84% of mixed
infestations [13].

In general, whipworms and hookworms are the species with the highest frequencies
observed in Europe [11,13]. Hookworms are among the most prevalent canine helminths
worldwide. Dog feces that are deposited in crowded cities can contaminate the environment
with parasite eggs and larvae, thereby contributing to zoonotic transmission; in fact, dogs
may play a central role in the spread of some helminths with a zoonotic potential [11,14].
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Parasites can have consequences on host fitness, which depend on the animal’s im-
mune system competence and the animal’s age. In fact, gastrointestinal helminths in young
animals can cause severe intestinal disorder and gastroenteritis; conversely, infections that
occur in adult dogs can occur without clinical signs due to age-associated immunity [15].
However, despite the clinical presentation of the disease, helminth infections in dogs may
cause pathophysiological changes involving inflammation, oxidative stress, and changes
to the protein, lipid, and iron metabolism and pancreatic function, which are all related
to the activation of the immune system [16]. In fact, to defend the host from infection, the
immune system may release toxic agents that can generate a state of oxidative stress if they
are not adequately neutralized by the antioxidant system [16].

Oxidative stress occurs when there is an imbalance between the production of oxidant
substances and the antioxidant defenses of the organism [17]. The continuous and excessive
production of oxidizing agents leads to the consumption of antioxidant defenses.

High-mobility group box 1 (HMGB-1) is a nuclear protein that is involved as a fun-
damental co-factor in transcriptional regulation, and that is secreted into the extracellular
environment following an apposite stimulus. Extracellular HMGB-1 acts as an alarmin
that contributes to the intensification of inflammatory responses, thus interrelating with en-
dothelial cells and triggering the release of pro-inflammatory mediators [18–24]. Moreover,
the central role of HMGB-1 in response to oxidative stress in humans has been documented
in several pathological conditions [25].

The role of oxidative stress in dogs has been studied in patients affected by Leishmania
infantum and Ehrlichia canis [26,27]. However, to the authors’ best knowledge, no study
has evaluated oxidative stress induced by helminths in dogs; therefore, the aim of this
study was to evaluate the concentration of reactive oxidative metabolites (R-OOHs), the
antioxidant barrier (OXY), thiol groups of plasma compounds (SHp), and HGMB-1 in
shelter dogs naturally infected with helminths. An additional aim was to investigate the
correlation between clinical signs and oxidative stress.

2. Materials and Methods
2.1. Ethical Statement

Animals were handled and sampled following institutional approval from the Ethics
Committee of the Department of Veterinary Sciences, University of Messina (approval
number: 49, 21 March 2021).

The study was carried out in accordance with the recommendations of the European
Council Directive, 2010/63/EU, on the protection of animals used for scientific purposes
and the Italian legislation (D.lgs. 26/2014, L. n. 281/1991, and L.R. 15/2000).

The included dogs were enrolled from shelters during routine sanitary visits. Each
dog shelter’s administration was informed of the research purpose and clinical procedures
involving the dogs, and written informed consent was signed before sample collection as
proposed in the national guidelines for animal welfare.

2.2. Animals

Mixed-breed dogs housed in three different rescue shelters located in Sicily, southern
Italy were screened for the presence of endoparasites. Each animal underwent a clinical
visit (please see below) and individual fecal samples were collected and analyzed through
a flotation technique using a solution of sodium nitrate and sugar (1.300 N/m3 SPG) for the
detection of protozoan oocysts and helminth eggs [28]. The morphological identification of
the eggs was performed at the genus/species level using morphological keys [29–31].

Animals were included in the study only if the presence of gastrointestinal helminths
was detected within 3 days before the beginning of the study, in which case they were
enrolled in Group 1 (G1). Moreover, 20 healthy dogs that tested negative for endoparasites
were included in the study and served as the control group (G2). Dogs having received a
pharmacological treatment against gastrointestinal parasites within six months before the
start of the study were excluded.
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2.3. Clinical Score (CS)

A clinical assessment, including the determination of body weight, was performed
using a physician-based scoring system. Eleven variables were considered. The scores
for each variable were added to obtain a maximum of eleven points (Table 1). The deter-
mination of body weight was measured on fasted animals, in the morning, by using a
digital scale.

Table 1. The scoring system for the clinical assessment of included dogs.

Variables 0 1

Mucous membranes Pink Pale

Ill thrift
Absent Present

Haircoat Normal Poor

Dehydration <5% <5%

Melena Absent Present

Diarrhea Absent Present

Weight loss Absent Present

Vomiting Absent Present

Abdominal swelling Absent Present

Hyperthermia <39.7 ◦C >39.7 ◦C

Lethargy Absent Present

2.4. Blood Sample Collection and Analysis

Whole blood samples were collected at 09.00 a.m. from a peripheral vein (jugular or
cephalic) from fasting dogs using a standard technique, and the samples were stored in a
2.5 mL anticoagulant (K3 EDTA) tube and 2.5 mL cloth activator tube.

Sera samples obtained after centrifugation at 3000× g × 20 min were stored at −80 ◦C
until the analysis.

An investigation of oxidative stress variables (R-OOHs, OXY, and SHp) was performed
with an ultraviolet spectrophotometer (Slim SeaC, SeaC, Florence, Italy). For the detection
of radicals, the spin-trapping method, which examines the production of stable radicals
derived from the reaction of oxygen metabolites using chemical acceptor molecules (com-
monly called “spin-trapping agents”), was used. D-ROMs were assayed to estimate the
biomolecules produced by the peroxidation of lipids, amino acids, proteins, and nucleic
acids during tissue damage [23,26].

The obtained values were correlated to the reaction intensity with chromogen perox-
ides and were expressed in Carratelli units (1 CARR U = 0.08 mg% hydrogen molecules
photometrically detected).

OXY assessed the capability of the serum barrier to counteract the oxidative action
induced by an excess of hypochlorous acid solution, with the plasma within a water solution
and the concentration of residual unreacted radicals detected after the oxidant action. The
intensity of the colored complex was inversely correlated with the total antioxidant capacity.
A surplus of hypochlorous acid radicals present after the oxidative reaction indicated a
reduction in the plasma barrier; conversely, a reduction in the values was directly correlated
with an injury of the plasma barrier due to oxidation [24,27].

SHp was estimated as the capability of thiol groups to produce a colored complex in
the presence of 5,5-dithiobis-2-nitrobenzoic acid. Low SHp concentrations were suggestive
of an altered competence of the thiol antioxidant barrier.

HGMB-1 was assayed with EDTA plasma using a commercially available human ELISA
kit (IBL-International, Hamburg, Germany) previously validated for canine species [32].
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Hematological measurements and calculations, including the red blood cell count
(RBC), packed-cell volume (PCV), hemoglobin concentration (Hgb), mean corpuscular
hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), white blood
cell count (WBC), and blood platelet count (PLT), were carried out on K3EDTA samples.

Clinical chemistry profile analyses were performed on serum samples obtained by
centrifugation to assay the blood urea nitrogen (BUN), creatinine (CREA), total proteins
(TP), alanine-amino transferase (ALT), aspartate-amino transferase (AST), albumin (ALB),
and globulin (GLOB). All samples were analyzed in duplicate by the same operator.

2.5. Statistical Analysis

Statistical analyses were performed using the SPSS for Windows package,
version 22.0.

The Kolmogorov–Smirnov test was used to assess the normal data distribution. De-
scriptive statistics were determined and expressed as means (±standard deviations [SD])
for normally distributed variables.

An unpaired t-test was applied to evaluate the differences between G1 and G2. The
correlation between the considered variables was determined using Spearman’s rank test.
A p-value lower than 0.05 was considered statistically significant.

3. Results

The G1 group was composed of 66 (41 male and 25 female) adult mixed-breed dogs
with a mean age of 1.2 ± 2.5 y.o. and a body weight ranging between 7 and 42 Kg.

Throughout the copromicroscopic analysis, the presence of several gastrointestinal
nematodes was identified, including Ancylostoma spp., Uncinaria stenocephala, Toxocara canis,
Toxascaris leonina, and Trichuris vulpis.

The G2 group was composed of 20 (eight male and twelve female) adult mixed-breed
dogs with a mean age of 4.5 ± 3.4 y.o. and a body weight ranging between 11 and 28 Kg.

All dogs belonging to G1 presented with several clinical signs, including pale mucous
membranes (48/66; 72.7), ill thrift (39/66; 59.1%), a poor haircoat (35/66; 53%), abdominal
swelling (29/66; 43.9%), lethargy (19/66; 12.5%), diarrhea (18/66; 27%), vomiting (15/66;
22.7%), dehydration (8/66; 5.3%), hyperthermia (6/66; 10%), and melena (6/66; 10%). The
mean clinical score was 4.9 ± 3.1.

The laboratory findings showed the presence of anemia (18/66; 27%), leukocytosis
(37/66; 56%), and hypoalbuminemia (23/66; 34.8) (Table 2).

Table 2. Hematological and biochemical variables in dogs with gastrointestinal nematodes (G1) and
in healthy dogs (G2).

Variable Unit
G1 G2 Reference Ranges

[33,34]
p-Value

Mean SD Mean SD

RBC (106/µL) 4.2 ±1.6 6.7 ±2.1 5.6–8.7 0.042

Hgb (ng/mL) 11.9 ±1.8 15.3 ±1.9 14.7–17.7 0.038

PCV (%) 35.1 ±4.7 47 ±4.2 42–53 0.016

WBC (103/µL) 16.2 ±5.4 8.1 ±2.6 4.6–10.6 0.027

PLT (103/µL) 227 ±124 290 ±99 150–400 Ns

BUN (mg/dL) 14.6 ±10.8 11.4 ±8.3 5–21 Ns

CREA (mg/dL) 1.5 ±0.4 1.3 ±0.3 0.3–1.2 Ns

AST (U/L) 45.1 ±17.4 27.6 ±13.3 0–40 Ns



Antioxidants 2022, 11, 1679 5 of 10

Table 2. Cont.

Variable Unit
G1 G2 Reference Ranges

[33,34]
p-Value

Mean SD Mean SD

ALT (U/L) 29.4 ±8.4 34.4 ±15.6 0–40 Ns

ALB (g/dL) 3.1 ±0.71 3.9 ±0.56 3.0–4.4 0.045

GLOB (g/dL) 3 ±0.01 2.7 ±0.48 1.8–3.9 Ns

TP (g/dL) 5.9 ±0.3 6.6 ±0.4 6.4–7.9 0.046

RBC, red blood cells; Hgb, hemoglobin; PCV, packed-cell volume; WBC, white blood cells; PLT, platelets; BUN,
blood urea nitrogen; CREA, creatinine; AST, aspartate-amino transferase; ALT, alanine-amino transferase; ALB,
albumin; GLOB, globulin; TP, total protein.

When comparing the two groups, statistically significant differences in the RBC
(p = 0.042), Hgb (p = 0.038), PCV (p = 0.016), WBC (p = 0.027), ALB (p = 0.045), and TP
(p = 0.046) were observed (Table 2).

The dogs in G1 showed statistically higher values of R-OOHs (p = 0.014), SHp
(p = 0.047), and HGMB-1 (p = 0.046) than those in G2 (Table 3).

Table 3. R-OOHs, OXY, SHp, and HGMB-1 concentrations in G1 and G2 groups.

Variable Unit
G1 G2

p-Value
Mean SD Mean SD

R-OOHs (CARR U) 259.58 ±73.78 198.55 ±40.61 0.014

OXY (µmol
HCLO/mL) 187.63 ±161.67 65.59 ±16.34 Ns

SHp (µmol/L) 147.80 ±74.16 239.33 ±107.88 0.047

HGMB-1 12.6 ±10.37 5.9 ±2.9 0.046
G1, dogs with a diagnosis of gastrointestinal nematodes; G2, healthy dogs; Ns, statistically non-significant
differences.

Spearman’s correlation and regression (R2) analyses of G1 showed a positive correla-
tion between HGMB-1 and R-OOHs (p = 0.04; r = 0.35). A negative correlation was detected
between HGMB-1 and SHp (p < 0.001; r = −0.45), and between HGMB-1 and OXY (p = 0.02;
r = −0.28) (Table 4).

Table 4. The correlation between considered variables of oxidative stress in the G1 group (Spearman’s
rank order) (* p< 0.05; ** p < 0.01).

R-OOHs OXY SHp HGMB-1

R-OOHs 1.0 −0.18 −0.46 0.35

OXY −0.18 1.0 −0.71 −0.28 *

SHp −0.46 −0.71 1.0 −0.45 **

HGMB-1 0.06 * −0.28 * −0.45 ** 1.0

In addition, negative correlations were found between SHP and the number of red
blood cells (p = 0.037; r = 0.21) and hemoglobin (p = 0.042; r = 0.38) (Table 5). No significant
correlation was detected between the oxidative stress variables and the clinical scores
(Table 5).
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Table 5. Correlation between oxidative stress, hematochemical variables, and the clinical score in the
G1 group (Spearman’s rank order) (* p < 0.05).

RBC Hgb PCV WBC PLT ALT AST BUN CREA ALB GLOB TP CS

R-OOHs 0.21 0.43 0.78 0.83 0.90 0.03 0.01 0.42 0.23 −0.19 0.02 −0.21 −0.16

OXY −0.21 −0.05 −0.01 0.54 0.31 −0.10 0.29 0.09 0.21 −0.09 0.23 −0.41 −0.01

SHp −0.21 * −0.38 * −0.32 −0.28 0.05 0.04 0.02 0.10 −0.11 0.02 −0.09 0.38 −0.09

HGMB-1 0.02 0.02 0.11 −0.13 −0.63 0.25 −0.10 0.12 0.08 0.31 0.34 0.11 −0.08

R-OOHs, reactive oxidative metabolites; OXY, antioxidant barrier; SHp, thiol groups of plasma compounds;
RBC, red blood cells; Hgb, hemoglobin; PCV, packed-cell volume; WBC, white blood cells; PLT, platelets; ALT,
alanine-amino transferase; AST, aspartate-amino transferase; BUN, blood urea nitrogen; CREA, creatinine; ALB,
albumin; GLOB, globulin; TP, total protein; CS, clinical score.

4. Discussion

Intestinal parasites are considered a severe health problem in dogs, especially in pup-
pies [35,36], which may display retarded growth, immunosuppression, and susceptibility
to infectious diseases and generalized clinical illness [37].

In addition, intestinal parasites remain a significant threat to animal health in shelter
environments, where the prevalence of gastrointestinal parasites is very high and often
correlated with the onset of other parasitic and infectious diseases [13,38].

Oxidative stress is involved in the pathophysiology of numerous life-threatening
diseases, and it is considered a potential pathogenic factor in the display of infectious and
parasitic diseases in dogs [26,27,39].

Here, the relationship between gastrointestinal nematodes and the oxidative status
in naturally infected dogs was investigated for the first time in order to define the role of
oxidative stress in the onset of disease.

Oxidative stress occurs as a result of an imbalance between the accumulation of free
radicals of oxygen-reactive species produced during aerobic metabolism, inflammation,
and infections and the ability of tissues to detoxify the reactive products [17].

R-OOHs play a key role in the onset of oxidative stress responses in cells. They are
generated as by-products of oxygen metabolism, and are capable of causing damage to
essential biomolecules present in cells, such as DNA, proteins, and lipids, which compro-
mises normal cellular functions [39]. Oxidation products can be transported systemically
throughout the host’s body and reflect the local and systemic status of oxidative stress.

R-OOHs perform microbicidal activities as part of the host’s defense mechanism
against parasitic pathogens, as they are capable of increasing the susceptibility of pathogens
to phagocytic killing within the host’s tissues [40]. The production of ROOHs is one of
the first lines of defense against the presence of parasites. When parasites infect the host,
the immune system responds with a massive production of ROOHs, oxidation triggered
by macrophages, and phagocyte activation [40]. Different studies have reported a higher
susceptibility to infections in subjects with defective antioxidative mechanisms [39].

In fact, during the invasion process, parasites interact with the free radicals of the
host, which are produced by the activation of macrophages and neutrophils to combat
pathogens [17]. The entire process is carried out in the host cells as an effect of the parasite,
and is influenced by the interaction between the pathogen and redox-active antiparasitic
molecules. To preserve redox homeostasis and eliminate ROS, enzymatic/nonenzymatic
antioxidant processes are put in place by the organism to inhibit or interrupt the formation
of pro-oxidants, as well as to repair and substitute injured macromolecules. Thiols are a
group of organic sulfur derivatives that are essential for the correct function of the biological
system, and are considered markers of balance in both intracellular and extracellular
oxidative processes. They play a central role in controlling the redox state of the cell,
influencing the antioxidative capacity of cells through the definition of protein structure,
the regulation of enzyme activity, and the control of transcription activity [41]. Low SHp
levels were observed in dogs infected by gastrointestinal nematodes (G1), suggesting an
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oxidative imbalance status, as has been speculated elsewhere [42]. A lack of thiols has been
widely reported in viral, bacterial, and parasitic diseases [26,41,43], indicating that thiol
oxidation decreases in response to the increasing levels of total oxidant status.

The results reported a significant level of HMGB-1 in the dogs with nematode infec-
tions, attributable to their central immune response. An increase in HMGB-1 has been
reported in different nematode infections in humans [44] and sheep [45].

HMGB-1 is also released by parasites during the infection process, and it has been
documented that it may play an important function in the treatment response [44].

HGMB-1 is a chromosomal protein involved in all DNA transaction actions [46,47].
In addition, HMGB-1 is important in immunological activities, such as the induction of
cytokine production, cell proliferation, chemotaxis, and differentiation [48,49]. In fact, it is
secreted as a multifunctional alarmin [50–53] from necrotic cells [18] following an apposite
stimulus [54], and it activates the release of inflammatory mediators.

Dogs infected by gastrointestinal nematodes showed an inflammatory response that
tended to be of the T-helper type 2 (Th2), indicating that this immune evasion promotes
parasite survival, limiting the development of pathological lesions resulting from aggres-
sive, proinflammatory responses. Helminthic invasions injure the host’s epithelial tissue
and lead to the release of host-damage-associated molecular patterns [55,56], including
S100 small calcium-binding proteins such as HMGB-1.

The clinical signs of intestinal parasites are often nonspecific and vague. Malabsorp-
tion, diarrhea, hemorrhage, and a reduced growth rate are the clinical signs most frequently
detected during the course of helminthiasis, becoming more severe in the presence of other
secondary diseases [57].

The dogs belonging to G1 showed significantly lower values of RBC, Hgb, and PCV,
suggesting the presence of anemia. Anemia is considered a predominant laboratory find-
ing during the course of helminthiasis [37]. Although its occurrence may be strongly
related to the activity of hematophagous parasites that cause traumatic lesions to the host’s
intestinal mucosa [58], it seems that oxidative stress intervenes in several mechanisms
involved in its onset [59]. The negative correlation between RBC, Hgb concentration,
and SHp could suggest that oxidative stress contributes to the onset of anemia in dogs
affected by helminthiasis. Presumably, these findings are related to altered eryptosis that
is not adequately compensated by erythropoiesis, which is observed in cases of oxidative
stress [60,61].

In addition, an inadequate oxidative imbalance is a predictor of enhanced hemolysis
as a consequence of erythrocyte membrane damage [62].

5. Conclusions

Parasites perform complicated life cycles in their host, during which they are exposed
to oxidative processes induced by the host’s immune system and endogenous activities.
The results reported here suggest that helminthiasis is associated with oxidative stress in
dogs and an increase in HGMB-1. Comprehending the dynamics of reactive oxygen species
in the regulation of cellular redox homeostasis is very important for considering further
biomedical approaches to novel drug development.
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