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Abstract 

The main goal of this thesis is the achievement of further understanding on various hot 

topics related to Spintronics and neuromorphic computing.  

Spintronics, also known as spin electronics, differs from traditional electronics in that, in 

addition to charge state, electron spins are used as a further degree of freedom. The 

connection between electron charge and spin admits changing the electronic transport by 

spins, and, on the contrary, to alter the magnetic properties by electron charges. Thus, 

nowadays, spin is fundamental for some of our technologies due to their interesting 

properties: nanometer dimension, low energy consumption, non-volatility, high scalability, 

and large speed. 

Various spin textures and devices have emerged and were deeply studied for the evolution 

of spintronic applications. Here we can mention the magnetic skyrmions and vortices 

where both exhibit intriguing and novel phenomena due to their topologically non-trivial 

spin textures, making them attractive for applications in spintronic devices. Moreover, the 

transformation of these 2D solitons into the 3D space, results in 3D magnetic solitons 

specifically known as “hopfions”. Recent studies concerning the dynamics of hopfions 

showed its promise in the field of magnetic data storage, topological photonics, and novel 

magnetic materials for spintronics applications. 

Alternatively, the non-volatility, high speed, and power efficiency of magnetic tunnel 

junctions, makes them primarily used as key components in magnetic memory 

applications. While both skyrmions and MTJs are important in spintronics, they serve 

different purposes and operate based on different principles. Skyrmions are topologically 

stable magnetic textures with potential applications in various spintronic devices, while 

MTJs are structures used primarily in magnetic memory and sensing applications. 

On the other hand, Neuromorphic computing has emerged as an alternative for 

conventional computing based on Von-Neumann architecture that suffers from various 

bottlenecks. Neuromorphic computing is meant to efficiently deal with the massive amount 

of data and computations in ubiquitous automobiles and portable edge devices. Such 

systems are based on a set of artificial neural networks (ANNs) with the most bio-realistic 

third generation neural network known as, spiking neural network (SNN). Spiking Neural 

Networks are highly power-efficient and have competitive capabilities to deal with 

numerous cognitive tasks. Spintronic based neuromorphic computing is an emerging field, 

holding promises for future technology.  

The main contributions of this thesis to the first topic have been about the different chiral 

spin textures characterized by a non-uniform distribution of the magnetization, including 

skyrmions and vortices. They have found a widespread range of applications because they 

can be easily nucleated, moved, and shifted by spin polarized current. The center of our 

attraction is the dynamics of these textures driven by Dzyaloshinskii-Moriya Interaction 

(DMI). We carried out a theoretical study based on micromagnetic simulations, in absence 

of thermal fluctuations. Our results show that under the influence of linear DMI gradients, 

Néel and Bloch-type skyrmions and radial vortex exhibit motion with finite skyrmion Hall 
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angle, while the circular vortex undergoes expulsion dynamics. We provided a deeper and 

crucial understanding of the stability and gradient-driven dynamics of magnetic solitons 

and paved the way for the design of alternative low-power sources of magnetization 

manipulation in the emerging field of 2d materials. 

The second topic was about magnetic tunnel junction (MTJ) neuron, where MTJ is 

considered as a major spintronic device, composed of two ferromagnets separated by an 

insulating material. The designed MTJ neuron performs firing for spiking neural networks 

without the need of any resetting procedure. We leverage two physics, magnetism, and 

thermal effects, to obtain a bio-realistic spiking behavior equivalent to the Huxley-Hodgkin 

model of the neuron. Numerical simulations using experimental-based parameters 

demonstrate firing frequency in the MHz to GHz range under constant input at room 

temperature. 
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This is the era of big data, where dealing with computers every day is a must. Recent 

advances in artificial intelligence (AI) have demonstrated unprecedented success in 

machine learning, enabling us to perform complicated tasks from vision to natural language 

and thus transforming the way we work and live. The algorithms behind are based on deep 

neural networks and are implemented by supercomputers. However, modern computers, 

which are based on the physical separation of the processing unit and the data storage unit, 

suffer from high energy consumption transiting data information between the storage and 

the processor, and the end of Moore’s law [1]. 

Here comes the importance of an alternative computing paradigm known as 

‘Neuromorphic computing’ that will allow computers to carry out complex operations 

faster, in an energy efficient manner, with fewer delays than conventional von-Neumann 

architectures. Neuromorphic chips mimic human brains with interconnected artificial 

neurons and synapses, thus allowing us to manufacture supercomputers that may at some 

point function better than our brains. In such chips, we must follow up with two processes. 

A bottom-up process where we should investigate a physical device that mimics biological 

neurons and synapses. In addition, a top-down process will be important to develop brain-

inspired computing models to provide algorithm-level matching device physics.  

Such artificial neural networks leak the reliability in mimicking biological neural networks, 

and this is analyzed in the way they transfer information as a static binary input, in addition 

to the used learning procedure and their power efficiency. Here comes the role of the third-

generation neural networks known as spiking neural networks (SNNs), which are the type 

of networks that best mimic our brains. 

Current neuromorphic systems, such as IBM’s TrueNorth [2] and Intel’s Loihi [3] exploit 

conventional complementary metal-oxide-semiconductor (CMOS) technology and relies 

mostly on architecture improvements to increase the neural network’s efficiency. 

Implementation of different materials and devices, nonetheless, will allow for a better 

integration of the necessary neuromorphic properties directly at the material/device level 

by leveraging their non-linear functional response [4]. Compact task-oriented devices can 

substitute complex CMOS circuits to increase scalability and energy-efficiency. 

Memristors, for example, have gathered great attention due to their potential ability to 

mimic the spiking behavior as well as synaptic plasticity [5–9].  

In this regard, the field of spintronics nanodevices, which exploit both the magnetic and 

electrical properties of electrons, have emerged to bring various exciting characteristics 

making them promising candidates characterized by low energy dissipation, non-volatility, 

high speed, reduced sizes and capable of naturally mimicking the spiking neurons [10,11] 

Chapter 1
Introduction
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and synapses [12–15] in neuromorphic systems.  Magnetic textures, such as domain walls, 

Bloch and Néel types skyrmions, and radial and circular vortices are particularly intriguing 

as neuromorphic components because they can support different functionalities due to their 

rich physical mechanisms. To realize innovative spintronic devices, it is necessary to be 

able to write, manipulate, and read back data by means of nucleating, propagating, and 

detecting magnetic solitons. Driven by different means, solitons showed appealing 

applications in the fields of racetrack memories [16–18], as well as in neuromorphic 

computing devices [19–21]. Away from magnetic solitons, magnetic tunnel junctions 

(MTJs) were widely studied for synapse plasticity and firing applications [22,23].  

My thesis is composed into two parts, firstly we study the concepts underpinning magnetic 

solitons, describe our results on their nucleation, propagation, and detection, and offer 

some perspectives for future research in this vibrant field. The second part focuses on 

building a spiking neural network based on spin-transfer torque magnetic tunnel junction 

(STT-MTJ) device, which showed success in mimicking the firing behavior of biological 

entities.  

 

1.1 Thesis Overview 

This thesis is structured as follows: 

Chapter 2 shows the several aspects concerning Micromagnetics, to provide the 

fundamental background necessary to read the results of this thesis. First a short 

introduction on the micromagnetic formalism and the torques acting onto the magnetization 

vector of a ferromagnetic material have been presented. 

In chapter 3, we present a comprehensive study using numerical and analytical methods of 

the stability and motion of Bloch and Néel skyrmions under the influence of 

Dzyaloshinskii–Moriya interaction (DMI) gradients. Our results show that under the 

influence of linear DMI gradients, Néel and Bloch-type skyrmions exhibit motion with 

finite skyrmion Hall angle. We also introduced the transformation of skyrmions into the 

3D space to form “hopfions”, and we presented a brief study for their dynamics. This work 

provides a deeper and crucial understanding of the stability and gradient-driven dynamics 

of magnetic solitons and paves the way for the design of alternative low-power sources of 

magnetization manipulation in the emerging field of 2d materials. 

Later in chapter 4, we study the stability and motion of radial and circular vortices under 

the influence of DMI gradients. Our results show that radial vortices exhibit motion with 

finite skyrmion Hall angle, however circular vortices undergo explosion dynamics. 

In chapter 5, we will introduce magnetic tunnel junctions, their working principles, and the 

different switching paradigms. Moreover, the different MTJ parameters, and some MTJ 

based applications will be discussed. 

Chapter 6 deals with the different aspects of neuromorphic computing and spiking neural 

networks, their real-life applications, the different neuronal models, and the learning 

procedure of such models. 
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Chapter 7, a detailed comparison between Hodgkin-Huxley neuron model and STT-MTJ 

will be provided. Then STT-MTJ synapse will be designed and implemented as the base in 

a spiking neural network (SNN). 

Finally in Chapter 8, we will add the list of publications. 
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The computer was born to solve problems that did not exist before 

 

Bill Gates 

 

 

he Landau-Lifshitz-Gilbert (LLG) equation is a fascinating 

nonlinear evolution equation both from mathematical and physical 

points of view. It is related to the dynamics of several important physical 

systems such as ferromagnets vortex filaments, moving space curves, etc. and 

has intimate connections with many of the well-known integrable soliton 

equations, including nonlinear Schrödinger and sine-Gordon equations. It 

can model multiple dynamical structures including spin waves, elliptic 

function waves, solitons, dromions, vortices, spatio-temporal patterns, and 

chaos, etc. depending on the physical and spin dimensions and the nature of 

interactions. 

–Muthusamy Lakshmanan” 

  

Chapter 2
Fundamentals of 
Micromagnetism

“T 
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This chapter covers the fundamentals concerning micromagnetism. It is divided into four 

Sections. Primarily, a brief introduction of the micromagnetic formalism (section 2.1), the 

torques acting onto the magnetization vector of a ferromagnetic material will be discussed 

in section 2.2, section 2.3 will deal with the key concepts of Spin-Orbitronic and finally 

section 2.4 will discuss numerical Micromagnetism. 

 

2.1 Introduction to Micromagnetism 

The aim of micromagnetism is calculation of magnetic states and their dynamics for a given 

ferromagnetic system at a mesoscopic level [24–26]. The key assumption of 

micromagnetism is that the spin direction changes only by a small angle from one lattice 

point to the next [27]. The direction angles of the spins can be approximated by a 

continuous position vector r. Then the state of a ferromagnet can be described by the 

continuous vector field, the magnetization M(r) which is the magnetic moment per unit 

volume dV and has a modulus Ms constant in time (Ms is the saturation magnetization of 

the material) (See Fig. 2.1). The direction of M varies continuously with the coordinates 

x, y, and z. Particularly, the size of the volume must be chosen large enough to contain 

sufficient number n of magnetic momenta μi; on the other side, small enough to allow for 

the magnetization to easily change between each volume element. 

The magnetization of a magnetic material with n atoms per unit volume is: 

𝐌(𝐫, 𝑡) =
∑ 𝛍𝐢

𝐧
𝐢=𝟏

𝑑𝑉
  (2.1) 

The magnetization vector can be expressed in terms of the unit vector m(r,t) = M(r,t)/Ms. 

In 1935, the Landau–Lifshitz equation, named for Lev Landau, Evgeny Lifshitz, was set to 

describe the precessional motion of magnetization M in a solid.  

The various forms of the equation are commonly used in micromagnetics to model the 

effects of a magnetic field on ferromagnetic materials. In particular, the fundamental 

energetic contributions, known as standard micromagnetic energies play an important role 

in the equilibrium configurations of the magnetization M. 
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2.1.1 Exchange Energy 

The exchange energy is of quantum mechanical nature. The energy of two ferromagnetic 

electrons depends on the relative orientation of their spins. When the two spins are parallel, 

the energy is lower than the energy of the antiparallel state. Qualitatively this behavior can 

be explained by the Pauli exclusion principle and the electrostatic Coulomb interaction. 

The exchange energy, Eij, between two localized spins is [28] : 

Eij = −2JijSiSj (2.2) 

Where Jij is the exchange integral between atoms i and j, and ℏJj is the angular momentum 

of the spin at atom i. 

Expanding and rearranging, the volume energy density related to the exchange is, 

𝜀ex = 𝐴[(𝛻𝑚𝑥)
2 + (𝛻𝑚𝑦)

2 + (𝛻𝑚𝑧)
2] (2.3) 

(a) (b) 

(c) 

Figure 2.1 Scales in micromagnetism. (a) Atomic scale representation of individual magnetic moments μi. (b) 

Micromagnetic scale representation of the magnetization vector M defining as the sum of all magnetic moments 

μi inside the volume dV : M =
∑ μi

n
i=1

𝑑V
. 
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In Eq. (2.3) mx, my, and mz are the components of the magnetization direction in x, y, and 

z, respectively, and A is the exchange constant (J/m). 

 

2.1.2 Uniaxial Anisotropy Energy 

The anisotropy energy arises in crystalline lattices, the energy is lower for magnetization 

parallel to certain crystallographic directions: these are labelled easy axes of magnetization, 

against hard axes of magnetization [24,29]. The volume energy density an εan related to the 

uniaxial anisotropy is: 

𝜀𝑎𝑛 = 𝑘1sin
2𝜃 + 𝑘2sin

4𝜃 + 𝑘3sin
6𝜃  (2.4) 

where 𝑘1, 𝑘2, 𝑘3are uniaxial anisotropy constants expressed in J/m3 and θ is the angle 

between the magnetization direction and the easy axis. Mostly, only the first term is 

considered, leading to: 

𝜀𝑎𝑛 = 𝑘1[1 − (𝐦 ⋅ 𝐮𝑘)
2] (2.5) 

being uk the unit vector of the easy axis. For 𝑘1 > 0 (𝑘1 < 0) the axis is called easy (hard) 

axis since the magnetic moments will prefer to orient collinear (perpendicular) to it to 

reduce the anisotropy energy. 

 

2.1.3 Magnetostatic Energy 

The magnetostatic energy is associated to the interactions between the magnetic dipoles 

inside the material [24]. The magnetic field related to this energy is called demagnetizing 

field Hm (or dipole field inside the material). The magnetostatic energy of a uniformly 

magnetized ferromagnetic material of magnetization M is defined according to [30] by: 

𝜀𝑚 =
−1

2
𝜇0𝐌 ⋅ 𝐇m (2.6) 

The factor 
1

2
 is introduced to avoid counting twice the interaction between couples of 

magnetic moments. The magnetostatic energy relies upon the geometrical properties of the 

ferromagnet as: 

𝐇m = −𝑀𝑠(𝑁𝑥𝑚𝑥𝑥̂ + 𝑁𝑦𝑚𝑦𝑦̂ + 𝑁𝑧𝑚𝑧𝑧̂) (2.7) 

where Nx, Ny, Nz are the shape-dependent demagnetizing factors along the x, y, z directions, 

respectively. For a sphere, the three demagnetizing factors are equal, Nx = Ny = Nz =
1

3
(for 

symmetry reasons) and there is no favored direction that minimizes the magnetostatic 

energy. For an infinitely long cylinder along the z direction Nz = 0 while Nx = Ny = 1, 

hence the magnetization favors lying along the axis of the cylinder. 

 

2.1.4 Zeman Energy 
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 Zeeman energy corresponds to the interaction between magnetization and the external 

magnetic field Hext. Its energy density εext can be written as [24,29]: 

𝜀𝑒𝑥𝑡 = −𝜇0𝐌 ⋅ 𝐇ext (2.8) 

 

2.1.5 Thermal Energy 

Temperature effect is usually included by adding a random noise thermal field Hth to the 

dynamic equation, which is thus converted into a stochastic one. In 1963, Brown showed 

that statistical properties correctly reproduce the equilibrium thermodynamics by applying 

this procedure to single domain particles. In micromagnetic simulations, the thermal 

random field Hth can be added to the effective field Heff acting on the magnetization of 

each discretized cell: 

Heff → Heff+ Hth (2.9) 

The Cartesian components of Hth are independent Gaussian distributed random numbers 

with the following statistical properties: 

〈𝐇𝑡ℎ,𝛼,𝑖(𝑡)〉 = 0 (2.10) 

〈𝐇𝑡ℎ,𝛼,𝑖(𝑡)𝐇𝑡ℎ,𝛽,𝑗(𝑡
′)〉 = 2D𝛿𝑖𝑗𝛿𝛼𝛽𝛿(𝑡 − 𝑡′) (2.11) 

where i and j are the indexes of the cells, α, β = x, y, z indicates the Cartesian components 

of the field, and the brackets represent time statistical averages. The first δ ij implies that 

the fluctuating term of different cells are independent from each other, the second one, δ αβ 

, means that the three Cartesian terms are independent from each other, the last term δ(t − 

t ′ ), indicates that the noise is uncorrelated in time. The coefficient D is obtained to satisfy 

Maxwell-Boltzmann statistics when thermodynamic equilibrium is reached, which leads 

to: 

𝐷 =
𝛼𝑘𝐵𝑇

(1+𝛼2)𝛾𝜇0𝑀𝑠𝑉
 , (2.12) 

where kB is the Boltzmann constant, T the temperature and V is the volume of each 

individual cell. In the micromagnetic formalism framework, the fluctuating thermal field 

Hth,i  added at each cell i is therefore given by, 

𝐇𝑡ℎ,𝑖 = 𝜂𝑖(𝑡)√
𝛼𝑘𝐵𝑇

(1+𝛼2)𝛾𝜇0𝑀𝑠𝑉∆𝑡
  , (2.13) 

where ηi(t) is a stochastic vector with zero-mean and standard normal distributed random 

components. ∆t is the time step used in the micromagnetic simulations. 

 

2.2 Equilibrium and Dynamical Equations 
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As the previous energetic contributions play an important role in the equilibrium 

configuration of the magnetization, each contribution supports different energetic minima, 

thus the final equilibrium state is obtained by the balance between them. 

The total energy density of a ferromagnetic body is given as the summation of all the 

previous energies:  

𝜀𝑡𝑜𝑡 = 𝜀𝑒𝑥 + 𝜀𝑎𝑛 + 𝜀𝑚 + 𝜀𝑒𝑥𝑡 = 𝐴[(∇𝑚𝑥)
2 + (∇𝑚𝑦

)2 + (∇𝑚𝑧)
2] + 𝑘1[1 − (𝐦 ⋅ 𝐮𝑘)

2] −
1

2
𝜇0𝐌 ⋅ 𝐇m − 𝜇0𝐌 ⋅ 𝐇ext (2.14) 

Based on a variational calculus, the effective field [29] can be defined as the functional 

derivative of the total energy density: 

𝐇eff = −
1

𝜇0𝑀𝑠

𝛿𝜀𝑡𝑜𝑡

𝛿𝐦
 (2.15) 

where the functional derivative is expressed by: 

𝛿

𝛿𝐦
=

𝜕

𝜕𝐦
− ∇ ⋅

𝜕

𝜕(∇𝐦)
 (2.16) 

The total effective field will then be given by: 

𝐇eff =
2𝐴

𝜇0𝑀𝑠
(∇2𝐦) +

2𝑘1

𝜇0𝑀𝑠
(𝐦 ⋅ 𝐮𝐤)𝐮𝐤 + 𝐇m + 𝐇ext (2.17) 

 

2.2.1 Dynamical equation 

The precessional dynamics of the magnetization in magnetic layers are governed by the 

Landau-Lifschitz (LL) equation which was introduced by Landau and Lifshitz in 1935 to 

predict the motion of a single spin in Hamiltonian formalism [31], 

𝑑𝐌

𝑑𝑡
= −𝜇0𝛾(𝐌 × 𝐇eff) −

𝜇0𝛾𝛼

𝑀𝑠
𝐌 × (𝐌 × 𝐇eff) (2.18) 

Later in 1954, Gilbert modified the form of the equation to account for the damping using 

a phenomenological approach [32,33] , thus Landau-Lifshitz-Gilbert equation (LLG) is 

given by, 

𝑑𝐌

𝑑𝑡
= −𝜇0𝛾(𝐌 × 𝐇eff) +

𝛼

𝑀𝑠
(𝐌 ×

𝑑𝐌

𝑑𝑡
) (2.19) 

where γ is the gyromagnetic ratio, expressed by: 𝛾 =
𝑔𝑒

2𝑚𝑒
=

𝑔𝜇𝐵

ℏ
 in A.m-1.s-1 being g the 

Landé factor [34] , e and me the charge and the mass of the electron, respectively, µB the 

Bohr magneton and ℏ the Planck’s constant. In addition, α is the damping term without 

dimensions, M the magnetization in A.m-1, Ms the magnetization saturation in A.m-1, and 

Heff the effective field in A.m-1. 

For m = M/Ms, 𝜏 = 𝛾0Ms𝑡 being the dimensionless time and 𝛼 being the Gilbert damping, 

the LLG equation can be written as, 
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𝑑𝐦

𝑑𝜏
= −(𝐦 × 𝐡eff) + 𝛼𝐺(𝐦 ×

𝑑𝐦

𝑑𝜏
) (2.20) 

Where, heff = Heff/Ms.  

The first term of this equation is the precessional term. It designs the rotational movement 

of the magnetization vector around its equilibrium position (see Fig. 2.2 (a)). This rotation 

is caused by a perturbation of the magnetic field inside the material. 

The second term of Landau-Lifschitz of the equation describes the damping. This term is 

purely phenomenological. In fact, the amplitude of the oscillations of a spin decreases over 

time to allow magnetization to join the equilibrium position (see Fig. 2.2 (b)). Without this 

term the magnetization would rotate indefinitely. 

 

 

 

Figure 2.2 Schematic representation of the magnetization M in light red according the LLGS 

equation. (a) Precession term: The magnetization M processes around the effective field Heff 

following a circular trajectory of constant energy without damping effect. (b) Precession, and 

damping: The damping causes dissipation of the energy, and consequently the magnetization 

spirals back to the static equilibrium position. (c) Precession, damping and Spin-Transfer Torque: 

The STT acts as a source of energy which fully compensates for the damping. Therefore, energy 

is conserved, and the magnetization processes. 

 

2.2.2 Spin-Transfer Torque 
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After the discovery of the STT by Slonczewski [35] and Berger [36] in 1996, another term 

was added to the LLG equation as shown in Fig. 2.2 (c), accounting for the three aspects 

of the dynamics of the magnetization under current: Precession, Damping and STT.  

Due to STT the electrons flowing through a magnetic layer are spin polarized along the 

magnetization of FM1 (Fig. 2.3). When these spin-polarized electrons pass through another 

magnetic layer (FM2), the polarization direction may have to change depending on the 

relative orientation of FM1 and FM2. 

Part of the entering spins in the FM1 are polarized in the same direction as M1, generating 

the spin-polarized current, which will transfer a spin-torque onto the magnetization M2 of 

the adjacent FM2. Part of the entering spins is reflected with a polarization opposite to. 

Two types of STT can be considered, the first one acts when the current flows 

perpendicularly to the plane of a multilayer that arises in out-of-plane (OOP) devices. The 

second one is exerted when the current flow is in-plane (IP) [36] that arises in IP devices. 

 

 

 

Figure 2.3 A simplified illustration of spin transfer torque process, FM1 and FM2 refers to 

ferromagnetic film with magnetization M1 and M2 respectively. The thick magnetic layer is used 

to produce a polarized electric current which in turn produces torque on M2.  

 

2.2.2.1 Out-Of-Plane (OOP) Devices 
For understanding the behavior of spin transfer torque in OOP devices, the structure 

consists of two magnetic layers separated by a thin non-magnetic layer. Commonly, the 

device consists of a thick ferromagnet where the magnetization direction is fixed, to 

produce a spin-polarized current, and it is called pinned or fixed or reference layer or 

polarizer as well. The other ferromagnet is thinner to allow changes of its orientation and 

it is called free layer [37]. From a chemical point of view, the spacer layer can either be a 

spin valve (the spacer is an electrical conductor) or a magnetic tunnel junction (MTJ) (the 
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spacer is an electrical insulator). By passing an electrical current density jFE-oop 

perpendicularly to the device through the pinned layer mp, one can produce a spin-

polarized current and, thus it controls the magnetization m of the free layer, via STT τoop, 

which can be designed as an additional contribution to the LLG equation, as derived by 

Slonczewski [35] 

𝝉𝒐𝒐𝒑 =
𝑔𝜇𝐵𝐣𝐅𝐄−𝐨𝐨𝐩

𝛾0𝑒𝑀𝑠
2𝑡𝐹𝐿

𝜀(𝐦,𝐦𝐩)[𝑚 × (𝐦 × 𝐦𝐩)] (2.21) 

being tFL the thickness of the free layer and 𝜀(𝐦,𝐦𝐩) the polarization function, whose 

expression related to the relative orientation between the pinned and free layer 

magnetization. 

For the case of magnetic tunnel junction (MTJ), the ε (m, mp) expression becomes [38]: 

𝜀𝑀𝑇𝐽(𝐦,𝐦𝐩) =
0.5𝜂

[1+𝜂2(𝐦⋅𝐦𝐩)]
 (2.22) 

Now, it is worth noting that the Slonczewski torque acts as an anti-damping torque [39]. In 

fact, by looking at the damping torque in Eqs. (2.18-2.19), with the STT expression, it is 

reasonable to note that they have a similar vector structure. Finally, the dimensionless 

Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation for an MTJ reads: 

(1 + 𝛼2)
𝑑𝑚

𝑑𝜏
= −(𝐦 × 𝐡𝐞𝐟𝐟) − 𝛼(𝒎 × (𝐦 × 𝐡𝐞𝐟𝐟)) +

𝑔𝜇𝐵𝑗𝐹𝐸−𝑜𝑜𝑝

𝛾0𝑒𝑀𝑠
2𝑡𝐹𝐿

𝜀𝑀𝑇𝐽(𝐦,𝐦𝐩)[𝐦 ×

(𝐦 × 𝐦𝐩) − 𝑞(𝑉)(𝐦 × 𝐦𝐩)] (2.23) 

where the dimensionless time step ⅆ𝜏 = 𝛾0𝑀𝑠ⅆ𝑡 as been introduced and 𝑞(𝑉)(𝐦 × 𝐦𝐩) is 

the “out-of-plane” torque (an additional component of the STT term). 

 

2.2.2.2 In-Plane (IP) Devices 
An IP device can be visualized as a ferromagnetic wire that is characterized by a length 

much larger than its width, containing two different magnetic regions separated by DWs. 

By generating an electrical current density jFE-ip through the strip, the current is naturally 

polarized and can produce a distortion motion of DWs (translation of the domains). More 

specifically, the electron spin is approximately parallel to the local magnetization and any 

modification in the spin direction induces a STT which shifts the DW along the wire length. 

Here, we should distinguish between adiabatic 𝜏𝐼𝑃
𝑎  and non-adiabatic 𝜏𝐼𝑃

𝑛𝑎 STT given by, 

𝜏𝐼𝑃
𝑎 =

𝜇𝐵𝑃

𝛾0𝑒𝑀𝑠
2 (𝐣𝐅𝐄−𝐢𝐩 ⋅ 𝛁)𝐦

𝜏𝐼𝑃
𝑛𝑎 =

𝜇𝐵𝑃

𝛾0𝑒𝑀𝑠
2 𝛃(𝐣𝐅𝐄−𝐢𝐩 ⋅ 𝛁)𝐦

 (2.24) 

With P the spin polarization factor, which represents the number of spins polarized by the 

local magnetization, and β is the non-adiabatic parameter [40]. 

Considering adiabatic and no-adiabatic STT forms, LLG equation become, 
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𝒅𝐦

𝒅𝝉
= −(𝐦 × 𝐡𝐞𝐟𝐟) + 𝜶𝑮 (𝐦 ×

𝒅𝐦

𝒅𝝉
) +

𝜇𝐵𝑃

𝛾0𝑒𝑀𝑠
2 (𝐣𝐅𝐄−𝐢𝐩 ⋅ 𝛁)𝐦 +

𝜇𝐵𝑃

𝛾0𝑒𝑀𝑠
2 𝛃(𝐣𝐅𝐄−𝐢𝐩 ⋅ 𝛁)𝐦

 (2.25) 

 

2.2.3 Voltage Controlled Magnetocrystalline Anisotropy 

Voltage-controlled magnetic anisotropy (VCMA) is a technology that provides an energy-

efficient approach to manipulate spintronic devices [41,42]. It has been proposed as an 

alternative writing mechanism that may solve limitations present in STT-MRAMs and 

enable higher bit density, as well as ultra-low power switching due to reduced ohmic 

dissipation [43]. The VCMA effect is induced by an accumulation of charge at the interface 

of ferromagnetic materials owing to an applied electric field [44]. 

 

2.3 Spin-Orbit Interactions 

Spin-orbit interaction, describing the coupling between the orbital and spin degrees of 

freedom provides yet another avenue to control  magnetism  electrically. Angular 

momentum associated with the orbital degree of freedom provides yet another source 

which can be used to apply torque on the magnets.  Thus, if a method can be devised to 

couple the orbital motion (which is controlled electrically) with the spin degrees of 

freedom, angular momentum can be exchanged with magnets electrically applying new 

kind of torques, referred to as the spin-orbit torques (SOT) [45]. This phenomenon led to a 

novel direction of Spintronics - that can be named spin-orbitronics [46–48]. 

The spin-orbit coupling (SOC) has two distinct origins: an intrinsic and extrinsic. The 

intrinsic effect is caused by spin-orbit coupling in the band structure of the semiconductor 

and survives in the limit of zero disorder, whereas the extrinsic effect is caused by spin-

orbit coupling between Bloch electrons and impurities [49]. 

Both the extrinsic and intrinsic SOC are involved for the generation of spin-orbit associated 

phenomena, such as the anisotropic magnetoresistance (AMR), the spin-Hall effect (SHE), 

the anomalous Hall effect (AHE), and the Dzyaloshinskii-Moriya Interaction (DMI). In the 

following subparagraphs, the micromagnetic model of the SHE and DMI will be described. 

 

2.3.1 Spin-Hall Effect 

The spin Hall effect (SHE) is a transport phenomenon predicted by Russian physicists 

Mikhail I. Dyakonov and Vladimir I. Perel in 1971 [50,51]. It originates from the 

coupling of the charge and spin currents due to spin-orbit interaction where an ultrathin 

ferromagnetic layer is coupled to HM layer and the charge current flows through the HM 

as shown in Fig. 2.4. 
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A spin-current is generated from the charge current Jc because of the spin-dependent 

scattering in the HM, which create a spin accumulation of opposite sign at the upper and 

lower surface of the HM (the charge current is along the reference axis, the spin-

polarization is along the y-axis as shown in Fig. 2.4). A vertical spin-current is generated 

and then absorbed by the FM, exerting a torque τSHE on its magnetization that can be added 

as an additional term in Eq. (2.20), which is given by the following relation: 

𝛕𝐒𝐇𝐄 = −
𝑔𝜇𝐵𝜃𝑆𝐻

2𝛾0𝑒𝑀𝑠
2𝑡𝐹𝐿

𝐦 × 𝐦(𝑧̂ × 𝒋𝐻𝑀)  (2.26) 

being θSH the spin-Hall angle, which represents the amount of charge current Jc converted 

into spin-current js = θSHJHM∙ 𝑧̂ is the unit vector in the OOP direction. 

 

2.3.2 Dzyaloshinskii-Moriya Interaction (DMI) 

DMI is an antisymmetric exchange interaction that occurs at the interface between 

ferromagnetic (FM) and heavy metal (HM) layers. The HM atoms with the large spin–orbit 

coupling mediate the interaction between neighbor spins in the FM medium separated by 

a distance rij, leading to their non-collinear alignment [52]. We can distinguish between 

two types of this interaction: the DMI in bulk material and at the interface of an ultrathin 

film (see Fig. 2.5). Bulk DMI (bDMI) originated from the indirect exchange mechanism 

between two spins (S1 and S2) with a large neighboring atom having large SOC, whereas 

Figure 2.4 Schematic picture of the FM/HM bilayer, the charge current (Jc) entering the heavy 

metal induces the Spin Hall Effect (SHE), the opposite spin accumulations generate transverse spin 

current (Js) on the FM/HM interface. 
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Interfacial DMI (iDMI) takes place at the interface between a ferromagnetic thin film 

(grey) and a metallic layer (blue) having large SOC [53]. 

 

 

 

Figure 2.5 Sketch of Bulk DMI, and Interfacial DMI. The resulting bulk and interfacial DMI 

vector point perpendicular to the triangle consists of two magnetic atoms and an atom with large 

SOC [53] . 

 

The energy density for the two types of DMI is expressed by the following way [54]: 

𝜀𝑏𝐷𝑀𝐼 = 𝐷𝐦 ⋅ ∇ × 𝐦 (2.27) 

𝜀𝑖𝐷𝑀𝐼 = 𝐷[𝑚𝑧∇ ⋅ 𝐦 − (𝐦. ∇)𝑚𝑧] (2.28) 

D being the parameter considering the intensity of the DMI. Indeed, for the expression of  

𝜀𝑖𝐷𝑀𝐼,we assume 
𝜕𝐦

𝜕𝑧
= 0. 

Afterwards, the expression of the dimensionless DMI fields: 

ℎ𝑏𝐷𝑀𝐼 =
−1

𝜇0𝑀𝑠

𝛿𝜀𝑏𝐷𝑀𝐼

𝜕𝐦
=

−𝐷

𝜇0𝑀𝑠
∇ × 𝐦 (2.29) 

ℎ𝑖𝐷𝑀𝐼 =
−1

𝜇0𝑀𝑠

𝛿𝜀𝑖𝐷𝑀𝐼

𝜕𝐦
=

−𝐷

𝜇0𝑀𝑠
[(∇ ∙ 𝐦)𝑧̂ − ∇𝑚𝑧] (2.30) 

The DMI also affects the boundary conditions (BC) of the ferromagnet as shown in the 

following equations [32]: 

Bulk DMI BC:
𝑑𝐦

𝑑𝑛
=

𝐦×𝐧

𝜉

nterfacial DMI BC: 
𝑑𝐦

𝑑𝑛
=

1

𝜉
(𝑧̂ × 𝐧) × 𝐦

 (2.31) 
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where 𝜉 =
2𝐴

𝐷
 is a characteristic length and A is the exchange constant. 

Later, in chapter 3 and chapter 4, we will show how DMI acts as a fundamental interaction 

for stabilizing a magnetic soliton. 

 

2.4 Numerical Micromagnetism 

Numerical micromagnetism is introduced to study different interesting phenomena of 

magnetization dynamics, from either the point of view of fundamental physics or from 

experimental devices. As has been seen in previous sections, magnetization dynamics is 

described using non-lineal partial differential equations in space and time, which are 

significantly complicated to solve and in general do not have analytical solutions. The main 

idea of numerical micromagnetism is discretizing the previously obtained continuous 

expressions including the discretization of the geometry and of the dynamic equation, as 

well as all the different effective field contributions to solve the problem numerically [55]. 

For the spatial discretization of the geometry, the most popular methods applied in 

micromagnetic solvers are the finite-difference method (FDM) and the finite-element 

method (FEM). In both methods the magnetic region is subdivided into simulation cells 

resulting in a mesh. The two methods differ in how the structures are discretized. As a 

result, their formulation, implementation, speed, and numerical accuracy are different. To 

ensure accurate simulations, it's important to make sure that the cell size used in the 

discretization process (i.e., the size of the computational grid cells) is smaller than the 

exchange length. This ensures that the simulation captures the relevant physics accurately. 

If the cell size is too large compared to the exchange length, important details of the 

magnetic behavior at smaller length scales may be missed, leading to inaccuracies in the 

simulation results. 

FDM uses a regular grid of rectangular brick cells, at which the differential operators can 

be approximated by central differences [56]. The volume of each brick cells is ∆x × ∆y × 

∆z. Due to the regularity of the discretization grid, the formulation of the micromagnetic 

modeling with FDM is relatively simple and the implementation is quite straightforward. 

Moreover, the computational speed of FDM can be good for simple magnetic structures, 

such as thin rectangular films. Therefore, it is extensively utilized in the micromagnetics 

community for such cases. 

On the other hand, FDM suffers from certain factors that prevent the universal application 

of the method. Most importantly, the modeling accuracy for the magnetic samples that 

come with fine geometrical features can be unsatisfactory. This is because regular brick 

cells are intrinsically unsuited to model curved boundaries. FEM greatly solves this 

problem by applying arbitrary shaped finite elements in the mesh. Each finite element 

could be a triangle, a quadrilateral, or even a curved triangle in a two-dimensional case. As 

to three-dimensional mesh, the elements could be tetrahedrons, hexahedrons, pyramids, 

and prisms [57]. The flexibility in the discretization allows for superior geometric modeling 

accuracy. The modeling flexibility and accuracy come, however, with complexities in 
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formulation and implementation. The computational speed may be slower than that of 

FDM when handling simple magnetic structures. 

For the discretization of the micromagnetic equations, it is essential to find the discrete 

counterparts to the continuous functions that describe all the contributions to the local 

effective field Heff, in each computational cell. In the FD approximation the derivatives are 

replaced by ratios at the center of each cell of the mesh. Among all the energy contributions, 

the evaluation of demagnetization energy, which is a long-range interaction, is the most 

complicated one and is extremely time-consuming. It has a computational complexity of 𝒪 

(n2), with n being the number of simulation cells. Various methods have been proposed to 

reduce this complexity, and the widely used fast-Fourier-transform (FFT) based circular 

convolution method is able to reduce this complexity to 𝒪 (nlogn) [58]. 

To numerically solve the LLG equation including the spin-torque effect and all effective 

field components, different ordinary differential solver algorithms, which are based on a 

few explicit Runge-Kutta methods such as the Dormand-Prince method (RK45), the 

Bogacki-Shampine method (RK32), and Heun’s method (RK12) can be implemented. 

 

2.4.1 Software Packages 

Various micromagnetics software packages are used to simulate and analyze the behavior 

of magnetic materials. We can differentiate between them through their features, 

implementation, and user interface. This includes the most popular open-source FD 

micromagnetic software: OOMMF [59], which is a multi-platform code running on central 

processing units (CPUs). It is implemented using C++ and Tcl/Tk scripting language, and 

offers a wide range of simulation capabilities, including various micromagnetic models, 

exchange and demagnetization energies, and support for different boundary conditions. 

Other CPU based software exists including Fidimag and the commercial package 

MicroMagus [60]. 

Due to the increasing need for high parallelism and efficient performance in numerical 

micromagnetics, graphics-processing unit (GPU) based software was introduced. A 

popular open-source package for finite-difference micromagnetics on GPUs is MuMax3 

[61,62], developed at Ghent University and particularly known for its performance in 

simulating large-scale magnetic structures with high fidelity. 

In my thesis, I utilized a diverse array of computational tools to address the complex 

challenges inherent in my research. Leveraging the capabilities of various software 

packages such as Mumax, Petaspin code, MATLAB, and Python allowed for a 

comprehensive exploration of the phenomena under investigation.  

The state-of-the-art micromagnetic solvers that helped me widely in my simulations, is the 

local PETASPIN code. It is implemented by prof. Luis Torres group in Salamanca before 

2002, as a CUDA-native and multi-GPU solver benchmarked against the standard 

problems of micromagnetic community [63]. Our code uses the Adams Bashforth [64,65] 
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method to numerically integrate the Landau-Lifshitz-Gilbert (LLG) equation. The 

simulation results of PETASPIN coincide with the ones of OOMMF and Mumax3.  

Petaspin code served as robust micromagnetic simulation platforms, enabling the 

simulation and analysis of intricate magnetic structures and dynamics. It also provided 

valuable insights into the behavior of magnetic materials at the microscale, facilitating the 

elucidation of underlying mechanisms and the prediction of emergent phenomena. 

Complementing these simulations, MATLAB and Python were instrumental in data 

analysis, visualization, and algorithm development. MATLAB's rich numerical 

computation and visualization capabilities, coupled with Python's versatility and extensive 

library ecosystem, empowered me to tackle complex computational tasks with efficiency 

and flexibility. By seamlessly integrating these software packages into my research 

workflow, I was able to achieve a comprehensive understanding of the studied systems and 

generate impactful insights contributing to the advancement of my field. 
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Our intelligence is what makes us human, and AI 

is an extension of that quality

 

Yann LeCun 

 

he skyrmion can be extremely small with diameters in the nanometer 

range and, importantly, they behave as particles that can be moved, 

created or annihilated, making them suitable for abacus-type applications in 

information storage, logic or neuro-inspired technologies. 

–Albert Fert ”  

Chapter 3
Magnetic 
Skyrmion

“T 
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This chapter concerns the study of magnetic skyrmions. Section 3.1 is a background about 

skyrmion and its applications. Section 3.2 is divided intp three parts and it deals with 

topology of the magnetic skyrmion and shows its different configurations. Section 3.3 is 

divided into two main parts. Then manipulation and dynamics of skyrmions are presented 

in section 3.3. Transformation from 2D skyrmions into 3D hopfions will be discussed in 

section 3.4. Finally, section 3.5 is a brief conclusion.  

 

3.1 Introduction to Magnetic Skyrmions 

Magnetic skyrmions are chiral spin textures with a whirling configuration forming in thin 

ferromagnets. Originally, it was proposed by British nuclear physicist Tony Skyrme in the 

1960’s as a quasi-particle-like topological excitation in certain field theories for the 

description of the interactions of pions.[66] Later in the 1990’s, Bogdanov et al. for the 

first time theoretically suggested that the topologically protected skyrmion can exisit as a 

stable or metastable state in magnetic materials with Dzyaloshinskii–Moriya interactions 

(DMIs) [67]. In 2001, Bogdanov and Rößler theoretically predicted and described the 

skyrmion in magnetic thin films [68].  

In 2009, Mühlbauer et al. first experimentally observed the Bloch skyrmions in the group 

of B20- type transition metal compounds [69–71]. Most of the B20 compounds including 

(MnSi [72–75], FeGe [76–78], MnGe [79,80], FexCo1-xSi [81,82], Co1+xSi1-x [83], MnxFe1-

xSi [84,85]...) stabilize two-dimensional Bloch skyrmion lattices and share a common 

magnetic field-temperature phase diagram in terms of the spin textures except MnGe and 

compounds close to its composition. Later Bloch skyrmions were observed in β-Mn-type 

compounds such as CoZnMn alloys and molybdenum nitrides [86], in addition to polar 

magnets [87]. 

Interfacial Dzyaloshinskii–Moriya interactions (iDMI) being the dominant interaction 

stabilizing the Néel type skyrmions, it can be optimized using HMs that induce opposite 

iDMI signs at the top and bottom FM interfaces [88,89]. The iDMI vector always aligns 

along the interface plane and stabilizes Néel skyrmions. The first iDMI material reporting 

the observation of a Néel skyrmions consists of a single monolayer (ML) of Fe deposited 

on Ir(111) single crystal substrate denoted as Ir(111)/Fe(1ML) in 2011 at temperatures 

below 28 K [90]. 

Later, Néel skyrmions have been observed in a variety of thin film materials with a 

perpendicular easy-axis of the magnetization and interfacial DMI (iDMI), including Heavy 

Metal (HM)/single-layer ferromagnet (FM)/oxide [91,92], HM1/FM/HM2 multilayers 

[88,93], HM/ferrimagnet/oxide multilayers [94,95] combinations of FM/ferrimagnets 

[96,97], as well as synthetic antiferromagnets (SAFs) [98–100]. 

Recently, 2d materials have been hailed as building blocks for the next generation 

electronic devices [101]. Several 2d materials, such as CrI3 [102], Fe3GeTe2 [103], and 

VSe2 [104], have shown potentials for the stabilization of non-collinear magnetic textures 

and spintronic applications. Interesting features of 2d materials, in CrI3 and in Janus 
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monolayers Cr (I, X)3 (X = Br, Cl), is the voltage and strain control of magnetic parameters 

relevant for magnetic textures stability [105–107]. The DMI energetic density expressions 

and the boundary conditions controlling both types of skyrmions are given in section 2.3.2 

(Eqs. (2.27-2.31)). 

 

3.1.1 Skyrmion Based Technology 

The attraction of skyrmions rises for many reasons, including their ultra-low energy 

consumption for manipulation and motion, they retain their state even in the absence of 

power, support parallel processing and sparse connectivity, as well as their rich dynamic 

behaviors, including motion, annihilation, and creation. Utilizing its properties allows a 

successful implementation of synaptic plasticity in neuromorphic systems, with reduced 

hardware overhead and improved performance. A pioneering application of skyrmions was 

the racetrack memory [16,53], where Tomasello et al.[16] suggested four different 

scenarios (A), (B), (C) and (D) as shown in Fig. 3.1 for designing a skyrmion racetrack 

memory combining Bloch or Néel skyrmions. The manipulation of both skyrmion types 

by spin current generated within the ferromagnet or via the spin-Hall effect arising from a 

non-magnetic heavy metal underlayer, showed that Néel skyrmion moved by the spin-Hall 

effect (Fig. 3.1(a)) is a very promising strategy for technological implementation of the 

next generation of skyrmion racetrack memories. 

 

 

 

Figure 3.1 Four different scenarios for the design of a skyrmion racetrack memory. (A), Néel 

skyrmion motion driven by the STT. (B), Néel skyrmion motion driven by the SHE. (C), Bloch 

skyrmion motion driven by the STT. (D), Bloch skyrmion motion driven by the SHE. The four 

insets show the spatial distribution of the Néel and Bloch skyrmion, where the background colors 

(a) 

(b) 

 

(c) 

 

(c) 

(d) 
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refer to the z-component of the magnetization (blue negative, red positive), while the arrows are 

related to the in-plane components of the magnetization. The current flows along the x-direction. 

The skyrmion moves along the x-direction in the scenarios A, C, and D and along the y-direction 

in the scenario B. 

 

Many other skyrmion based applications have been proposed, such as oscillators [108–

111], detectors [112], random bit generator [113], logic gates [114]. Beyond data storage 

and memory applications, the diverse magnetic skyrmion interactions and excitations can 

be further exploited for conventional logic computing and unconventional computing like, 

probabilistic [115], Brownian computing [116], and neuromorphic computing.[117].  One 

interesting application in this field is a skyrmion-based artificial synaptic illustrated in Fig. 

3.2(a), used to perform pattern-recognition using handwritten data set, reaching to the 

accuracy of ~89% [117]. Beside simulations, experiments were carried out to measure the 

electrical operations of a skyrmion synapse (Fig.3.2(b)), where the corresponding 

magnetic configuration of each resistance state is also imaged by STXM as shown in Fig.3 

2(c). 

 

 

 

Figure 3.2 (a) Schematic drawing of skyrmion-based artificial synapse, illustrating, Néel 

skyrmions in thin films mapped onto spheres and are shown in three-dimensional space. The red 

and blue colored arrows represent magnetic moments pointing +z and -z directions within 

skyrmions, respectively. The synaptic weights are proportional to the number of skyrmions, 

which is modulated by the electric current-controlled accumulation and dissipation of them. (b), 

The measured Hall resistivity change and calculated skyrmion number as a function of injected 

pulse number. Note that red and blue symbols and colored areas correspond to resistivity changes 

during potentiation and depression, respectively. Green symbols are used to indicate the number 

(b) 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

(c) 
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of skyrmions. Enclosed electrical pulses indicate the direction of charge current pulse, opposite to 

the direction of electron flow. Error bars denote the standard deviation of the resistivity 

measurements at each state. (c), Sequential STXM images showing skyrmion populations after 

injecting unipolar current pulses along the track, during potentiation and depression, respectively, 

and each image number, #1-#16, corresponds to each resistivity state indicated in (b).  

 

3.2 Skyrmion Properties & Stabilization 

In this section, the topological nature and corresponding range of possible configurations 

of skyrmions are described mathematically. Magnetic skyrmion materials are presented 

and categorized based on their configuration and the dominant magnetic interactions 

stabilizing them, including bDMI, and iDMI. In addition, other conditions such as 

temperature, pressure, magnetic field, electrical field, geometrical constraint, and strain 

also play a role in stabilizing skyrmions. 

 

3.2.1 Topology and Skyrmion Number 

The stability of magnetic skyrmions had been closely linked to the topological 

configuration of their vector field of magnetic moments. In mathematics, topology refers 

to the study of geometric properties preserved under continuous deformations such as 

stretching, twisting, and bending without tearing. Theoretically, a skyrmion described by a 

continuous vector field is topologically protected because its annihilation requires the 

transformation into a topologically trivial state. 

For two-dimensional magnetic skyrmions on a film, its topology is quantified by the 

winding number, also known as skyrmion topological number Nsk given by [118,119]: 

𝑁𝑠𝑘 =
1

4𝜋
∬ 𝐦⃗⃗⃗ ⋅ (

𝜕𝐦⃗⃗⃗ 

𝜕𝑥
×

𝜕𝐦⃗⃗⃗ 

𝜕𝑦
) ⅆ𝑥ⅆ𝑦 (3.1) 

where 𝐦⃗⃗⃗ (𝑥, 𝑦) is the normalized magnetization with the magnitude of 1. This expression 

computes the number of times 𝐦⃗⃗⃗  wraps around a unit sphere. Hence the structure of a 

skyrmion have Nsk of ±1. In contrast, the winding number of a plane with uniform 

magnetization is 0. Thus in the context of finite samples, continuous transformations 

between these two states are prohibited, and skyrmions can resist annihilation by minor 

deformations. This stability arising from the geometry or configuration of the skyrmion is 

referred to as topological stability. Generally, the skyrmion number connects to the total 

variation of the magnetization angle when moving counterclockwise around a circle, 

divided by 2π [119]. 

 

3.2.2 Skyrmion Configuration 
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The magnetization 𝐦⃗⃗⃗ = (𝑚𝑥 , 𝑚𝑦 , 𝑚𝑧) configuration of a two-dimensional skyrmion is 

preferably described by polar coordinates over cartesian coordinates given the skyrmions 

circular symmetry [120]. The assumption of circular symmetry is valid for a magnetic 

skyrmion at equilibrium without an in-plane magnetic field. The transformation of spatial 

coordinates between cartesian 𝑟 (𝑥, 𝑦) and polar 𝑟 (𝑟, 𝜑) coordinates is given by, 

x= rcos𝜑 and y= rsin𝜑 (3.2) 

where r is the radial distance from the center of the skyrmion, and  is the azimuthal angle 

in space. The direction of 𝐦⃗⃗⃗ (, ) vector is described using spherical coordinates given by, 

𝐦⃗⃗⃗ ((r, 𝜑), (r, 𝜑)) = (sin𝜃cos, sin𝜃sin, cos𝜃) (3.3) 

where  is the polar angle and  is the azimuthal angle of the vector. 

With the assumption of circular symmetry, the dependence of  (r,) and  (r,) are both 

simplified to  (r) and  () respectively. By substituting 𝐦⃗⃗⃗ ((r), ( 𝜑)) into the Eq. (3.1) 

we obtain, 

𝑁𝑠𝑘 = −
1

4𝜋
[𝑐𝑜𝑠𝜃(𝑟)]𝑟=0

𝑟=𝑅[∅(𝜑)]𝜑=0
𝜑=2𝜋

 (3.4) 

where R corresponds to the radial distance at which 𝑚⃗⃗  becomes fully antiparallel to its 

core. The term [𝑐𝑜𝑠𝜃(𝑟)]𝑟=0
𝑟=𝑅=±2 depends on the polarity or orientation of the skyrmion 

core. A core in the positive 𝑧̂ direction returns the value of −2 and vice versa. The term  

[∅(𝜑)]𝜑=0
𝜑=2𝜋

depends on the skyrmion’s vorticity  defined as  = [∅(𝜑)]𝜑=0
𝜑=2𝜋

/2𝜋.  

describes the relative direction of change in the azimuthal angles  and  of space and 

magnetization vector, respectively.  is +1 if they are unidirectional and −1 if they are in 

opposite directions. Based on Eq. (3.4), an additional phase term  defined as the skyrmion 

helicity can be introduced to  () while conserving the magnitude of Nsk, to give, 

 (,𝛾) = + 𝛾 (3.5) 

where =(- ]. 

Particularly, we can distinguish between two types of skyrmions: Bloch-Type and Néel 

Type skyrmions.  Bloch and Néel skyrmions both have positive  but differ in  as shown 

in the first and third row of Fig. 3.3. Bloch skyrmions have 𝛾 = {
−𝜋

2
, +

𝜋

2
} that manifest as 

clockwise (CW) or counterclockwise (CCW) vortex-like configurations, while Néel 

skyrmions have 𝛾 = {0, 𝜋} that manifest as spike-like configurations [121]. 

It is important to note that skyrmions can have any  between − and , and Bloch and 

Néel skyrmions are merely nomenclature used to describe several specific cases of . The 

second and final row of skyrmions with negative  shown in Fig. 3.3 correspond to anti-

skyrmions. Anti-skyrmions are topologically equivalent to skyrmions but have alternating 

Bloch and Néel characters around their core. The configuration of anti-skyrmions is 

independent of  due to its rotational symmetry, and hence are effectively characterized by 

its vorticity alone. 
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Figure 3.3 Illustration of magnetic skyrmions described by the skyrmion number NSK, vorticity 

and helicity. The arrow denotes the spin direction while the color denotes the out-of-plane spin 

value, where red is out of plane, white is IP and blue is into the plane. Adapted from [121]. 

 

The two types of skyrmions can be stabilized in the existence of two types of DMI. The 

DMI in bulk material stabilize Bloch skyrmions, characterized by a vortex like 

configuration of the domain wall spins (see Fig. 3.4(a)); while in the iDMI, Néel skyrmions 

are obtained which have a radial distribution of the domain wall spins (see Fig. 3.4(b)) 

[53]. Hence, the sign of the DMI parameter plays an important role in the chirality of the 

two types of skyrmions. It is necessary to underline that the skyrmion has a double 

protection due to the energetic minimum and the topology. 
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Figure 3.4 Magnetization distribution of a (a) Bloch skyrmion, (b) Néel skyrmion. The color bar 

denotes the out-of-plane magnetization component mz: red positive, white zero, and blue 

negative. 

 

3.2.3 Approaches for Skyrmion Stabilization 

A wide variety of approaches were proposed for the manipulation of skyrmions and 

vortices, including electrical currents through the conventional spin-orbit torques (SOT) 

[122] external field gradients [123,124], anisotropy gradients, as well as thermal gradients 

[125–127]. Notably, parameters gradients prove to be very useful in inducing dynamics in 

the case of electrical insulators compared to electrical manipulation. 

 

3.3 Manipulation of Magnetic Skyrmions Under DMI 

Gradient 

In this section, we present a comprehensive study using numerical and analytical methods 

of the stability and gradient-driven dynamics of Bloch and Néel skyrmions under the 

influence of DMI gradients in different geometries (circular and square samples) and two 

materials (thin film CoFeB [128] and 2d CrI3 [129]). Our results show that under the 

influence of linear DMI gradients, Néel and Bloch-type skyrmions exhibit motion with 

finite skyrmion Hall angle. A theoretical analysis was carried out via systematic 

micromagnetic simulations and corroborated by the Thiele’s formalism. 

 

3.3.1 Modeling and Sampling 

(a) 

 

 

 

(b) 

 

 

 



49 
 

This section is divided into 3 subsections, where we present the sample, we are simulating, 

the magnetic properties of our sample, the Thiele’s equations governing the motion of the 

skyrmions, as well as the results.  

 

3.3.1.1 Micromagnetic Modeling 

The micromagnetic computations were performed with a state-of-the-art micromagnetic 

solver, PETASPIN (section 2.4.1), which numerically integrate the Landau-Lifshitz-

Gilbert (LLG) equation given by Eq. (2.20). For skyrmions, we consider both types of 

DMI given by Eqs. (2.22-2.31), leading to stabilization of Bloch and Néel types. It has 

been experimentally shown that while an odd number of layers CrI3 reveals 

ferromagnetism, for an even number of layers an antiferromagnetic interlayer coupling is 

observed [130,131]. Thus we considered an SAF (square & circular samples) compose of 

two CrI3 layers separated by a non-magnetic layer as shown in Fig. 3.5 below, and 

simulated the antiferromagnetic interlayer coupling as a Ruderman-Kittel-Kasuya-Yosida 

(RKKY) interaction added to the effective field, hence as a standard SAF ℎ𝑒𝑥,𝑖
𝑖𝑛𝑡𝑒𝑟 =

𝐴𝑒𝑥

𝜇0𝑀𝑠
2𝑗

𝑡𝑁𝑀

𝐦𝑗 [132], where i,j = L, U, Aex is the interlayer exchange coupling constant, 𝜇0 

is the vacuum permeability, and tNM  is the thickness of the non-magnetic layer. All the 

simulations were performed at zero bias field and temperature. 

 

 

 

Figure 3.5 3D sketch of the 100 nm × 100 nm square sampled SAF multilayer under 

investigation, where it is composed of two ferromagnets (upper FM & lower FM) separated by a 

non-magnetic layer. On the left snapshots representing examples of the spatial distribution of the 

magnetization for SAF Néel and Bloch skyrmions in the upper and lower FMs respectively. 
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3.3.1.2 Sample Properties 

We considered two materials in our simulations: CoFeB and a 2d CrI3. The material 

parameters used in simulations are detailed in Table 3.1 for CoFeB and CrI3. For the 

skyrmion-hosting samples, we analyze a circular geometry with diameter from d = 100 nm 

to 500 nm as well as a 100 nm × 100 nm square (Fig. 3.5). The thickness was set to tFM = 

0.31 nm. The discretization cell used in both geometries is 1 nm ×1 nm × 0.31 nm. 

 

Parameters CoFeB CrI3 

Type Bloch Skyrmion Néel Skyrmion Bloch Skyrmion Néel Skyrmion 

Ms(kA/m) 900 900 68.781 68.781 

A(pJ/m) 20 20 1.21 1.21 

Ku(MJ/m3) 0.8 0.8 0.317 0.317 

|D|(mJ/m2) [1.5, 3.0] [1.5, 3.0] [0.60,0.77] [0.59,0.78] 
 

Table 3.1 Micromagnetic parameters of CoFeB and CrI3 used for simulating Néel and Bloch 

skyrmions, for both square and circular geometries. 

 

3.3.1.3 Thiele Equation 

The core-translation of topological textures can be captured by a particle-like behavior 

which is well described in terms of the Thiele formalism [133,134] In the Thiele formalism, 

we assume that the magnetization evolves adiabatically such that at all instants the full 

magnetization is uniquely defined by the position of the topological texture core, i.e. m(x,t) 

= m(x|X(t),Y(t)) where X(t) and Y(t) are the position of the soliton core. Hence, the time-

evolution of the magnetization is described as m(x,t) = m(x-Vt)  , where V(𝑡) = 𝑋̇(𝑡)𝐱 +

𝑌̇(𝑡)y, for any soliton. Within these assumptions, we can integrate the LLG Eq. (2.20) and 

obtain, 

𝐺 × 𝐯 − 𝛼𝐺𝐷⃡ 𝐯 + 𝐅 = 0 (3.6) 

Where, 

    2 4zij x y zij
ij

G d x Q      m m m  (3.7) 

    2

i j
ij

D d x   m m  (3.8) 

2

0

1

s

E
M t

  F  (3.9) 
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Here, 𝑄 is the topological charge and is independent of the precise shape of the 

magnetization configuration. 𝑄 = ±1 for skyrmions and 𝑄 = ±0.5 for vortices according 

to the soliton polarity. Moreover, 𝜀𝑖𝑗 is the antisymmetric tensor with  𝜀𝑥𝑦𝑧 = 1 , and E is 

the total free energy. 𝐺 and 𝐷⃡  are called gyrotropic and viscosity tensors, respectively. The 

gyrotropic tensor 𝐺 produces a motion perpendicular to the applied force and depends only 

on the topological charge of the soliton [19,133–137]. In the case of the RKKY coupled 

system, the two solitons have opposite topological charge, and thus, the collective soliton 

experiences the motion corresponding to zero topological charge[125]. Thus, the net 

velocity of the collective solitons has no component perpendicular to the force. The 

viscosity tensor D  produces a motion along the direction of the force, leading to a 

minimization of the total free energy E. Eqs. (3.7-3.8) depends on the exact ansatz of the 

soliton with the major contributions coming from the vicinity around the soliton core, 

where the magnetization is not in plane and has a non-vanishing gradient. The spatial 

dependence of the total free energy E (see Eq. (3.8)) may be due to edge repulsion and 

material inhomogeneities. 

 

3.3.2 Stability Results 

In this section, we perform static simulations to obtain the DMI range for the stability of 

the skyrmions. This range of DMI will be employed as a linear gradient for the skyrmion 

manipulation. 

 

 

 

Figure 3.6 Equilibrium configurations of the magnetization of the 2d CrI3 material as a function 

of DMI constant |D| at zero external field with the initial configuration being (a) Néel skyrmion, 

and (b) Bloch skyrmion. The colors refer to the z-component of magnetization (blue negative, red 

positive). 

(a) 

 

(c) 

 

(a) 

 

(a) 

 

(c) 

 

(a) 

(b) 

 

(a) 

 

(b) 

 

(b) 

 

(a) 

 

(b) 
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Magnetic skyrmions stabilization is well-known in thin-film and occurs in the absence of 

external magnetic fields by the interplay of exchange, DMI, uniaxial anisotropy and 

magnetostatic fields. It has been shown that isolated skyrmions are metastable states for a 

range of DMI given by ~0.5 Dc < D < Dc where  2
04 0.5c u sD A K M   [54]. In the thin 

film approximation, this range is mostly independent of the DMI type, bulk or interfacial. 

For the CoFeB values in Table 3.1, we obtain Dc = 3 mJ/m2, while for CrI3 we obtain Dc 

= 0.78 mJ/m2. These theoretical predictions were corroborated by the static micromagnetic 

investigation as shown in the stability ranges in Table 3.1. Fig. 3.6 shows that for 2d CrI3 

material, Néel skyrmions (Fig. 3.6(a)) are stabilized at 0.59 mJ/m2 ≤ |D| ≤ 0.78 mJ/m2, 

however below this range the configuration will turn into uniform state, and above it a multi-

domain configuration will be observed. For the Bloch skyrmion (Fig. 3.6(b)), stability is detected 

for 0.60 mJ/m2≤|D|≤ 0.77 mJ/m2. These ranges are independent of the sample geometry. The 

reason is that skyrmions are localized textures and are not affected by edge effects when 

they are much smaller than the sample and far from the edges. 

 

 3.3.3 Dynamics Results 

In this section, we performed micromagnetic simulations considering gradients of DMI 

within the range of stability of the magnetic solitons in the respective samples, as obtained 

in Section 3.3.2. We fix the minimal and maximal values of the DMI as the values at the 

edge of the sample and consider a linear gradient along the x-direction of the sample. 

The motion of Néel skyrmions under effect of iDMI gradients have been already analyzed 

in the literature with parameters like the ones considered here for CoFeB [54,125,135]. For 

this reason, we focus on the 2d material CrI3 and analyze both Bloch and Néel skyrmion 

dynamics induced by the linear gradient of bDMI and iDMI, respectively (see Figs. 3.7(a)-

(b) below). 

We start from a single layer CrI3, which reveals a ferromagnetic behavior [130,131].  For 

the chosen Ku and Ms, the Néel and Bloch skyrmions move with positive velocities in the 

x- and y-directions. Along the x-direction, it moves towards a higher DMI value, while the 

motion along the y-direction is given by the Magnus force [125]. This agrees with the 

Thiele equations for skyrmions [125,136]. The damping coefficient 𝛼𝐺 is responsible for 

the motion towards a lower energy state, corresponding to a higher DMI. Hence, in the 

simulations, we notice that a higher damping constant is associated to a higher component 

of the velocity along the linear gradient.  

We proceed to consider a CrI3 with two layers, which coupled antiferromagnetically 

[130,131] and can be modeled as a SAF [132]. In the SAF CrI3, two skyrmions of opposite 

topological charges are antiferromagnetically coupled via the interlayer exchange 

coupling. This coupling leads to a zero net Magnus force and a suppression of the skyrmion 

Hall effect [132] which results in a straight motion along the gradient direction (Figs. 
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3.7(c)-(d)). The observed behaviors agree with the Thiele formalism developed in section 

3.3.1.3 by employing the skyrmion ansatz as described in Ref. [125]. 

We conclude that the skyrmion Hall angle in 2d CrI3 depends on the number of layers, and 

it is present for an odd number of layers but vanishes for an even number of layers. 

 

 

 

Figure 3.7 Micromagnetic simulations results of the (a) Néel skyrmion trajectory under a linear 

iDMI gradient (0.59 mJ/m2 ≤ D ≤ 0.78 mJ/m2, see Table 3.1), and (b) Bloch skyrmion trajectory 

under a linear bDMI gradient (0.60 mJ/m2≤D≤ 0.77 mJ/m2 directed along the positive x-direction 

as shown in green arrow in a single CrI3 layer as a function of different damping coefficients. (c) 

– (d) Top and bottom layer of the SAF CrI3, respectively, where the straight trajectory of the 

skyrmion is also indicated. The color bar denotes the out-of-plane magnetization component mz: 

red positive, white zero, and blue negative. 

 

3.4 From Skyrmions to Hopfions 
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In this section we provide a brief introduction about hopfions, their topological nature, and 

their dynamics equations. We also present a comprehensive study using numerical methods 

for the stability, current driven, and gradient-driven dynamics of Néel-type hopfions under 

the influence of IDMI gradients in a strip like sample. 

 

3.4.1 Introduction to Hopfions 

Exotic magnetic structures are knots in continuous physical fields classified by non-zero 

Hopf index values. Low-dimensional topological soliton like textures in ferromagnetic 

(FM) and antiferromagnetic (AFM) materials, such as 1D magnetic domain walls, 2D 

magnetic vortices, and 2D magnetic skyrmions, have been extensively studied in recent 

years. When mapped to 3D physical fields, 3D topological solitons, called “hopfions”, are 

true pearls of mathematics and topology, and physics. To understand such transformation 

from 2D to 3D solitons try to imagine a point like 2D skyrmion as shown in Fig.3.8(a) that 

will become a line vortex in 3D space (Fig.3.8(b)). 

While single skyrmions can propagate freely in 2d space, hopfions can propagate in all 

three spatial directions, where this third dimension will not only open new opportunities in 

magnetic materials due to additional levels of complexity or phenomena that can only exist 

in 3D, such as chirality, but will also yield substantial challenges for the synthesis, theory, 

and characterization of such artificially designed 3D systems [137]. 

Moreover, contrary to chiral magnetic skyrmions requiring materials with strong spin-orbit 

interaction in combination with a lattice lacking inversion symmetry the materials 

requirements for the existence of magnetic hopfions are much weaker [138]. Distinct from 

2D ferromagnetic skyrmions, hopfions have a vanishing gyrovector. 

The existence of 3D topological solitons with stringlike properties was first proposed by 

Ludvig D. Faddeev [139] as a limit of the Skyrme model [140]. Hopfions have been 

observed experimentally in Ir/Co/Pt nanodisks of multilayers using X-ray magnetic 

circular dichroism in the presence of strong DMI and out-of-plane magnetic anisotropy 

[141] and in the polarization of free-space monochromatic light [142]. However, nucleation 

and stabilization dynamics of hopfions have been studied in chiral magnets [143–145] and 

chiral ferromagnets [146] with a tunable Dzyaloshinskii–Moriya interaction (DMI). In 

ferromagnetic materials, there exist two types of hopfions: Bloch-type [144,145,147] 

which can be excited in the presence of bulk DMI and Neel-type hopfions [148] which can 

be excited in the presence of interfacial DMI. 

Hopfions dynamics has been studied in different conditions including, presence of external 

field [149], interfacial magnetic anisotropy (PMA) [144,145], current driven dynamics via 

spin transfer torque (STT) and spin hall torque (SHT) [148], higher-order exchange 

interaction [138]. 

The dynamics of hopfions are so promising starting point for neuromorphic computing 

applications, where its motion under different gradients can mimic behavior of synaptic 

utilities. This may be due to several reasons: 
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i. Both entities process and transmit information. As neurons are the basic units of 

information processing in the nervous system, transmitting electrical signals 

through synaptic connections. Similarly, Hopfions can encode and process 

information through their dynamic motion and interactions with neighboring 

magnetic structures. 

ii. Hopfions and neurons exhibit dynamic behavior. Neurons can adapt their firing 

rates and synaptic strengths in response to external stimuli, enabling learning and 

memory functions. Hopfions also display dynamic motion and can respond to 

external stimuli such as magnetic fields or currents, allowing for the modulation of 

their properties and interactions. 

iii. Both Hopfions and neurons possess a level of topological stability. In the case of 

Hopfions, this stability arises from the topology of their magnetic structure, while 

neurons maintain stability through their structural integrity and membrane 

properties. 

iv. Both Hopfions and neurons operate with relatively low energy consumption. 

Neurons efficiently transmit and process information using electrochemical signals, 

while Hopfions can undergo motion with low-energy stimuli such as magnetic 

fields or currents. 

 

 

 

Figure 3.8 Transition from a (a) skyrmion in the x-y plane to a (b) hopfion in the x-y-z space by 

transforming the magnetization configuration from a localized spin texture with a circular core 

(skyrmion) to a twisted, three-dimensional structure with a central vortex-like core (hopfion). 
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3.4.2 Topology and Hopf Number 

A hopfion is a topologically nontrivial magnetic texture characterized by a swirling pattern 

of magnetization in three-dimensional space. It is characterized by a non-zero Hopf charge, 

which is a topological invariant that quantifies the winding of the magnetization field 

around a closed loop enclosing the hopfion. The mathematical description of a Hopf. 

Charge is given by, 

𝐻 =
1

(8𝜋)2
∫𝑭 ∙ 𝑨 ⅆ𝒓 (3.10) 

Where F and A are vector fields calculated from the unit vector field n by, 

𝐹𝑖 = 𝜖𝑖𝑗𝑘𝒏 ∙ (∇𝑗𝒏 × ∇𝑘𝒏) And ∇ × 𝑨 = 𝑭 (3.11) 

With 𝜖 being the Levi-Civita tensor, 𝑨 the vector potential, and n corresponds to the unit 

microspin. The Hopfion number, also known as the Hopf invariant, is directly related to 

the Hopf charge and quantifies the topological complexity of the hopfion. Fig. 3.9 shows 

that for a first-order hopfion, the hopfion number is H=1, indicating a single unit of 

topological winding. For a second order hopfion, the hopfion number is H=2, indicating a 

higher degree of topological winding. 

 

 

 

Figure 3.9 Illustration of hopfion with different Hopf number, H=1, H=2, H=3. 

 

3.4.3 Modeling and Sampling 

This section is divided into 3 subsections, where we present the sample, we are simulating, 

the magnetic properties of our sample, the Thiele’s equations governing the motion of the 

skyrmions, as well as the results.  

 

3.4.3.1 Model and Sample Properties  

H=1 

 

H=2 

 

H=3 
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We considered the ground state Néel hopfion to perform micromagnetic computations with 

the, PETASPIN solver [64,65] that numerically integrate the Landau-Lifshitz-Gilbert 

(LLG) equation given by Eq. (2.20), while the total energy density of the system is given 

by Eq. (2.14). Looking at Fig. 3.10, we considered a FeGe rectangular strip, with L = 320 

nm, W = 64 nm, and thickness tFeGe = 8 nm. We sandwiched the FeGe layer by two PMA 

layers with an anisotropy constant of Ku = 106 J/m3, which can be experimentally created 

by oxide or heavy metal layers. The thickness of each capping layer is tPMA = 2 nm. The 

FeGe magnetic parameters used in our simulations are, the iDMI = 1×10-3 J/m2, the 

exchange stiffness Aex = 1.1×10-12 J/m, the uniaxial anisotropy constant Ku = 1×103 J/m3, 

and the saturation magnetization Ms = 3×105 A/m. An external field Hext = 100 mT is 

applied along the -z direction.  

 

 

 

Figure 3.10 Illustration of the 360 nm × 64 nm rectangular strip stack composed of two capping 

layers characterized by high PMA each with thickness tPMA, sandwiching a FeGe layer with 

thickness tFeGe. On the left snapshots representing examples of the spatial distribution of the 

uniform magnetization in the external layers and a Néel hopfion state in bulk. 

 

 

3.4.3.2 Thiele’s Formalism  

Disregarding deformations, the motion of a hopfion, as a rigid body, is governed by 

Thiele’s equation, 
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𝛾

𝑀𝑠
𝑇 + 𝐺 × (𝑣 − 𝑢) − 𝐷⃗⃗ ⋅ (𝛼𝑣 − 𝛽𝑢) = 0 (3.12) 

where γ is the gyromagnetic ratio; α is the Gilbert damping; β is the STT nonadiabaticity 

[150]; v is the velocity of the hopfion; u = −μBpJ/[eMs(1+ β2)] is a vector with dimension 

of velocity proportional to the current density J, in which p is the spin polarization and e 

is the electron charge; G is the above-mentioned gyrovector; and 𝐷⃡  is the dissipation tensor 

defined as 𝐷𝑖𝑗 = ∫𝜕𝑖𝐦 ∙ 𝜕𝑗𝐦 ⅆ𝑉. T is the force on the hopfion, expressed as𝑇𝑖 =

−(𝜕 ∫ℱ ⅆ𝑉 𝜕𝑋𝑖⁄ ) − ∫(𝜕𝐦 𝜕𝑥𝑖⁄ ) ∙ (𝐦 × 𝜏) ⅆ𝑉, where ℱ is the free-energy functional, Xi 

is the center position of the hopfion, and τ represents nonconservative torques other than 

STT such as the SHT. In our model, all the material parameters are spatially homogeneous; 

therefore, the first term in T is 0. Since G = 0, the hopfions move along the applied current 

via STT with velocity, 

𝐯 =
𝛽

𝛼
𝐮 (3.13) 

Considering the thiele’s equation Eq (3.12), in the absence of applied current, and 

concentrating on the effect of iDMI gradient, then u = 0 and thus Eq. (3.12) will reduce to, 

𝛾

𝑀𝑠
𝑇 + 𝐺 × (𝑣) − 𝐷⃗⃗ ⋅ (𝛼𝑣) = 0 (3.14) 

As a fact of continuous deformation, G = 0 applies to all the hopfions, thus the hopfions 

move along the direction of iDMI gradient. The formula of v then becomes, 𝐯 = 𝛾𝑇 𝑀𝑠𝛼𝐷⁄  

with 𝑇 = (𝜕𝐸 𝜕𝐷ⅈ)(𝜕𝐷ⅈ 𝜕𝑥⁄ )⁄  with 𝐸 = −𝑐𝐷𝑔𝐷𝑋 (free energy due to DMI), and 𝐷𝑖 is the 

linear DMI gradient along x direction given as, 𝐷𝑖(𝑥) = 𝑔𝐷𝑥. The velocity become, 

𝐯 =
𝛾𝑐𝐷𝑔𝐷

𝑀𝑠𝛼𝐷
 (3.15) 

 

3.4.4 Dynamics Results 

A systematic study was performed on a Néel hopfion, first under the effect of STT, and 

later under the influence of DMI gradient. 

 

3.4.4.1 STT Driven Dynamics  

Fig. 3.11(a) below shows the trajectory during a period of 50 ns of the Néel -type hopfion 

driven by STT with J = 107 A.cm−2, p = 0.8, α = 0.1 and β = 0.2, obtained by numerically 

solving the Landau-Lifshiz-Gilbert (LLG) equation considering the adiabatic and non-

adiabatic STT terms as given in Eq. (2.25). The trajectory is almost along the x direction, 

where the hopfion change position from (x = 160, y = 32) to (x = 310, y = 32) The small 

deformation of the hopfion size may come from the discretization near the boundaries. 

According to Eq. (3.13), the velocity of the hopfion along the x direction vx seems to 

proportionally increase as the applied current density increases as shown in Fig. 3.11(b). 
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The numerical data from LLG simulations (red circles) are in good agreement with the 

analytical formula (black line). Above J = 5 × 107 A m−2, the hopfion is destroyed. 

 

 

3.4.4.2 DMI Driven Dynamics  

In this part we neglect the STT effect, and we remove the applied external field. The aim 

here is to consider only the effect of the iDMI gradient.  

As a first step we get the stability iDMI domain to be 0.95 mJ/m2 ≤ D ≤ 1.02 mJ/m2, where 

Fig. 3.12(a) shows that below this domain (i |D| = 0.94) a skyrmion like behavior is 

observed and above it (iv |D| = 1.05)  hopfion is destroyed. Considering an iDMI gradient 

enclosed within the stability domain along the +x direction, the Néel hopfion moves along 

the direction of applied gradient as expected by thiele’s formalism (section 3.4.3.2), as 

shown in Fig. 3.12(b) along the x-y plane (upper panel ) and the x-z plane (lower panel). 

Unlike the case of STT dynamics, here no deformations will appear at the boundaries. 

The velocity of the hopfion vx given by Eq. (3.15), seems to increase linearly with 

increasing DMI constant (D). The Néel hopfion seems to move with higher velocity under 

the influence of STT, and this may go back to the fact that the stability of hopfion in 

presence of DMI is limited into a narrow domain. The result may also depend on the 

considered magnetic parameters, geometry, and magnetic materials. 

 

 

(a) 

 

(a) 

 

(a) 
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(a) 
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(b) 

 

(b) 
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(b) 

Figure 3.11 (a) Trajectory of Néel hopfion driven by STT during a period of 50 ns, along the x-y plane (upper panel) and 

the x-z plane (lower panel). (b) Current density J dependence of the longitudinal velocity vx of the Néel hopfion. The red 

circles are numerical results for STT-driven motion. The solid line is theoretical prediction. 
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3.5 Conclusion 

In summary, we performed a systematic study of the effect of linear DMI gradient on 

skyrmions (Bloch and Néel types) motion in a CoFeB thin-film and a 2d CrI3 through 

micromagnetic simulations and Thiele’s equation. Our results showed that stabilization of 

these magnetic configurations can take place for specific intervals of DMI (depending on 

the sample geometry) at zero external field. Under the effect of a linear iDMI gradient, 

skyrmions move with a damping-dependent trajectory in a single-layer CoFeB and 2d CrI3, 

while a zero skyrmion Hall angle motion was observed in the SAF CoFeB and CrI3. We 

observed that in 2d materials the DMI domains required for the self-generated dynamics 

of skyrmions are much smaller than that in case of thin-film material. This suggests 

alternative means for low-power manipulation of magnetic solitons in 2d materials. 

For Néel hopfion, we studied the dynamics under the effect of STT and iDMI gradient, in 

a system composed of FeGe material. We realized that DMI will not provide a wide 

stability range thus causing the dynamics to be very slow compared to the case of STT 

driven dynamics.  

Figure 3.12 (a) Micromagnetic simulations results of the equilibrium configurations of the magnetization as a function of |D|. (b) 

Trajectory of Néel hopfion driven by DMI gradient for 50 ns, along the x-y plane (upper panel) and the x-z plane (lower panel). 

(c) Velocity vx of the Néel hopfion under the influence of DMI constant (D (J/m2)).Numerical results (red circles), coincides with 

theoretical predictions (black line). 
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The future of computer memory is in a vortex 

 

Michael Byrne 

 

 

 find the magnetic vortex to be a mesmerizing phenomenon, a 

whirlwind of invisible forces sculpting the fabric of space with its silent 

dance.” 

  

Chapter 4
Magnetic 
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The fourth chapter is dedicated for exploring magnetic vortices. Section 4.1 delves into the 

key concepts of the magnetic vortices and shows its different configurations. Section 4.2 is 

divided into three subsections which focus on the manipulation and dynamics of magnetic 

vortices. Section 4.3 provides a brief conclusion. 

 

4.1 Introduction to Magnetic Vortices 

Vortices are a usual phenomenon in Nature: everyone who has seen a tornado, or the water 

flow pattern in the bathtub drain, may have an idea of what a vortex is. These are examples 

of a vortex in a fluid (air or water), and they have in common a characteristic flow, which 

forms a “curling” pattern in the velocities field. Vortices can appear as a particular curling 

pattern in other continuous media (e.g., the gravitational field in the case of a spiral galaxy, 

the electromagnetic field in the case of an optical vortex, the density field in a superfluid 

like Helium, etc.) [151]. 

Magnetic vortex is a typical ground state of nanoscale soft magnetic disk [152], which is 

characterized by its polarity p and chirality c. The former one refers to the direction of the 

vortex core, being either upward (p=+1) or downward (p=-1). The latter is linked to the 

rotation of the in-plane magnetization around the vortex core, which can be clockwise (c=-

1) or counterclockwise (c=+1). It has a non-integer Skyrmion number S (0.5 < |S| < 1) due 

to both the vortex core polarity and the magnetization tilting induced by the IDMI boundary 

conditions. To distinguish different types of vortices, we call the vortex with clockwise (or 

counterclockwise) chirality circular vortex (Fig. 4.1(a)-(b)) or radial (Fig. 4.1(c)) if the 

chirality is outwards (or inwards) [128,153]. The magnetic radial vortex has become a 

research hotspot due to its better thermal stability and lower driven current density. The 

behavior of radial vortex has been extensively studied under the influence of high iDMI.  

Although, the structure of magnetic vortex core has been predicted long before in theory, 

the experimental observation only appears recently [154,155]. One experiment among the 

first observations of magnetic vortex core is just done in the circular dots of Permalloy, 

(Shinjo, 2000) which was prepared with the help of nanotechnology. They use magnetic 

force microscopy (MFM) to detect the core of the magnetic vortex. As the core has 

perpendicular magnetization, while the magnetization vector out of the core parallel to the 

plane, thus, the force between the cantilever tip and the surface of the core is different from 

the force between the cantilever tip and the surface of out-of-core. 

Later, different approaches were followed to manipulate and stabilize magnetic vortices. 

This includes magnetic anisotropy [153], magnetic field gradients [156], spin transfer 

torques and DMI interactions [128]. 

Due to its polarity feature, magnetic vortices are promising candidates in memory and 

sensors devices [157,158]. Moreover, it was possible to address various promising medical 

applications based on magnetic vortex [159,160]. Synchronization between multiple 

vortex-based nano-oscillators showed impressive outcomes for the future of non-

conventional computing. One interesting application in this regard is the magnetic 

anisotropy-controlled vortex nano-oscillator designed for neuromorphic computing [161]. 
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In this study they performed micromagnetic simulations to synchronize six vortex nano-

oscillators, wherein the synchronization state can be modulated by the spin-polarized 

current and magnetic anisotropy. They tried to explore the ability of coupled vortex nano-

oscillators to work as a model system for neuromorphic computing. 

 

 

 

Figure 4.1 Spatial distribution of magnetization for different types of vortices with positive (top) 

and negative (bottom) polarities. (a) Counterclockwise (CCW) circular vortex. (b) Clockwise 

(CW) circular vortex. (c) Radial vortex. A color scale linked to the out-of-plane component of the 

magnetization is also shown (red positive, blue negative). 

 

4.2 Manipulation of Magnetic Vortices Under DMI 

Gradient 

In this section, we present a comprehensive study using numerical and analytical methods 

of the stability and gradient-driven dynamics of radial and circular vortices under the 

influence of DMI gradients in different geometries (circular and rectangular samples) and 

two materials (thin film CoFeB [128] and 2d CrI3 [129]). A theoretical analysis was carried 

out via systematic micromagnetic simulations and corroborated by the Thiele’s formalism. 

 

4.2.1 Modelling and Sampling 

As in Chapter 3, the micromagnetic computations were performed with a state-of-the-art 

micromagnetic solver, PETASPIN [63]. 
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For vortices, we only consider the effect of iDMI. In vortices-hosting samples, we consider 

circular geometry with diameter from d = 100 nm to 500 nm as well as a strip with 

dimensions 1500 nm × 250 nm. The thickness was set to tFM = 1 nm. The discretization 

cell used in both geometries is 5 nm x 5 nm x 1 nm. The same results are obtained with a 

thickness of 0.31 nm and a discretization cell 1 nm x 1 nm x 0.31 nm. We also simulated a 

SAF for each of the two materials (CoFeB, CrI3), composed of two ferromagnets separated 

by a non-magnetic layer with thickness 2 nm for CoFeB and 0.62 nm for CrI3. 

 

Parameters CoFeB CrI3 

Type Radial Vortex Circular Vortex Radial Vortex Circular Vortex 

Ms(kA/m) 1000 1000 68.781 68.781 

A(pJ/m) 20 20 1.21 1.21 

Ku(MJ/m3) 0.5 0.5 0.0* 0.0* 

|D|(mJ/m2) [1.67, 2.0] 

(rectangular) 

[1.7, 2.3] 

(circular) 

[0, 0.8] 

(rectangular) 

[0, 1.1] 

(circular) 

[0.045, 0.070] 

(rectangular) 

[0.040, 0.090] 

(circular) 

No DMI range 

(rectangular & 

circular 

geometries) 
 

Table 4.1 Micromagnetic parameters of CoFeB [128] and CrI3 used for simulating radial and 

circular vortices [129]. The value of the anisotropy of CrI3 can be tuned as shown in Fig. 1(c) of 

Ref. [162]. 

 

4.2.2 Stability Results 

In this section, we perform static simulations to obtain the DMI range for the stability of 

the radial and circular vortices. This range of DMI will be employed as a linear gradient 

for the vortex manipulation. 

 

4.2.2.1 Radial Vortex 

Magnetic vortices are non-local magnetic textures and, thus, are highly influenced by the 

sample geometry, boundary conditions, and their chirality (radial or circular). We observed 

in micromagnetic simulations that radial vortices are stabilized in both materials within a 

DMI range which depends on the geometry. In particular, the radial vortex is stabilized for 

circular dot diameters larger than 250 nm, as reported in the literature [128]. At a 500 nm 

diameter, the radial vortex is stable for 1.5 mJ/m2 < |D| < 2.1 mJ/m2. 

Fig.4.2 illustrates the stability of radial vortices as a function of D in the 1500 nm × 250 

nm rectangular sample of CoFeB (Figs. 4.2(a)-(f)) and CrI3 (Figs. 4.2(g)-(l)) i.e in the 

ranges 1.67 mJ/m2< |D| <2.0 mJ/m2 and 0.049 mJ/m2< |D| <0.070 mJ/m2 respectively. 

We observe that the interplay of exchange, anisotropy and iDMI play an important role in 

the stability of vortices, that change according to the considered geometry (circular or 

rectangular). For the upper boundary of radial vortices, we find the transition to the helical 
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state, see Figs. 4.2(f). Moreover, we notice that the range of iDMI for the radial vortex 

stability in CrI3 is around 30 times smaller than in the CoFeB. 

 

4.2.2.2 Circular Vortex 

We noticed that circular vortices are stabilized only in the CoFeB thin film within a DMI 

range in agreement with the literature [128]. According to (Fig 4.2(a)-(b)), we notice that 

this range is 0.0 mJ/m2< |D| <0.8 mJ/m2. No stabilization of circular vortices was detected 

in CrI3 based on our micromagnetic parameters.  

 

 

 

Figure 4.2 Micromagnetic simulations results of the equilibrium configurations of the 

magnetization as a function of |D| in (a) – (f) CoFeB and (g)-(l) CrI3 rectangular strips. 

 

 4.2.3 Dynamics Results 

In this section, we performed micromagnetic simulations considering gradients of iDMI 

within the range of stability of the magnetic vortices in the respective samples. We fix the 

minimal and maximal values of the iDMI as the values at the edge of the sample and 

consider a linear gradient along the x-direction of the sample. 
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4.2.3.1 Radial Vortex 

Fig 4.3 (a)-(b) show the dynamics induced by the iDMI gradient on a single layer 1500 nm 

× 250 nm CoFeB and CrI3 rectangular strips, respectively. In both materials, the vortex 

core exhibits a translational motion under the influence of the iDMI gradient. We notice 

that it moves towards the region of higher |D|, with a significant Hall angle. Similarly, to 

skyrmions, we notice that velocity depends on the damping coefficient, with smaller y-

component for higher damping values. However, we observe a major difference: while a 

skyrmion moves mainly in the positive y-direction, a radial vortex tends to move mainly 

in the positive x-direction. This is ascribed to: (i) the topological charge of vortices is half 

of the skyrmion, and (ii) vortices are more influenced by sample boundary effects than 

skyrmions, since they are non-local textures. 

 

 

 

Figure 4.3 Micromagnetic simulations results of radial vortex trajectories under a linear iDMI 

gradient. In (a) and (b), a single 1500 nm × 250 nm FM rectangular sample under the effect of 

different damping coefficients in CoFeB and CrI3, respectively, (c) and (d) in top layers and (e) 

and (f) in the bottom layers of the SAF composed of CoFeB and CrI3, respectively. 
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In a SAF (either CoFeB or CrI3 with an even number of layers), the radial vortex moves 

with a zero skyrmion Hall angle (Fig. 4.3(c)-(f)). However, the radial vortex travels faster 

in the case of CrI3 (compare Figs. 4.3(c), (e) for CoFeB with Figs. 4.3(d), (f) for CrI3 

obtained within the same 250ns time interval). The same behavior is observed in a circular 

sample. 

According to Thiele equations given in Chapter 3 as Eqs. (3.6-3.9), it is necessary to 

obtain the full magnetic configuration of the magnetic vortex. Previous studies have 

considered numerical approaches to compare to the micromagnetic simulations [134,162]. 

For simplicity, we assumed a radially symmetric configuration. The radial symmetry 

implies, (𝐷⃡ )𝑥𝑥 ≈ (𝐷⃡ )
𝑦𝑦

≈ 𝐷, (𝐷⃡ )𝑥𝑦 ≈ (𝐷⃡ )
𝑦𝑥

≈ 0. 

A qualitative description of the vortex motion is shown in Fig. 4.4, which agrees with the 

simulation results of Fig. 4.3(a). We considered both variations of the damping, and the 

DMI gradient as shown in Figs. 4.4(a)-(b) respectively. 

Moreover, up to the lowest non-zero order, we can write the free energy of the vortex, due 

to the DMI gradient and the border repulsion, as 2

D DE c g X kY   , where X, Y are the 

coordinates of the center of the vortex along the x and y directions. We also have that  

 2

D z zc d x m m       m m  and   2 21
,

2
,Y boundd xk x y Y   m h  are constants, assuming that 

the magnetization m(x) is invariant of the position (we do not consider strong deformations 

of the texture as it moves) and hbound(x,y,Y) represents the effective magnetic field due to 

boundary effects. Moreover, we assumed as the linear gradient of the iDMI parameter

( ) DD x g x . The Thiele equations of motion are, 
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 
 

 
 (4.2) 

We observe that, due to the DMI gradient, the vortex is pushed towards the bottom edge, 

while the dissipative term pushes it along the gradient. Additionally, edge repulsion tends 

to accelerate the vortex along the x-direction as it approaches the edge while forcing the 

vortex back to the center of the strip due to a small dissipative contribution. 

As a remark, we notice that lower anisotropy tends to lower the velocity component along 

x and increase the component along y, while a lower iDMI gradient tends to decrease the 

velocity along x and along y. 

 



68 
 

 

 

Figure 4.4 Motion of the radial vortex core in an iDMI gradient as obtained from the Thiele’s 

equation. We considered here the Thiele description given by Eqs. (3.6-3.7), for rescaled units for 

a qualitative description to be compared with the micromagnetic simulations in Fig. 4.3(a) away 

from the border. In (a)-(b), we show the motion for different values of rescaled Gilbert damping 

and iDMI gradient, respectively. We considered αG and cD as renormalized values for numerical 

simulations for a qualitative comparison. 

 

4.2.3.2 Circular Vortex 

We performed a similar analysis to observe the effect of the iDMI gradient on circular 

vortices, remarking that the circular vortex has not been found stable for the parameters of 

the 2d CrI3 (Table 4.1). According to our observations, the circular vortex undergoes an 

expulsion dynamic under the influence of the linear iDMI gradient (Fig. 4.5). Since the 

circular vortex is not a stable magnetization configuration under any finite value of D, due 

to the damping, it decays to the uniform in-plane state [125]. This mechanism is interesting 

for application of spintronic devices as diodes [163,164]. Recently, it has been shown that 

the vortex core expulsion can be a mechanism driving an enhancement of sensitivity up to 

80kV/W [104,165]. Thus, we envision that the recent discovery of voltage controlled DMI 

can drive additional enhancement of the performance of spintronic diodes by exploiting 

this behavior. 
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Figure 4.5 Micromagnetic simulations results of the time evolution of the spatial distribution of 

the magnetization for a circular vortex under the influence of the linear iDMI gradient in a CoFeB 

circular sample. 

 

4.2.4 Experimental Generation of DMI Gradients 

Based on micromagnetic simulations, we were able to explore the ranges of magnetic 

parameters under which DMI gradients can influence the dynamics of magnetic skyrmions, 

hopfions (Chapter 3), and magnetic vortices. For instance, varying DMI gradient along 

+x-direction revealed damping-dependent trajectories in single thin films, and a zero 

skyrmion Hall angle motion in case of SAF. On the other hand, experimental induction of 

DMI gradients offers validation and refinement of theoretical models by testing their 

predictions against real-world scenarios. While direct experimental studies on the DMI 

gradients may not be as prevalent as theoretical or simulation-based investigations, there 

exist some topics and methods for inducing spatial variations in the DMI strength. To create 

DMI gradients one can consider different approaches. 

The first approach may focus on engineering thin films of Pt with controlled thickness 

gradients (in Pt/CoFeB heterostructures), this comes after observation of a Pt layer 

thickness dependence on the induced iDMI in ultra-thin Pt/CoFeB films [166]. Thus, 

sputtering, or pulsed laser deposition (PLD) can be used to design thin film heterostructures 

consisting of alternating layers of magnetic materials (e.g., CoFeB) and heavy-metal layers 
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(e.g., Pt). Varying the thickness of the heavy-metal layer (Pt) in a controlled manner across 

the sample can lead to the creation of DMI gradients. 

In addition, several experimental setups showed the effect of mechanical strain on the 

magnetic properties of the materials, where it breaks inversion symmetry, providing access 

into tunable DMI [167]. By considering a thin film system with strong spin-orbit coupling 

deposited on top of a piezoelectric substrate, and applying an electric field, a controlled 

mechanical strain is generated.  

To reach a DMI gradient resulting from a strain gradient,  photolithography and etching, 

can be used to pattern the surface of a substrate with features of varying heights or shapes. 

The thin film placed on such a substrate will experience different levels of mechanical 

strain depending on its position relative to the substrate features. 

Moreover, one can still think about different approaches including electric field control, 

spin-orbit torque gradients, and laser irradiation. These may have significant implications 

for spintronics and magnetic memory applications with enhanced functionality and 

performance. 

 

4.3 Conclusion 

Under the effect of a linear iDMI gradient, radial vortex moves with a damping-dependent 

trajectory in a single-layer CoFeB and 2d CrI3, while a zero skyrmion Hall angle motion 

was observed in the SAF CoFeB and CrI3 for both types of vortices. 

On the contrary, the circular vortex was expelled from the sample since it is not stable for 

any finite iDMI, and we suggested that these dynamics can be exploited in voltage 

controlled DMI spintronic diodes to increase performance. Our results suggest alternative 

means for low-power manipulation of magnetic solitons in FM and SAF, and, particularly, 

in 2d materials. Specifically, future developments on the control of magnetic parameters 

by strain, geometry design, temperature gradients, and applied voltages and the 

implementation of 2d materials combined with soliton manipulation can allow for a new 

generation of highly efficient sensors and diodes for computing and energy harvesting. 
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Controlling magnetic spin opens a realm of possibilities 

for creating faster, more efficient devices

 

Albert Fert 

 

pintronics holds the promise of major breakthroughs in the 

performance of electronic devices and has the potential to 

revolutionize the field of electronics, creating a new generation of faster, 

smaller, and more energy-efficient devices.". 

– Stuart S. P. Parkin”  
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This chapter concerns magnetic tunnel junctions (MTJ). First the chapter starts with an 

introductory section 5.1, followed section 5.2 where the important MTJ parameters are 

listed and discussed as three subsections. Four different switching approaches are 

presented in section 5.3. Section 5.4 will present three different MTJ-based applications. 

Section 5.4 is a conclusion. 

 

5.1 Introduction to Magnetic Tunnel Junctions 

Advancements in the field of fabrication technology have sustained the downscaling of 

CMOS technology over the past five decades due to which performance of the integrated 

circuits (ICs) has consistently improved following Moore’s law. However, CMOS-based 

circuits suffer from various bottlenecks including scalability and power dissipation. For 

this reason, beyond-CMOS approaches have been a research concern to find alternatives 

for the future [168–170]. 

As the spin property of an electron is increasingly attracting attention, research was 

directed toward the exploration of spin transport electronics also known as spintronics. 

Spintronics emerged from discoveries in the 1980s concerning spin-dependent electron 

transport phenomena in solid-state devices. This includes the observation of spin-polarized 

electron injection from a ferromagnetic metal to a normal metal by Johnson and Silsbee 

(1985) [171] and the discovery of giant magnetoresistance independently by Albert Fert et 

al. [172] and Peter Grünberg et al. (1988) [173]. Spintronics are considered as one of the 

most promising future technologies, in the impending post CMOS era [174–177]. The class 

of spintronics is a promising slope [4,22,178–180], since they have a low energy 

dissipation, a high speed, and a reduced size. 

The most common spintronic device used is the magnetic tunnel junction (MTJ) [181], 

characterized by its scalability, low power consumption and potentially infinite endurance. 

MTJs are magnetic heterostructures with three main functional components: a free 

ferromagnetic layer (FL), whose magnetization can rotate freely under the influence of an 

external magnetic field, an insulating tunnel barrier separating (FL) from next layer, and it 

is usually a crystalline MgO layer,  and a fixed (pinned) ferromagnetic layer (PL) with a 

fixed magnetization direction. Each of these magnetic layers can be viewed as a single 

magnetic moment, treated with the Macrospin approximation, and orient in a particular 

direction.  

In industry, the MTJ fabrication techniques typically involve thin film deposition, 

lithography, and material characterization methods. Most MTJs are designed in such a way 

as to have two stable magnetic orientations, usually along the same axis but in opposite 

directions. This can be achieved by patterning the stack into something such as an elliptical 

nanopillar whose shape creates two energy minima for the magnetic moments along the 

long axis of the ellipse. Magnetic anisotropy (MA) is an inherent property of the MTJ, 

where we can distinguish between in-plane magnetic anisotropy (IPA), and perpendicular 

magnetic anisotropy (PMA), depending on the direction of the easy axis. These two types 

of MA result in two different forms of MTJs, in-plane MTJ (iMTJ) and perpendicular MTJ 
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(pMTJ). Based on Figs. 5.1(a)-(b), when the magnetic orientation of the FL and PL are 

parallel, then the resistance offered by the device for the flow of read current is less, and it 

is denoted by parallel resistance (RP). Whereas, if the magnetic orientation of the FL is 

opposite to that of the RL, the device offers more resistance to the flow of read current, and 

therefore it is in the high resistance state and denoted by antiparallel resistance (RAP). Thus, 

MTJs can be used as storage elements, with its two orientations serving as ‘0’ and ‘1’ in 

spin-transfer torque magnetic random-access memory (STT-MRAM). Such type of 

memories offers a significantly smaller power consumption, as well as improved scalability 

and speed compared to current memories in the market [182]. Switching between these two 

states requires overcoming an energy barrier denoted by Eb (Fig. 5.1(c)). 

 

 

 

Figure 5.1 (a), (b) Front view of MTJ switching from P state to AP state, and vice versa for iMTJ 

and pMTJ, respectively. (c) An energy barrier Eb separates P and AP states of pMTJ, where the 

barrier height decides the stability of stable states of pMTJ. 

 

5.2 MTJ Parameters 

(a) 

 

(b) 

 

a) 

 

(a) 

 

(b) 

 

a) 

(b) 

 

(c) 

 

b) 

 

(b) 

 

(c) 

 

b) 

(c) 

 

 

 

 

 

 

(c) 

 

 

 

 

 



74 
 

To serve as practical computer memory, a device needs to have two core properties: 

readability, being able to read off the current state of the device, and writability, being able 

to flip the current state of the device. These necessary properties for an MTJ to function as 

magnetic memory are facilitated by two quantum mechanical effects present in MTJs: 

tunneling magnetoresistance and spin-transfer torque. Tunneling magnetoresistance causes 

the two magnetic states to have different electrical resistances, allowing for a simple 

method to measure the current state of the MTJ. 

 

5.2.1 Tunneling Magnetoresistance 
Tunnel magnetoresistance (TMR) is a quantum mechanical phenomenon that occurs in a 

magnetic tunnel junction (MTJ). TMR arises from the spin-dependent tunneling of 

electrons across the insulating barrier between two ferromagnetic layers in an MTJ. The 

tunneling current through the barrier depends on the alignment of electron spins in the two 

ferromagnetic layers. When the magnetizations of the two ferromagnetic layers are parallel, 

electrons with parallel spins have a higher probability of tunneling through the barrier 

compared to electrons with antiparallel spins. As a result, the electrical resistance of the 

MTJ is lower in the parallel configuration. 

This effect was originally discovered in 1975 by Michel Jullière [183] (University of 

Rennes, France) in Fe/Ge-O/Co-junctions at 4.2 K, but the relative change of resistance 

was around 14%, and did not attract much attention. In 2001 Butler and Mathon 

independently showed that using iron as the ferromagnet and MgO as the insulator, the 

tunnel magnetoresistance can reach several thousand percent [184,185]. In this regard, the 

success of the MTJ depends on the selection of material combinations with high TMR ratio 

(See Fig. 5.2). As shown in Fig. 5.2 the highest TMR ratio is observed in a 

CoFeB/MgO/CoFeB structure. Significant growth was observed in the TMR ratio in case 

of MgO-based MTJ (red circles) compared to AlOx (blue squares). 
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Figure 5 2 TMR ratio plotted at room temperature for various MTJ structures developed using 

both AlOx and MgO barrier with a different FL and PL. Significant growth can be observed in the 

TMR ratio of MgO-based MTJ (red circles) compared to AlOx (blue squares) during the year 

2001 to 2008 [186]. 

 

Based on Fermi’s Golden Rule, Julliere’s model of tunneling magnetoresistance (TMR) 

states the conductance of each magnetic configuration (GP & GAP ) is proportional to the 

density of states as follows: 

GP ∝ ρ1↑ρ2↑ + ρ1↓ρ2↓ (5.1) 

GAP ∝ ρ1↑ρ2↓ + ρ1↓ρ2↑ (5.2) 

here ρ1↑ and ρ1↓ (ρ2↑ and ρ2↓) are the density of states at the Fermi energy of the majority 

and minority spins of the first (second) ferromagnetic layer. This can be viewed as a two 

current model, one for each spin state, depicted by Fig. 5.3. In this model, the current 

whose spin is the majority spin of both ferromagnetic layers will dominate over currents 

of minority spins or mixed majority and minor spins. This results in a lower resistance P 

state (because current can flow more easily) and higher resistance AP state. Now, if one 

defines spin polarization Pi for the i-th ferromagnetic layer as the net spin for electronic 

states at the Fermi surface: 

Pi = ρi↑ − ρi↓/ρi↑ + ρi↓ (5.3) 

TMR is quantified by the TMR ratio, which is defined as the percentage change in 

resistance between the parallel and antiparallel configurations and can be calculated in 

terms of the spin polarization: 
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𝑇𝑀𝑅 ≡
𝑅𝐴𝑃−𝑅𝑃

𝑅𝑃
=

𝐺𝑃−𝐺𝐴𝑃

𝐺𝐴𝑃
=

2𝑃1𝑃2

1+𝑃1𝑃2
 (5.4) 

where Rap is the electrical resistance in the anti-parallel state, whereas Rp is the resistance 

in the parallel state. 

 

 

 

Figure 5.3 Band diagrams for up and down spins when MTJ is in (a) parallel configuration and in 

(b) anti-parallel configuration, to illustrate effect of tunneling magnetoresistance. 

 

5.2.2 Switching Current Ic 

The magnetization of the ferromagnetic layer is switched if the torque is large enough to 

overcome the energy barriers in the ferromagnetic layer. The rate of spin momentum 

transfer and the torque exerted are proportional to the rate of electron flow or the current 

and decide the switching time. The current needed to achieve a specific switching time is 

the critical current, IC. This electric parameter is an important magnitude to switch the MTJ 

resistance. In addition, it is heavily related to the write pulse width, or switching time, 

which is defined as the length of time that the switching current is applied to the MTJ. 

Reducing the write pulse width will increase the critical switching current rapidly. The 

critical switching current is the whole-time range, from the long-time thermal reversal 

region to the short-time dynamic region, can be modeled by the stochastic Landau-Lifshitz-

Gilbert dynamic equation with a spin-torque term. 

𝐼𝑐 = 𝐼𝑐0 {1 −
𝑘𝐵𝑇

𝐸𝑏
ln (

𝜏

𝜏0
)} (5.5) 

Here, Ic0 is the critical switching current at 0K, 𝑘𝐵 is the Boltzmann constant, T is the 

temperature, Eb is the barrier height, τ is the switching time, and τ0 is the inverse of the 

attempt frequency. 

(a)          (b) 

 

(a) 

 

(a)          (b) 

 

(a) 
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5.2.3 Thermal Stability 

The thermal stability of MTJs is a critical property that determines their reliability and 

performance under different temperature conditions. It is influenced by different factors, 

including energy barrier Eb, magnetic barrier, magnetic anisotropy (MA), exchange 

coupling, temperature, and device design.  

If the magnetization is switched via uniform rotation, the energy barrier is given by the 

anisotropy energy Eb = KuV, where Ku is the anisotropy energy density and V is the MTJ 

cell volume. The thermal stability factor is then given by, 

∆=
𝐾𝑢𝑉

𝑘𝐵𝑇
=

𝐻𝑘𝑀𝑠𝑉

2𝑘𝐵𝑇
 (5.6) 

where Ms is the saturation magnetization and Hk is the anisotropy field Hk = 2Ku/Ms. 

 

 

Figure 5.4 Variation of thermal stability (∆) for an MTJ for three different thicknesses of MgO 

barrier, (a) versus temperature (K), magnetic anisotropy (J/m3),and MTJ size (m3). 

 

In Fig 5.4 we consider a circular MTJ device composed of CoFeB/MgO/CoFeB, with 

diameter 1 nm, and considering Ms = 106 A/m, T = 300 K, and anisotropy K = 105 J/m3. 

Fig. 5.4(a) shows that for high temperatures, thermal fluctuations become more significant, 

leading to a reduction in the stability of the magnetic configuration. As the MgO barrier 

thickness increases, the thermal stability decreases. This is evident from the fact that the 

curves for thicker MgO barriers exhibit lower thermal stability compared to thinner 

barriers. Fig. 5.4(b), proves that increasing the magnetic anisotropy of a material 

effectively strengthens the resistance of the material to thermal fluctuations, leading to 

higher thermal stability. According to Fig. 5.4(c),  larger MTJ devices tend to have higher 

thermal stability because they possess larger effective energy barriers, lower thermal 

energy densities, reduced damping, and potentially enhanced magnetic anisotropy. This 
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increased stability is advantageous for applications requiring reliable and robust magnetic 

behavior, such as magnetic memory devices and spintronic devices. 

 

5.3 MTJ Switching Approaches 

As we discussed that MTJ can exhibit two resistance states Rp and RAP based on TMR 

effect, it becomes important to know the methods by which the novel device can be 

switched between the states. There exist a few methods available, where some are 

discussed below, to achieve the transition between the two states, each having its own 

advantages and disadvantages. 

 

5.3.1 Field Induced Magnetic Switching (FIMS) 

FIMS mechanism was employed in the first-generation iMTJs developed using an 

aluminum oxide-based insulating barrier [187]. In FIMS, the magnetization of the FL is 

switched by an externally induced magnetic field H produced by the current-carrying 

conductors placed close to the MTJ device.  

 

 

 

Figure 5.5 Illustration to understand the FIMS switching mechanism in iMTJ, situated between 

DL and BL, respectively. 

 

As illustrated in Fig. 5.5 MTJ is placed in between the two orthogonal current lines called 

digit line (DL) and bit line (BL). Bit line current (Ib) with the assistance of digit line current 

(Id) is used to change the magnetic orientation of MTJ [188]. The current polarity of Ib 
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decides the state of the MTJ (P or AP). Based on this mechanism, Freescale launched the 

first commercial 4-Mbit MRAM-MR2A16A in 2006 [186]. However, this method has 

several disadvantages, such as FIMS occupies a large area per cell and refrains from 

achieving the high density. FIMS mechanism needs a large current (>10 mA), which 

increases the total power consumption. In addition to that, as the separation between the 

adjacent cells reduces, magnetic field interference is induced between the cells which 

causes write error. MTJ situated close to the selected MTJ will be influenced by the external 

magnetic field generated by BL and DL. This tends to change the logic stored in the 

adjacent unselected MTJ. These issues hindered its commercialization. 

 

5.3.2 Thermally Assisted Switching 

To address the issues faced by FIMS, thermally assisted switching (TAS) method was 

proposed [189]. As illustrated in Fig. 5.6 two extra anti-FM layers are added to the 

conventional MTJ, one AF1 above the free layer and the other AF2 below the reference 

layer, with AF1 having a higher blocking temperature than AF2. A temporary joule heat is 

produced by a pulse of low current Ih through the selected MTJ that heats the magnetic 

layers above their magnetic ordering temperature to reduce greatly the required switching 

field and then a magnetic field H, produced by magnetization current is applied to write it. 

This method of writing mechanism requires less power and provides higher speed. 

However, the mandatory heating and cooling processes lower the operation speed, which 

makes TAS approach expensive in the high-speed logic applications. 

 

 

 

Figure 5.6 Illustration of TAS switching mechanism in pMTJ, which is present between two 

antiferromagnetic layers named AF1 and AF2. 
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5.3.3 Spin Transfer Torque (STT) Switching 

Another switching methodology is based on STT [190], which uses only one low current 

going through the MTJ to switch its state. John Slonczewski at IBM first discovered this 

impact in 1996. STT switching is predicted as the most effective writing approach for 

MRAM and magnetic logic application till date [182,191].  

 

 

 

Figure 5.7 STT switching mechanism of an MTJ demonstrates two different states P and AP. 

 

STT switching approach demonstrates two different states of MTJ. The state of the MTJ 

depends on the direction of current flow between the free and fixed layer. Writing current 

flowing from free layer to the fixed layer will store the logic “0” in the MTJ with the storage 

layer spin magnetization direction parallel to the pinned layer, whereas when current flows 

from the fixed layer to free layer, it will store the logic “1” in the MTJ with the storage 

layer spin magnetization direction antiparallel to that of the pinned layer resulting in high 

resistance of the MTJ. To change the resistance state or logic-in MTJ, the writing current 

flowing through MTJ must be greater than the critical current density (Jc0). STT switching  

presented in Fig.5.7 shows that the behavior can be categorized into two main regions: 

1. Precessional region (IP->AP > IC0) 

2. Thermal activation region (IP->AP < IC0). 

In the precessional region, MTJ experiences rapid precessional switching. In the thermal 

activation region, although the current is less than the critical value, switching can occur 

with a long input current pulse due to thermal activation. While STT approach offers 

significant advantages in terms of read energy and speed, a significant incubation delay 

due to the pre-switching oscillation incurs high switching energy. 
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5.3.4 Spin Hall Effect (SHE) Switching 

Spin Hall effect (SHE) is another way to switch the magnetization of the free layer by an 

in-plane injecting current [192]. A three-terminal magnetic device based on SHE has been 

proposed, where a heavy metal strip (e.g., Та, Pt) with a large spin-orbit coupling parameter 

is placed below the free layer. When a current passes through the heavy metal, electrons 

with different spin directions are scattered in opposite directions. The spin-orbit coupling 

converts the charge current into perpendicular spin current, generating a torque called spin- 

orbit torque (SOT, or spin Hall torque) to assist magnetization reversal. The orientation of 

the free layer is controlled by the direction of the injecting current. 

 

5.4 MTJ Based Devices 

Based on the appealing features of MTJ, much research effort has been devoted to applying 

it in design of memories and specific logic functions. This section will briefly review some 

typical designs of MTJ based circuits. 

 

5.4.1 Magnetoresistive Random Access Memory 

Magnetic Tunnel Junctions (MTJs) have garnered significant attention in the development 

of Magnetoresistive Random Access Memory (MRAM) [186]. The architecture of MRAM 

consists of several MTJs, where each MTJ is connected to the crossing points of two 

perpendicular arrays of parallel conducting rows and columns. To successfully program 

the memory cell, current pulses are sent through one line of each array and the MTJ at the 

crossing point of these two orthogonal lines can be switched with sufficient magnetic field 

(for FIMS) or current density (for STT). For reading operation, the resistance of the device 

between the two selected crossing lines can be sensed out, which represents the information 

stored in the MTJ. 
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Figure 5.8 Comparison of memory cell architecture between (a) conventional field switching 

MRAM, and (b) spin transfer torque MRAM. 

 

The ability of a spin-polarized current to switch the orientation of the magnetic moment, 

and to excite it into microwave precession, by the torque exerted through the transfer of 

spin angular momentum from the incident conduction electrons, have catalyzed the new 

generation of MRAMs, particularly spin-torque magnetic random-access memory (ST-

MRAM) and possibly spin-torque excited, nanoscale microwave oscillators. Much 

progress has been made on the MTJ parametric level including thermal stability, resistance 

area product (RA), and magneto-resistance ratio (MR) [191]. A study carried by Huai et 

al. illustrated the transformation from conventional MRAMs to STT based MRAM (Fig. 

5.8(a)-(b)) and yielded reliable reversal behavior for pulse widths as short as 100 psec for 

an energy pulse of less than 0.2 pJ [182]. 

 

5.4.2 MTJ Based Spin Logic 

Traditional transistor-based semiconductor logic uses charge for encoding binary 

information as 0 and 1, which means logic level switches depend on the changes of charge 

magnitudes. As a result, drastic power consumption limits future development in this 

domain. The arrival of the up and down spins of electrons, MTJ-based logic provides 

numerous advantages, including nonvolatility, high speed, and low power consumption 

[181]. 
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Figure 5.9 Full schematic of spin-MTJ-based non-volatile flip-flop. 

 

Generally, MTJ-based logic design follows two approaches: First, one or more MTJs are 

used to realize logic functions individually, such as a single device or a flip-flop register 

as illustrated in Fig. 5.9 second, a range of MTJs constitutes a two-dimensional memory 

array, for example, the field-programmable gate arrays (FPGAs). 

 

5.4.3 MTJ Based Neuromorphic Computing 

Neuromorphic computing systems inspired by the human brain can benefit from MTJs as 

building blocks for memory and computation. MTJs with multilevel resistance states can 

emulate the analog behavior of biological synapses, enabling efficient and parallel 

processing of neural signals.  

Stochastic synapses in biological neural networks exhibit randomness in their response to 

input signals [11], similarly a stochastic behavior is observed in MTJs during 

magnetization reversal. This stochasticity arises from various sources, such as thermal 

fluctuations, spin-transfer torque, and voltage-induced effects [193]. Thus, a recognized 

number of research was done in this context. This include the mapping of the probabilistic 

spiking nature of pyramidal neurons in the cortex to the stochastic switching behavior of a 

Magnetic Tunnel Junction in presence of thermal noise [10].  
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Figure 5.10 (a) Stochastic spiking neural network used for digit recognition. Input spike trains 

are received by all the stochastic neurons (connections shown for only one neuron). The 

inhibitory neuron prevents the neurons from spiking in case an excitatory neuron spikes. (b) 

Corresponding implementation in a crossbar array fashion. Programmable resistive synapses are 

present at each cross-point. Input voltages are applied at each row and the neurons receive input 

synaptic current which is the weighted summation of the input voltages. (c) A network of 9 

excitatory neurons were used for the recognition purpose. The synapse weights were randomly 

initialized. 784 input neurons (28 x 28 images) are rate encoded by ensuring that the spike 

frequency is directly proportional to the pixel intensity. After learning the neurons respond 

selectively to each input image. (d) For testing the behavior of the network after learning has been 

accomplished, STDP and homeostasis were turned off. The neuron stochastically spikes the 

maximum for the class which it has learnt while the others remain mostly silent. A common 

lateral inhibitory signal during testing results in sparse spiking events. 

 

The behavior of a network of such stochastic MTJ neurons were studied in a standard digit 

recognition problem based on the MNIST data set (Fig. 5.10(a)). A crossbar array was 

designed (Fig. 5.10(b)), consisting of 9 neurons characterized by random synaptic weight 

as shown in Fig. 5.10(c)  Moreover the STDP rule was used in the learning process (Fig. 

5.10(d)).  

Another study was carried by Sengupta and his colleagues [22], where they demonstrated 

the close resemblance of the magnetization dynamics of a Magnetic Tunnel Junction (MTJ) 

to short-term plasticity and long-term potentiation observed in biological synapses. In order 

to test if the proposed MTJ synapse mimics the short-term memory (STM), and the long 

term memory (LTM) of a biological neuron, a 34 × 43 memory array was stimulated by a 

binary image of the Purdue University logo.  
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Figure 5.11 STM and LTM transition exhibited in a 34 × 43 MTJ memory array. The input 

stimulus was a binary image of the Purdue University logo where a set of 5 pulses (each of 

magnitude 100µA and 1ns in duration) was applied for each ON pixel. While the array 

transitioned to LTM progressively for frequent stimulations at an interval of T = 2.5ns, it “forgot” 

the input pattern for stimulation for a time interval of T = 7.5ns [22]. 

 

The snapshots of the conductance values were given in Fig.5.11 for two different 

stimulation intervals of 2.5ns and 7.5ns respectively. While the memory array attempts to 

remember the displayed image right after stimulation, it fails to transition to LTM for the 

case T = 7.5ns and the information is eventually lost 5ns after stimulation. However, 

information gets transferred to LTM progressively for T = 2.5ns. 

 

5.5 Conclusion 

In conclusion, this chapter has provided a quick exploration of Magnetic Tunnel Junctions 

(MTJs), some of their important parameters that will be later in the coming chapters, and 

few examples about their diverse applications in various fields, including spintronics, 

memory devices, and neuromorphic computing. 
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Where attention goes, neural firing flows, 

and neural connection grows

 

Daniel J. SIEGEL 

 

 

single neuron in the brain is an incredibly complex machine that even 

today we don’t understand. A single ’neuron’ in a neural network is 

an incredibly simple mathematical function that captures a minuscule fraction 

of the complexity of a biological neuron. 

— Andrew Ng”  

”

Chapter 6 Neuromorphic Computing 
& 

Spiking Neural Networks
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Chapter six starts by section 6.1 presenting the principles of neuromorphic computing from 

its very beginning till our present time. Then section 6.2 will shed light on the most powerful 

type of neural networks, the spiking neural network “SNN”. While section 6.3 describes 

the dynamics of biological neurons, the two most popular neuron models are discussed in 

section 6.4. Sections 6.5 and 6.6 focus on the neural coding paradigms and the noise of the 

spiking neurons respectively. Learning procedures are discussed in detail in section 

6.7.The last section 6.8, presents the concepts of synaptic plasticity. 

 

6.1 The principles of neuromorphic computing 

Inspired by the human brain and the functionality of our nervous system, Neuromorphic 

computing was introduced in the 1980s by Carver Mead colleagues. He proposed the idea 

of building electronic circuits that mimic the principles of the human brain, emphasizing 

the efficient processing of sensory data and cognitive tasks. This came after conventional 

computers based on von-Neumann architectures showed up their deficiency in several 

areas. Since in modern computers based on Von Neumann architecture, the central 

processing units (CPU) and the main memory are separated physically and connected by a 

central bus consisting of collection of wires (Fig. 6.1(a)). Thus, energy and data throughput 

will be lost during transmission between memory storage and the processing unit. An 

additional bottleneck in von-Neumann computers is encoding data in binary values. 

 

 

 

Figure 6.1 Comparison between (a) von-Neumann and (b) neural network computing 

architectures. 

 

(a) 

 

(a) 

 

(a) 

 

(a) 

(b) 

 

(b) 

 

(b) 

 

(b) 
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Neuromorphic computing architecture (Fig. 6.1(b)) has grown to refer to a variety of brain-

inspired computers, devices, and models that contrast with the pervasive von-Neumann 

computer architecture. This biologically inspired approach aims to create highly connected 

synthetic neurons and synapses that can be used to model neuroscience theories as well as 

solve challenging machine learning problems. Recently, this concept has taken the front 

seat, as artificial intelligence has led scientists to advance neuromorphic computing to excel 

in the field of technology. One of the technological advancements that has rekindled the 

interest of scientists in neuromorphic computing is the development of the Artificial Neural 

Network (ANN) model.  

 

6.1.1 Early Networks and Development. 
The evolution of ANNs can be broadly categorized into three generations, each 

representing advancements and innovations in architecture, training algorithms, and 

applications [194]. The early start was in 1943, with the first-generation neural networks-

based McCulloch-Pitts neurons designed to perform simple logical operations. However, 

the first attempt to create machine learning algorithms based on neural network principles 

was introduced in 1958 by Frank Rosenblatt through the development of perceptrons. 

Which takes a weighted sum of input and returns ‘0’ if the result is below threshold and 

‘1’ otherwise (See Fig. 6.2). 

The second generation of neural networks saw the development of multi-layer perceptrons 

(MLPs), which are capable of learning non-linear decision boundaries using hidden layers. 

Backpropagation, a training algorithm for MLPs, was also developed during this time. 

Later the third generation of neural networks has been dominated by the rise of deep 

learning, which involves training neural networks with many layers (deep architectures). 

This includes the Feedforward Neural Networks (FNNs), the Convolutional Neural 

Networks (CNNs), the Recurrent Neural Networks (RNNs). 

These networks have demonstrated unprecedented success in machine learning, however 

these algorithms most often run on supercomputers, which, unlike the brain, physically 

separate core memory and processing units. 
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Figure 6.2 Schematic representation of a perceptron. It takes a weighted sum of input and returns 

‘0’ if the result is below threshold and ‘1’ otherwise. 

 

This slows them down and substantially increases their energy consumption, because the 

information is shuttled between the storage units and the processor. Additionally, modern 

computers have been designed to solve complicated numerical problems with high 

precision, while the brain uses many low-precision calculations in parallel to perform a 

task such as recognizing a face. For that reason, the brain differs vastly from human-made 

computing systems, both in terms of topology and how it processes information.  

 

6.1.2 Neural Network Architecture 
Let us suppose we have the network shown in Fig. 6.3(a), the leftmost layer in this network 

is called the input layer, and the neurons within this layer are called input neurons. The 

rightmost or output layer contains the output neurons (in this case, a single output neuron). 

The middle layer is called a hidden layer since the neurons in this layer are neither inputs 

nor outputs. The network above has a single hidden layer, but some networks have multiple 

hidden layers. For example, Fig. 6.3(b) shows a four-layer network with two hidden layers. 

The output of each single neuron in the hidden layers and the output layer is expressed as 

f (wx) = f (∑ 𝑤𝑖𝑥𝑖 + 𝑤0
𝑛
𝑖=1 ) where f is called activation function. In the case of a perceptron 

as introduced previously, f is a step function. However, other activation functions such as 

sigmoid function σ(z) = 1/(1+e(−z) ) are more commonly used because the differentiability 

of the function makes it possible for learning the weights of the networks. The output of 

the neuron in this case is σ(wx). 
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The design of the input and output layers in a network is straightforward. Let’s consider an 

image of a handwritten “two” A natural way to design the network is to encode the 

intensities of the image pixels into the input neurons. If the image is a 64 by 64 greyscale 

image, then we would have 4,096 = 64 × 64 input neurons, with the intensities scaled 

appropriately between 0 and 1. The output layer will contain just a single neuron, with 

output values of less than 0.5 indicating "the input image is not a “two”, and values greater 

than 0.5 indicating "the input image is a “two”. 

 

 

 

Figure 6.3 Schematic representation of the neural network’s architectures. (a) A single hidden 

layer neural network. (b) A four-layer network with two hidden layers. 

 

Researchers proposed many design heuristics for the design of hidden layers, which help 

practitioners get the behavior they want out of their networks. The neural networks where 

the output from one layer is used as the input to the next layer without any loops are 

called feedforward neural networks (FNN). 

 

6.2 Spiking Neural Network 

As the human brain is the most powerful and energy efficient computing system known, 

with billions of neurons each connected to about 10000 other neurons via synapses. with 

less than 20W of power consumption, and as ANNs showed several limitations that 

(a) 

 

(a) 

 

(a) 

 

(a) 

(b) 

 

(b) 

 

(b) 

 

(b) 
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researchers and practitioners need to be aware of, an attempt to design a neuro-inspired 

system that mimics the human brain and that exploit nanoelectronics has become extremely 

urgent and has led to the emergence of major projects [12].  

Neurons in an ANN are characterized by a single, static, and continuous valued activation. 

However, biological neurons use discrete spikes to compute and transmit information, and 

the spike times, in addition to the spike rates, matter [195]. Although ANNs are historically 

brain-inspired, there are fundamental differences in their structure, neural computations, 

and learning rules compared to the brain. One of the most important differences is the way 

that information propagates between their units.  

All the observation mentioned above, led to the realm of the third-generation bio-realistic 

neural networks, also known as spiking neural networks (SNN) are believed to hold 

promise for further energy improvement over artificial neural networks [194], being the 

best to mimic human brain. In the brain the communication between neurons takes place 

via trains of action potentials, known as spike trains. Each individual spike is sparse in 

time; thus, the timing of the spike holds high information content. It has been shown that 

the precise timing of every spike is highly reliable for several areas of the brain and 

suggests an important role in neural coding [196]. 

The architecture of a typical spiking neural network (SNN) is composed of a set of pre- 

and post-neurons that fire stochastically and connected through synapses. A postsynaptic 

neuron receive signals through the dendrites from a presynaptic neuron, where the 

receiving neuron read the analog input data in a form of spike trains using either a rate 

based method [197] which is based on spike firing first spike relies solely on the number 

of spikes over a certain time period, or by temporal coding [198] which is based on the 

temporal information in spike trains and includes time-to-first-spike. We can also mention 

the population coding [199], rank-order coding [200], and phase coding [201]which uses a 

periodic oscillation function as a global reference. As biological neurons in the brain or 

either in a simulated spiking neuron receive synaptic inputs from other neurons in the 

neural network, we can state that biological neural networks have both action potential 

generation dynamics and network dynamics. This makes biological neural networks much 

complex compared to artificial SNNs that we tend to simplify as much as we can. In this 

context we should mention that spiking neurons are governed by different models, with 

varying levels of sophistication, ranging from the most complex Hodgkin-Huxley model 

[202] to the simplest Izhikevich neuron model [203]. 

On the engineering level, SNNs are advantageous over traditional neural networks 

regarding implementation in special purpose hardware. As spiking networks have the 

special property to be sparse in time, this means that the energy consumption in biological 

networks depends on the number of events. Thus, few events or spikes characterized by 

high information content led to reduced energy consumption [204]. Hence, it is possible to 

create low energy spiking hardware which is highly responsive to event-based sensors 

based on the property that spikes are sparse in time [205]. Table 6.1 below illustrates a 

comprehensive comparison of the spiking neural networks with other machine learning 

methods over different inclinations. 
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Method Statistical 

Method 

ANN SNN 

information Scalar Scalar Spiking Sequence 

Data presentation Scalars, vectors Scalars, vectors Whole TSTD pattern 

Learning Statistical, limited Hebbian rule STDP 

Dealing with RSTD Limited Moderate Excellent 

Parallel computation Limited Moderate Massive 

Hardware support Standard VLSI Neuromorphic VSLI 

 

Table 6.1 Comparison of the SNN and other machine learning techniques [206]. 

 

Recently a remarkable number of research focused on SNNs due to its success in the 

domains of visual processing [207–209], speech recognition [210,211] and luckily medical 

diagnosis, where Gosh et al. succeeded in developing an efficient SNN model for epilepsy 

and epileptic seizure detection using electroencephalograms (EEGs), a complicated pattern 

recognition problem [212]. Moreover, in [213] Kasabov and his colleagues presented a 

novel method and system for modelling of spatio-temporal patterns with a case study on 

stroke. 

One complexity of SNNs is the difficulty of the learning process, where in comparison to 

traditional deep networks, training deep spiking networks is in its early phases. In SNNs 

the spike trains are represented formally by sums of Dirac delta functions and do not have 

derivatives. This makes it difficult to use derivative-based optimization for training SNNs, 

although very recent work has explored the use of various types of substitute or 

approximate derivatives [214]. However, training a spiking neural network does not follow 

the rule of conventional ANN, and we need to devise new methods of training that are 

compatible with the unsupervised nature of these networks. Thus, spiking networks enables 

a type of bio-plausible learning rule that cannot be directly replicated in non-spiking 

networks. This learning rule is the spike time dependent plasticity (STDP). Its key feature 

is that the weight connecting a pre- and post-synaptic neuron is adjusted according to their 

relative spike times within an interval of roughly tens of milliseconds in length [215]. 

Unsupervised learning in SNNs often involves STDP as part of the learning mechanism. 

 

6.3 Dynamics of a Biological Neuron 

Although neurons are only one of many brain cells, they have attracted more attention than 

other brain cells because of their fundamental role in computational operations. The 

fundamental function of a neuron is simple: the neuron receives input signals from other 

neurons via connections called Synapses, and if the potential of the input signals exceeds 

certain threshold, they will fire an action potential (spike) that propagates through synapses 

to other neurons. 
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Neurons consisted of three main parts: the dendrite, the soma, and the axon. Dendrites are 

considered as the receiver of input signals, and neurons receive input current via their 

dendrites. This input’s current is then transmitted to the main body of the cell, called the 

soma. When a neuron generates an action potential, it sends current down its axon, causing 

neurotransmitters to release at the synapses, which are connections from a neuron’s axon 

to the dendrites of other neurons. This neurotransmitter release causes the flow of dendritic 

currents in other connected neurons. The main body of the neuron is called soma. From a 

computational perspective, this is where all the incoming currents from dendrites are 

integrated. The process of producing an action potential also occurs in the soma. 

 

 

 

Figure 6.4 (a) The Synapses are present at the junction of axonal terminal and dendrites of the 

biological neurons. Some of the known neurotransmitter signaling mechanisms are illustrated 

[216]. (b) Approximate plot of a typical action potential shows its various phases. The membrane 

potential starts out at approximately −70 mV at time zero. A stimulus is applied at time = 1 ms, 

which raises the membrane potential above −55 mV (the threshold potential). After the stimulus 

is applied, the membrane potential rapidly rises to a peak potential of +40 mV at time = 2 ms. Just 

as quickly, the potential then drops and overshoots to −90 mV at time = 3 ms, and finally the 

resting potential of −70 mV is reestablished at time = 5 ms.  

 

When a neuron is in resting state, the soma has a negative potential called the resting 

potential and controlled by ion pumps that maintain a particular concentration of ions 

(mostly sodium Na+, potassium K+, and calcium Ca2+) inside the cell. The incoming current 

from dendrites causes the cell membrane to depolarize. The difference in ionic 

concentrations inside the cell membrane is considerably small during a single spike, but 

(a)           (b) 

 

(a) 

 

(a)           (b) 

 

(a) 
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throughout many spikes, the ion pumps are required to maintain the proper concentrations 

of sodium and potassium. 

Fig. 6.4(a) illustrates the neuron as a complicated information-processing unit, which 

receives thousands of signals from the dendrite of other neurons through synaptic 

connection. The single output of this neuron is an action potential (spike) which emits 

whenever the membrane voltage reaches a threshold. Whenever the potential in the soma 

becomes high enough, it starts to trigger sodium channels, which allow sodium ions to 

enter the cell and further depolarize it. The process continues until the electrical gradient 

of the sodium channel opposes the chemical gradient of imbalance in sodium charge inside 

and outside of the cell. This process causes a considerable change in membrane potential 

and alters the membrane potential from a negative to a positive charge. 

The considerable depolarization of the membrane potential triggers the potassium channels 

and lets them reach out of the cell and eventually repolarize it. At the same time, the sodium 

channels become inactivated. The open potassium channels finally bring the cell to a 

potential lesser than its resting potential, which is called the hyperpolarized state. Here 

process continues for a short while in which the neuron is not capable of generating spikes, 

which is called the absolute refractory period (the different states of a neuron are illustrated 

in Fig. 6.4(b)). 

 

6.4 Models of Single Neurons 
There are so many biological neuron models available to analyze the behavior of a 

biological neural network with varying levels of sophistication. These models play a key 

role for characterizing what the nervous system does, determining how it functions, and 

explaining why it operates in a particular way. Starting with the leaky integrate and fire 

model (LIF) being the earliest neuron model which was first investigated in 1907 by 

Lapicque [217], to the most detailed and realistic Hodgkin-Huxley model which is the 

starting point for detailed neuron models accounting for numerous ion channels, different 

types of synapses, and the specific spatial geometry of an individual neuron. This model 

was set by Alan Hodgkin and Andrew Huxley who derived it in 1952 to explain the ionic 

mechanisms underlying the initiation and propagation of action potentials in the squid giant 

axon [202]. 

 

6.4.1 Leaky Integrate-and-Fire Model 
The leaky integrate-and-fire neuron is probably the best-known example of a formal 

spiking neuron model. Action potentials of a neuron i here are considered as events in 

which if their voltage ui(t) reaches a threshold ϑ, the neuron fires a spike. This potential is 

considered in its resting state urest when there is no coming input to the cell membrane. 

To describe the dynamics of the neuron, integrate and fire models use two separate 

components: first, an equation that defines the evolution of the membrane potential ui(t), 

and second, a mechanism for generating action potentials [197]. Louis Lapicque [217] 
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showed that a neuron can be considered as a circuit consisting of a resistor R that represents 

ion channels, (each small resistor represents an ion channel) in parallel to a capacitor C that 

represents the membrane potential this circuit was known later as LIF circuit. The input 

data received by a neuron is represented by input current I(t), in the RC circuit (Fig. 6.5).  

 

 

 

Figure 6.5 Schematic diagram of the integrate-and-fire model. The basic circuit is the module 

inside the dashed circle on the right-hand side. A current I(t) charge the RC circuit. The voltage 

u(t) across the capacitance (points) is compared to a threshold ϑ. If u(t) = ϑ at time  𝑡𝑖
(𝑓)

 an output 

pulse δ(t − 𝑡𝑖
(𝑓)

 ) is generated. Left part: A presynaptic spike δ (t − 𝑡𝑗
(𝑓)

) is low-pass filtered at the 

synapse and generates an input current pulse α (t − 𝑡𝑗
(𝑓)

 ) [218]. 

 

Using the law of current and splitting into two elements,  

I(t) = IR + IC (6.1) 

Using Ohm’s law, we can rearrange (Eqn. 6.1) to the equation presented below: 

𝐼(𝑡) =
𝑢(𝑡)−𝑢𝑟𝑒𝑠𝑡

𝑅
+ 𝐶

𝑑𝑢

𝑑𝑡
 (6.2) 

Multiplying (Eq. 6.2) by R and using the time constant τm = RC yields the standard form: 

𝜏𝑚
𝑑𝑢

𝑑𝑡
= −[𝑢(𝑡) − 𝑢𝑟𝑒𝑠𝑡] + 𝑅𝐼(𝑡) (6.3) 

The solution to this differential equation considering the initial condition u(t0) = urest + ∆u 

is in form: 

𝑢(𝑡) − 𝑢𝑟𝑒𝑠𝑡 = ∆𝑢 exp (−
𝑡−𝑡0

𝜏𝑚
) for t > t0  (6.4) 
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6.4.1.1 Dynamics  
Based on Eqs. (6.1-6.4), several simulations are performed to show the behavior of LIF 

neurons under specific conditions. The simulation time is set to 10 ms and the membrane 

time constant here is considered τ=1 ms, his means that the membrane potential reaches 

approximately 63.2% of its steady-state value after 1 ms when subjected to a step change 

in input current. The current density (μA/cm2) is denoted by I in our simulations. First let’s 

consider that the membrane potential has a threshold uth = 0.5 mV, if the external pulse is 

less than exciting the membrane potential, then the membrane potential will gradually 

increase in response to the input current but will not reach the threshold potential for 

firing.(Fig. 6.6(a)). When the applied pulse is large enough(< 0.5 μA/cm2) to excite the 

neuron’s membrane. then continuous spiking (red circle) will occur.  

 

 

 

Figure 6.6 Membrane potential of a LIF neuron at (a) constant current 𝐼 ≤ 0.5𝜇𝐴/𝑐𝑚2, where no 

spikes are fired. (b) For increasing current the number of fired spikes increase, as (A) shows 7 

spikes for 𝐼 = 0.7 𝜇𝐴/𝑐𝑚2, and 24 spikes for 𝐼 = 1.5 𝜇𝐴/𝑐𝑚2. 

 

Fig. 6.6(b), shows that number of fired spikes depends widely on the value of applied pulse, 

so considering different current values changing between 0 ≤ 𝐼 ≤ 3 μA/cm2, we observe 

that higher current means more spikes from zero spikes in absence of current into 50 spikes 

at 3 μA/cm2.  

Many aspects play in the nature and sequence of the fired spikes, considering a ramp input 

stimulus will produce action potentials with an increasing firing rate (Fig. 6.7(a)) as the 

input strength increases. This behavior is described in Fig. 6.7(b) where the interspike 

interval (time interval between each consecutive spikes) decreases exponentially from 0.8 

ms to 0.1 ms, as the applied current increases. 

(a) 

 

(a) 

 

(a) 

 

(a) 

(b) 

 

(b) 

 

(b) 

 

(b) 
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Figure 6.7 (a) The membrane potential versus time under the influence of an increasing current 

0 ≤ 𝐼 ≤ 3 𝜇𝐴/𝑐𝑚2. (b) The variation of the interspike interval between consecutive action 

potentials as function of current and stimulus time. 

 

6.4.2 Hodgkin-Huxley Model 
In 1952, Hodgkin and Huxley performed experiments on the giant axon of the squid and 

found three different types of ions current: sodium, potassium, and a leak current that 

consists mainly of Cl− ions. They used a set of differential equations to describe the 

dynamic behavior of these ion channels.  

 

 

 

Figure 6.8 Schematic diagram for the Hodgkin-Huxley model [218]. 

 

(a) 

 

(a) 
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The semipermeable cell membrane separates the interior of the cell from the extracellular 

liquid and acts as capacitor C. If an input current I(t) is injected into the cell, it may add 

further charge on the capacitor, or leak through the ion channels in the cell membrane. 

Because of active ion transport through the cell membrane, the ion concentration inside the 

cell is different from that in the extracellular liquid. Each ion channel is represented by a 

resistor as shown in Fig. 6.8. The resistance of sodium, potassium and leakage channel 

indicated by respectively RNa, RK, and R. We denote the potential across this membrane by 

u. Moreover, the Nernst potential generated by the difference in ion concentration is 

represented by a battery. 

The current I(t) flowing in the circuit can be splitted as below,  

𝐼(𝑡) = 𝐼𝐶 + ∑ 𝐼𝑘(𝑡)𝑘  (6.5) 

With Ic is the current passing through the capacitor and can be written as, IC = C du/dt, 

hence,  

𝐶
𝑑𝑢

𝑑𝑡
= −∑ 𝐼𝑘(𝑡)𝑘 + 𝐼(𝑡) (6.6) 

the sum runs over all ion channels and is given by,  

∑ 𝐼𝑘(𝑡)𝑘 = 𝑔𝑁𝑎𝑚
3ℎ(𝑢 − 𝐸𝑁𝑎)  + 𝑔𝐾𝑛4(𝑢 − 𝐸𝐾) + 𝑔𝐿(𝑢 − 𝐸𝐿) (6.7) 

The parameters ENa, EK, and EL are the reversal potentials. Reversal potentials and 

conductance are empirical parameters. These values are based on a voltage scale where the 

resting potential is zero. To get the values accepted today, the voltage scale must be shifted 

by -65 mV. For example, the corrected value of the sodium reversal potential is ENa = 50 

mV, that of the potassium ions is EK = −77 mV. 

The activation of each channel of the model in terms of voltage-dependent transition rates 

α and β is given as: 

ṁ = αm(u) (1 − m) − βm(u) m 

ṅ = αn(u) (1 − n) – βn(u) n (6.8) 

ḣ = αh(u) (1 − h) – βh(u) h 

With ṁ  = dm/dt, and so on. The terms m and h are controlling variables for the sodium 

channel while the potassium channels constrained by the term n. Here ṁ, ṅ  and ḣ are 

respectively the derivative of the m, n and h with respect to the time. The various functions 

α and β, given in Table 6.2, are empirical functions of u that have been adjusted by 

Hodgkin and Huxley to fit the data of the giant axon of the squid. 

 

x Ex gx 

Na 115 mV 120 mS/cm2 

K -12 mV 36 mS/cm2 

L 10.6 mV 0.3 mS/cm2 
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x αx(u / mV) βx(u / mV) 

m (0.1 − 0.01 u) / [exp(1 − 0.1 u) − 1] 0.125 exp(−u / 80) 

n (2.5 − 0.1 u) / [exp(2.5 − 0.1 u) − 1] 4 exp(−u / 18) 

h 0.07 exp(−u / 20) 1 / [exp(3 − 0.1 u) + 1] 

 

Table 6.2 The parameters of the Hodgkin-Huxley equations. The membrane capacity is C = 

1µF/cm2 . The voltage scale is shifted so that the resting potential vanishes. 

 

As shown in the Hodgkin-Huxley circuit (Fig. 6.8), electrical activity in neurons is 

sustained and propagated by ion currents (Na+, K+) through neuron membranes. The Na+ 

and K+ ions are considered to flow through ion channels where a series of gates determine 

the conductance of the ion channel. The macroscopic conductance of the Hodgkin & 

Huxley model arises from the combined effects of many microscopic ion channels 

embedded in the membrane. Each individual ion channel can be thought of as containing 

one or more physical gates that regulate the flow of ions through the channel. According 

to Fig. 6.8, the current flowing in the circuit is Iext=IL+INa+IK+Im, this can better be 

presented in terms of current density Jext=JL+JNa+JK+Jm.  

 

6.4.2.1 Dynamics  
Considering the summation of current mentioned above and the Eqs. (6.5-6.8), in addition 

to the parameters given in Table 6.2, we can give a clear image of the dynamic of the H-

H neuron model under different conditions. Note that in our simulations we denoted the 

applied current density (μA/cm2) by I. 

(c) 
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Figure 6 9 (a) Three different pulses are considered for a simulation time of 50 ns, Variation of 

action potential, gating variables n, m and h , and conductance for (b) constant current I 

=10 𝜇𝐴/𝑐𝑚2, (c) rectangular pulse between 10 ms < t < 30 ms, (c) and for an increasing current 

with slope of 0.5. 

 

In Fig. 6.9(a) three different current densities are considered through the ion channels and 

the membrane. A constant current I =10 𝜇𝐴. 𝑐𝑚-2 leads to the generation of four consecutive 

spikes with equal interspike interval tint = 10 ms (Fig. 6.9(b)), and each spike is followed 

by a drop into the rest state. A smooth variation of ion channels conductance is observed, 

and this goes back to the behavior of (d) the gate variables n, m and h and the conductance 

for potassium and sodium as functions of time. The conductance of sodium channels 
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increases due to increasing m. As a result, positive sodium ions flow into the cell and raise 

the membrane potential even further. If this positive feedback is large enough, an action 

potential is initiated. At high values of membrane potential (u), the sodium conductance is 

shut off due to the factor h. The time constant for h is always larger than m. 

In Fig. 6.9(c), a rectangular pulse applied (I =10 μA/cm2) for 10 ms < t < 30 ms, where 

outside this range zero current is considered. For the first 10 ms, the membrane potential 

does not change with time t as du/dt = 0. Only in the time domain of the applied pulse, 

action potentials will be generated. For this case the current flow in the ion channels seems 

to be continuous, being positive in the potassium ion channel as the K+ ions move from 

inside to the outside of the cell whereas the sodium current is negative as Na+ ions move 

into the cell across the membrane. The rise in the sodium conductance and fall occurs more 

rapidly for Na+ than for K+ mainly due to the behavior of the gate variables m and h. We 

see that m and n increase with increasing u whereas h decreases. 

The H-H neuron shares the same behavior as that of the LIF neuron under the influence of 

a continuously increasing current (Fig. 6.9(d)), where it can be represented as I (μA/cm2) 

= 10 + 0.5 × t (ms). Several spikes will be fired, but the with varied interspike interval 

changing from about 12 ms between the fires two spikes into 7 ms between the last two. 

 

6.5 Neural Coding  
Spiking neural networks employ precise timing of spikes for transferring information. 

Various procedures for converting input data to an understandable stimulus for SNN 

proposed, here we discuss different techniques of neural coding. 

 

6.5.1 Rate vs Temporal Coding 

The rate coding refers to encoding the input to a stimulus in terms of firing rate or frequency 

of action potentials. The concept of mean firing rates has been successfully applied during 

the last 80 years. It dates to the pioneering work of Adrian [219,220] who showed that the 

firing rate of stretch receptor neurons in the muscles is related to the force applied to the 

muscle. The mean firing rate is given by, 

𝜈 =
𝑛𝑠𝑝(𝑇)

𝑇
 (6.9) 

With nsp(T) being the number of spikes that occur in a time window T. The unit of firing 

rate is reported in units of s −1 or Hz. 

However, studies suggest that the human brain employs a different procedure for 

interpreting visual stimuli considering the response time of the visual receptors to these 

stimuli, which is remarkably short, and no time will remain for ascertaining the average 

firing rate by the neural system. Thus, temporal coding is a type of neural coding which 

relies on precise timing of action potentials or inter-spike intervals and the timing of 

individual spikes is equivalently important [221]. Unlike rate coding, the temporal coding 
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model tries to account for short-term stimuli producing a small number of spikes. Several 

applications have been based on temporal coding including, auditory systems [222]. 

 

 

 

Figure 6.10 (a) Four spikes emitted by H-H neuron at constant current. These spikes are encoded 

based on two paradigms, (b) rate coding and, (c) Temporal coding. 

 

For better understanding, we considered in Fig. 6.10(a) the four action potentials generated 

by the H-H neuron (back to Fig. 6.9(b)), in case of rate coding each spike will be encoded 

by a region of high frequency as shown in Fig. 6.10(b), where we detect four regions of 

high frequency going back to each spike. Whereas based on temporal coding the spikes 

will be encoded by their time of emission, as shown in Fig. 6.9(c). 
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6.5.2 Population Coding  
In opposition to rate and temporal coding, which consider the firing rate of an individual 

neuron, population coding is a means by which information is coded in a group of neurons. 

All neurons in the population should have the same pattern of input and output connections. 

One famous population coding model is the "population vector" model from a 1986 paper 

by Georgopoulos [223], proposed to describe motor neuron tuning in primary motor cortex. 

In this model, each neuron in the population has a preferred movement direction, and the 

resulting movement is a weighted average of the preferred movements, where the average 

is weighted by firing rate. 

 

6.6 Noise in Spiking Neuron Models 
In vivo recordings of neuronal activity are characterized by a high degree of irregularity. 

The spike train of individual neurons is far from being periodic and relations between the 

firing patterns of several neurons seem to be random. Although several studies investigated 

the effect of noise in SNNs [224,225], but the origin of this irregularity is still poorly 

understood. We can distinguish between intrinsic and extrinsic noise sources. Intrinsic 

noise generates stochastic behavior on the level of the neuronal dynamics.  

A source of noise, which is literally omnipresent, is thermal noise. Since neuronal 

dynamics is described by an equivalent electrical circuit containing resistors R, the 

neuronal membrane potential fluctuates at finite temperature. Another source of noise that 

is specific to neurons arises from the finite number of ion channels in a patch of neuronal 

membrane [226]. Apart from intrinsic noise, the extrinsic noise arises from network effects 

and synaptic transmission [227]. Synaptic transmission failures, for instance, seem to 

impose a substantial limitation to signal transmission within a neuronal network. 

Experiments with double electrode recordings from two synaptically connected neurons 

suggest that only 10–30 percent of presynaptic spikes generate a postsynaptic response 

[228].  

In Fig.6.11 below, we show the effect of noise on the membrane potential of LIF and H-H 

neurons, where we considered a constant mean current I =20 μA. cm-2, and noise is added 

using the rand function (Fig.6.11(a)). In the case of LIF neurons, the noise seems to cause 

a delay in the spike generation, by resisting the membrane from reaching the threshold 

easily (Fig.6.11(b)). However, it will not affect the spike timing of the H-H model as shown 

in Fig.6.11(c), but it will leave its stump by perturbing the refractory period.  
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Figure 6.11 (a) A noisy pulse current is injected into, (b) a LIF neuron firing a noisy spike with a 

delayed firing time. (c) A H-H neuron shows a little disturbance in the refractory period of the 

action potential. 

 

6.7 Supervised and Unsupervised Learning in SNN 

In contrast to supervised learning where the network parameters optimized for every input 

stimulus to achieve the least error, unsupervised learning refers to the change of synaptic 

connection according to the statistics of the input stimuli [218].  

 

6.7.1 Supervised Learning 
The first supervised algorithm which used a gradient-based technique to transfer 

information in the timing of a single spike was SpikeProp [229]. In this model, each neuron 

can produce at most one action potential during the spike interval. If the neuron fires more 

than one spike during the period, the algorithm only considers the first spike as the exact 

firing time. The model is comprised of the connections with different synaptic delays and 

weights, which enable them to solve linearly inseparable problems (like XOR function) 

and attain high-grade results on the problem with a small dataset. However, having multiple 

connection weights per synapse and adopting a single spike optimization procedure 

restricted its application to the problems with small datasets. McKennoch, Liu, and 

Bushnell [230] proposed the method to enhance the convergence rate of the SpikeProp, 

though their approach was not expandable to large datasets. An alternative method to 
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SpikeProp proposed in [231] which specially designed for non- leaky integrate and fire 

models. The model replaced the multi delay elements of the SpikeProp model with an 

exponential connection between each pair of neurons. The model replaced the multi delay 

elements of the SpikeProp model with an exponential synaptic connection between each 

pair of neurons. The single and two-layer model of the proposed network achieved test 

errors of 2.45% and 2.86%, respectively. The main associated problem with the proposed 

method is a dropout since most of the regularization techniques do not apply to the network 

and sometimes prevent neurons from firing. Stromatias and Marsland [232] used a different 

approach than the previous works and employed the genetic algorithm to optimize multiple 

spikes of each neuron instead of considering only the first spike. However, this method 

only applies to small networks with less than ten neurons in the hidden layer. One of the 

main reasons is the limitation of the genetic algorithm for scaling problems with so many 

parameters. Lee, Delbruck, and Pfeiffer [233] proposed a different method for optimizing 

multiple spikes of the neuron, assuming the output of the neuron as a linear function of its 

input. This simplification allows them to train the network in the forward direction and still 

can perform backpropagation (BP) in the backward direction. The method ignores the 

refractory period following the generation of a spike and uses the property of lateral 

inhibition to enhance the performance of the network. Despite all the simplification, the 

model is still able to achieve good results on the MNIST dataset, obtaining a test error of 

1.30% using stochastic gradient descent. 

 

6.7.2 Unsupervised Learning 
During recent years, various strategies for unsupervised learning in spiking neural 

networks developed, which are often based on variants of the Hebbian method. Inspired by 

Hopfield’s idea, Natschlager and Ruf [231] introduced an unsupervised clustering method 

in spiking neural networks. Their approach is analogous to the radial basis function (RBF) 

except the input, which is in terms of spike timing. A winner-takes-all learning rule used 

to adjust the synaptic weights between the source neuron and the first firing neuron in the 

target layer. If the start of the postsynaptic potential occurs immediately before the spike 

in the target neuron, the weights of the synapse will increase. On the other hand, the 

synaptic weights of the earlier and later synapses will decline, which indicates their 

negligible impact on the firing of the target neuron. Employing this learning procedure, we 

can encode input patterns into synaptic weights in such a way, the spike timing of the output 

neurons indicates the difference between the evaluated pattern and the learned input 

pattern, which is quite like unsupervised learning in RBF neuron. 

To improve accuracy and expand the clustering capacity of the Natschlager and Ruf 

network, Bohte [199] applied a temporal version of population coding. He applied multiple 

receptive fields to encode the input data into temporal spike-time patterns. Bohte proved 

using such an encoding technique, spiking neural networks can perform efficient clustering 

tasks. Fig. 6.12 presents the unsupervised SNN proposed by Natschlager and Ruf in which 

individual connection is considered as multi-synaptic. The weights are random, and a set 

of increasing delays introduced to facilitate unsupervised learning of input patterns. 

Querlioz and his colleagues[234] introduced a simplified and customized spike time-
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dependent plasticity (STDP) scheme for unsupervised learning in memristive devices. 

Their network comprised of an unsupervised layer that extracts features of the input’s 

images utilizing a rectangular shape of STDP and achieves accuracy comparable to 

traditional supervised learning models with the same number of parameters. They 

employed homeostasis and lateral inhibition to encourage competition among neurons. 

 

 

 

Figure 6.12 Unsupervised learning rule in SNN proposed in [231] 

 

Diehel and Cook [235] proposed an unsupervised method for digit recognition using a 

conductance-based model of leaky integrate and fire neuron. They introduced an adaptive 

threshold method which prevents a neuron from dominating the response to the input 

pattern and facilitates the competition among neurons. Using 3600 excitatory neurons, they 

obtained an accuracy of 95% on the handwritten digits of the MNIST dataset. Their model 

consists of the same number of inhibitory neurons in the output layer. The neurons in the 

excitatory layer are connected in a one-to-one fashion to the corresponding inhibitory 

neuron in the output layer. The neurons in the inhibitory layer connect to all the other 

neurons in the excitatory layer except their corresponding neuron in the excitatory layer 

(See Fig. 6.13). This architecture allows them to use the property of lateral inhibition in 

which the first firing neuron inhibits all the other neurons in the output layer plus their 

corresponding excitatory neuron. Lateral inhibition enables the neuron to adapt its weights 

according to the input pattern. 
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Figure 6.13 Architecture of the Diehel & Cook network [235]. 

 

6.8 Synaptic Plasticity 
Experiments confirm that the amplitude response of a postsynaptic neuron is not fixed and 

changes over time. In neuroscience, this change of synaptic strength is referred to as 

synaptic plasticity. If a persistent strengthening of synapses observed, the effect described 

as long-term potentiation of synapses (LTP). In opposition to long-term potentiation is 

long-term depression (LTD) when we witness a reduction in the efficacy of neuronal 

synapses. In 1949 Hebbs [236] described the change procedure in connection from 

presynaptic neuron A to a postsynaptic neuron B by his famous postulate:  

“When an axon of cell A is near enough to excite cell B or repeatedly or persistently takes 

part in firing it, some growth process or metabolic change takes place in one or both cells 

such that A’s efficiency, as one of the cells firing B, is increased”.  

Today, 50 years later, this famous postulate is often rephrased in the sense that 

modifications in the synaptic transmission efficacy are driven by correlations in the firing 

activity of pre- and postsynaptic neurons. 

 

6.8.1 Mathematical Formulation of Hebb’s Rule 

To find a mathematically formulated learning rule based on Hebb’s postulate we focus on 

a single synapse with efficacy wij that transmits signals from a presynaptic neuron j to a 

postsynaptic neuron i. In the following, the activity of the presynaptic and postsynaptic 

neurons is described by the firing rate 𝜈𝑗 and 𝜈𝑖 respectively. According to Hebb’s postulate 

the change in synaptic efficacy is characterized by two properties Locality and 

Cooperativity. This mean that the efficacy change depends on local variables available 
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including the firing rates of pre- and postsynaptic neurons and thus the efficacy change is 

given by,  

𝑑

𝑑𝑡
𝑤𝑖𝑗 = 𝐹(𝑤𝑖𝑗;  𝜈𝑖 , 𝜈𝑗) (6.10) 

Here, 
𝑑

𝑑𝑡
𝑤𝑖𝑗 denote the rate of change in synaptic strength, and F is a function that describes 

the synaptic change based on the local variable [237–239]. 

The second important aspect of Hebb’s postulate, cooperativity, implies that pre- and 

postsynaptic neurons must be active simultaneously for a synaptic weight change to occur. 

We can use this property to learn something about the function F. If F is sufficiently well-

behaved, we can expand F in a Taylor series about νi = νj = 0, 

𝑑

𝑑𝑡
𝑤𝑖𝑗= c0(wij ) + c1

post
 (wij )νi + c1

pre
 (wij ) νj + c2

pre
 (wij) ν2

j + c2
post

 (wij) ν2
 i +c2

corr (wij) νi 

νj + 𝒪(ν3) (6.11) 

The term containing c2
corr on the right-hand side of Eq. (6.10) is bilinear in pre- and 

postsynaptic activity. The simplest choice for our function F is to fix c2
corrat a positive 

constant and to set all other terms in the Taylor expansion to zero. The result is the 

prototype of Hebbian learning, 

d

dt
wⅈj = c2

corr (wij) νi νj (6.12) 

 

6.8.2 Spike-Time Dependent Plasticity 
In this section we study the synaptic efficacy on the level of individual spike and focus on 

changes in the synaptic efficacy that are driven by temporal correlations between 

presynaptic spike arrival and postsynaptic firing. This biological process that adjusts the 

strength of connections between neurons in the brain is known as Spike Time Dependent 

Plasticity (STDP). Assume that tpre and tpost are respectively the time in which pre and 

postsynaptic spike happen. The change in synaptic weight is a function of temporal 

difference |∆t| = |tpost − tpre|. Thus, we define a ‘learning window’ as, 

∆w+ = A+(w) · exp (− |∆t| /τ+) at tpost for tpre < tpost 

∆w− = A−(w) · exp (− |∆t| /τ−) at tpre for tpre > tpost (6.13) 

Where A±(w) represents the update dependency on the current value of the synaptic weight. 

A+(w) and A−(w) normally have a positive and negative value respectively. Whenever a 

presynaptic and postsynaptic spike happens, we need to update the synaptic weight. Fig. 

6.14 presents the diagram of spike-timing-dependent plasticity. The STDP rule describes 

the changes in synaptic weights as a function of timing of pre and postsynaptic spikes. 

Considering now we have two sets of spike trains Si(t) and Sj(t), the efficacy change will 

be given as follow: 
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𝑑

𝑑𝑡
𝑤𝑖𝑗 = Sj(t) [𝑎1

𝑝𝑟𝑒
+ ∫ 𝐴−(𝑤𝑖𝑗)𝑊−(𝑠)𝑆𝑖(𝑡 − 𝑠)ⅆ𝑠] + 𝑆𝑖(𝑡) [𝑎1

𝑝𝑜𝑠𝑡
+

∞

0

∫ 𝐴+(𝑤𝑖𝑗)𝑊+(𝑠)𝑆𝑗(𝑡 − 𝑠)ⅆ𝑠]
∞

0
 (6.13) 

Here 𝑎1
𝑝𝑟𝑒

  and 𝑎1
𝑝𝑜𝑠𝑡

 are non-Hebbian parameters and W±(s) represent the time scale of 

the learning window [240]. 

 

 

 

Figure 6.14 Representation of the spike-timing-dependent plasticity (STDP) learning rule. The 

strength of the connection (synaptic weight) is adjusted based on the timing of pre- and post-

synaptic spikes. For Δt >0, Δw is positive, indicating an increase in synaptic weight, whereas, for 

Δt < 0, Δw is negative, indicating a decrease in synaptic weight. 

 

Several studies have developed several SNNs using STDP and stochastic gradient descent. 

Spiking networks consisting of many spiking neurons equipped by spike-based synaptic 

plasticity rules have shown success in different fields with varying percentages of accuracy. 

Table 6.3 below shows some applications of spiking neural networks based on STDP 

learning.  

 

Data Training Neural Coding Accuracy 

MNIST STDP Rate 96.5% [241] 

Caltech 

face & 

Unsupervised-STDP Temporal 99.1% [242] 
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motor 

bike 

CIFAR 

10 

Unsupervised-STDP Temporal 93% [243] 

 

Table 6.3 Applications of spiking neural networks trained by STDP based on different neural 

coding paradigms and data sets. 
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TJ-based Spiking Neural Networks (SNNs) herald a new era in 

neuromorphic computing, where the fusion of magnetic and 

neuronal dynamics enables unprecedented efficiency and scalability.. 
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This is the last chapter, where section 7.1 serves as introductory background about 

importance of MTJ in neuromorphic applications. In section 7.2 we introduce our 

proposed MTJ device, and the micromagnetics deriving it. To understand the functionality 

of our MTJ synapse, section 7.3 will present different device aspects. As a continuation, a 

systematic study was performed in section 7.4 to show the spiking behavior under different 

conditions. In section 7.5 a SNN was designed based on the MTJ synaptic device. Finally, 

section 7.6 sums up the entire work.  

 

7.1  Introduction 
Magnetic tunnel junctions (MTJs) have been investigated for neuromorphic computation 

where they have already shown to mimic synapse plasticity and firing [10,22,23,244,245]. 

Recently, MTJ-based devices have been proposed to emulate the Leaky-Integrate-and-Fire 

(LIF) model of neurons which has low computational costs [10,244,246]. These MTJ-

based proposals rely solely on the magnetization dynamics generated by a series of pulses, 

which when integrated over time produces a single switch of the magnetization. A common 

caveat of these proposals is the requirement of a reset current pulse in the opposite direction 

to return the MTJ to the initial condition. The need for a reset mechanism also implies a 

clocking system which significantly reduces computational speed. To overcome the need 

of a resetting system, it has been proposed to use MTJs in the stochastic regime, where the 

magnetization switches between the maximum and minimal resistance configuration due 

to thermal fluctuations [247,248]. This paradigm suffers from the fact that true spikes are 

not obtained, since the switch of the magnetization is not immediately followed by the 

reverse switching. Moreover, the highly stochastic nature of these devices leads to a high 

error rate which significantly increases the computational time. Other proposals that do not 

require a resetting mechanism involve the use of antiferromagnetic materials [178,179]. 

These proposals, however, suffer from the need of a single domain ground state and, in the 

case of true sharp spikes, the presence of an applied alternate current [178]. A recent 

spiking MTJ-based proposal has shown that combining the stochastic behavior and ferro-

antiferromagnetic coupling allows for the emulation of spiking with single pulses without 

the need for a resetting pulse [249]. Despite these advances towards the hardware 

implementation of the computationally cheap LIF model, a scalable room-temperature 

device that emulates more bio-realistic neuron models is still lacking. As we showed in 

Chapter 6, the Hodgkin-Huxley model can mostly mimic the efficiency of the brain, and 

the firing behavior derives from the combination of the different response times of physical 

processes in the neuron. 

 

Model H-H Neuron MTJ Device 

Output In terms of membrane potential In terms of electrical resistance of 

device 

Physical Mechanism Interplay between the 

concentrations of Na+, K+ , and 

leakage currents 

Interplay between magnetization 

dynamics and thermal effects 
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Neuron Behavior Tonic spiking of the voltage at 

constant input current 

Tonic spiking of the voltage at 

constant input current 

Firing Rates 1-10 KHz [213,262–265] 100 MHz - 5 GHz 

Applied Voltage 1-200 Mv [213,265] 100-300 mV 

Refractory Period Present Present 
 

Table 7.1 A comparison between H-H model and the single MTJ device. The performance of the 

single MTJ device is based on experimental results [250]. 

 

In this chapter we propose a single MTJ device that emulates bio-realistic neurons that fire 

at frequencies in the MHz to GHz range by leveraging thermal effects and Joule heating. 

The device produces sharp firing signals followed by a refractory period, which is essential 

for the implementation of bio-realistic learning processes such as STDP. We show that 

with a single constant input the device at room temperature fires at constant rate and 

presents a small, but not vanishing, stochasticity due to the thermal field [251]. A single 

firing response can also be obtained by integrating discrete pulses and thus the device also 

emulates the LIF model. The proposed device employs a single MTJ, which renders it 

CMOS-compatible, compact, robust, scalable, and reproducible as required for SNNs. In 

Table 7.1 a brief comparison is made between the H-H model and our proposed MTJ 

device. 

 

7.2 Device and Model 
This section is divided into two subsections, where we define the device designed 

throughout our study, as well as the magnetic properties used in our micromagnetic study 

are also presented.  

 

7.2.1 Device Properties 
However, while the variation of the membrane potential in the biological neuron is due to 

the Sodium (Na+), Potassium (K+), and leakage currents, the variation of the potential 

through the MTJ corresponds to a change in the resistance and is induced by the input 

current and thermal effects. The active part of the MTJ proposed here has a hybrid 

configuration where the free layer equilibrium configuration of the magnetization is out-

of-plane, and the polarizer is in-plane (See Fig.7.1(a)). As discussed extensively in the 

experimental work [250], this MTJ configuration has a distinct behavior compared to MTJs 

where the easy-axis of the free-layer is along the direction of the magnetization in the fixed 

layer. In this case, the auto-oscillation generated by the STTs induces an oscillation of the 

resistance since the free-layer magnetization rotates between a state of maximum and 

minimum resistance, i.e., antiparallel, and parallel to the polarizer respectively. The 

resistance variation in an MTJ generates the spiking behavior described in Fig.7.1(b), 

which is characterized by a sharp change in resistance followed by a refractory period 
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where the resistance reaches the highest values. Experiments have demonstrated that this 

MTJ concept exhibits ultralow current density threshold (<106 A/cm2) for the excitation of 

the auto-oscillation [250].  

 

 

Figure 7.1 An MTJ implementation of bio-realistic firing behavior. (a) On the left we show a 

sketch of the device concept of the proposed MTJ synaptic device and on the right a sketch of a 

biological neuron. Both receive the input in terms of currents and produce an output in terms of 

voltage variation. In the spintronic device, the potential variation is due to changes in resistance 

produced by the input current and thermal effects. In the neuron, the potential variation is due to 

the Sodium (Na+), Potassium (K+), and leakage currents. (b) and (c) compare the resistance 

variation of the proposed MTJ device with the potential spiking in a biological neuron according 

to the Huxley-Hodgkin model. In (b) from top to bottom we show: the spikes in the resistance 

through the device; the dynamics of the magnetization components; the temperature variation of 

the device. (c) An example of a numerical simulation of the dynamics of a H-H neuron. It can be 

observed 6 that the behavior of a sharp firing signal followed by a refractory period is a common 

feature in both models. 

 

The ultralow threshold is achieved by considering a polarizer composed of a synthetic 

antiferromagnet that allows for proper control of dipolar fields which drives a small tilting 
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of the equilibrium magnetization of the free layer at zero bias field. The relative resistance 

of the MTJ is given by, 

𝑅𝑛𝑜𝑟𝑚 =
1+𝑃2

1−𝑃2(𝐦∙𝑝)
 (7.1) 

Where m = M /Ms is unitary magnetization vector of the free layer, Ms is the magnetization 

saturation, P < 1 is the polarization and p is the direction of the spin-polarized current. 

Hence in the absence of spin-transfer torque (STT) [35,252,253], the resistance of the MTJ 

is not at a minimal (m and p in the same direction) or maximum (m and p in opposite 

directions) state since the magnetization of the free layer is perpendicular to the 

magnetization of the polarizer (m∙p » 0). When a polarized spin-current along the 

maximum resistance direction is applied, the STT drives a large amplitude magnetization 

precession. To couple the magnetization dynamics with thermal effects, we consider three 

phenomena given below. 

 

7.2.1.1 Resistance Variation Driven Gain-Loss 
The first phenomenon is associated to the gain-loss of temperature of the MTJ driven by 

variations of the resistance, 

𝑑𝑇

𝑑𝑡
= 𝜌

𝑅𝑛𝑜𝑟𝑚(𝐽𝐴)2

𝑘𝐵
−

(𝑇−𝑇𝑎𝑚𝑏)

𝜏0
 (7.2) 

Where T is the temperature of the MTJ, ρ is the heating efficiency, J is the applied current 

density, A is the area of the MTJ, 𝑘𝐵 is the Boltzmann constant, Tamb is the room 

temperature, and τ0 the natural temperature decay time of the MTJ. The coefficient depends 

on the maximum resistance of the device R0, the thickness tb and thermal conductivity λ 

of the free layer. 

 

7.2.1.2 Parameter Scaling 
The second phenomenon is given by the temperature scaling of micromagnetic parameters, 

such as the magnetization saturation of the free layer and the polarization [193,254–257]. 

𝑀𝑠(𝑇) = 𝑀𝑠,0 (1 − (𝑇 𝑇𝑐
⁄ )

1.5

) (7.3) 

𝑃(𝑇) = 𝑃0(
𝑀𝑠(𝑇)

𝑀𝑠,0
⁄ )𝜀𝑃 (7.4) 

where Tc is the Curie temperature, Ms,0 and P0 are the magnetization saturation and 

polarization, respectively, at T = 0K, and εP is a scaling coefficient. 
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7.2.1.3 Stochasticity 
The third phenomenon is the thermal excitation of the magnetization in the free layer, 

which produces a stochasticity of the magnetization trajectory. The thermal excitation is 

incorporated as a temperature induced white noise, with magnitude [251,257]. 

ℎ𝑡ℎ𝑒𝑟 = √
2𝑘𝐵𝛼𝑇

𝑀𝑠𝛾𝑉Δ𝑡
 (7.5) 

Where α is the phenomenological Gilbert damping, γ is the gyromagnetic ratio, V is the 

volume of the free layer and Δt is the simulation time step.  

 

7.2.2 Micromagnetic Model 
The overall design of the proposed device is shown in Fig. 7.1(a). Like a biological neuron, 

the device generates voltage spikes due to an applied current corresponding to the weighted 

sum of all signals received from other neurons.  

We consider an MTJ of Ref. [250] with an MgO barrier sandwiched between a free layer 

with PMA and an in-plane magnetized fixed layer. The magnetization of the free layer is 

described by a single magnetization vector which evolves in time according to the Landau-

Lifshitz-Gilbert (LLG) Eq. (2.20) of the main text. In our model the effective magnetic 

field, heff, is given by,  

ℎ𝑒𝑓𝑓 = −𝜇0𝑀𝑠(𝐷𝑥𝐦𝐱𝑥̂ + 𝐷𝑦𝐦𝐲𝑦̂ + 𝐷𝑧𝐦𝐳𝑧̂) − 𝐻𝐹𝑛𝐹 (7.6) 

where m = M/Ms is unitary magnetization vector of the free layer, Ms is the magnetization 

saturation, D is the effective anisotropy vector, and µ0 is the vacuum permeability. We also 

consider an external field due to the coupling to the fixed layers with strength and direction 

given by HF, proportional to the magnetization of the fixed layer, and nF respectively. The 

thermal field Hther is modelled by a Gaussian noise is given by Eq. (7.5). 

 

Magnetic Parameters Value 

Saturation Magnetization (Ms) 8.47× 105 A/m 

Dipolar Field (HF) 7.7 mT 

Polarization Constant P(T) 0.78 

Gilbert Damping (𝜶) 0.01 

Demagnetizing vector (D) (0.1,0.2, -0.95) 

Fixed layer magnetization direction (nF) (1, 0, 0) 

 

Geometric & Thermal Parameters Value 

Area of Free Layer (A) 6.25× 104 nm2 

Thickness of Free layer (d) 1.6 nm 

Curie Temperature (Tc) 800 K 

Ambient Temperature (Tamb) 300 K 

(a) 

 

(a) 

 

(a) 

 

(a) 

(b) 

 

(b) 

 

(b) 

 

(b) 
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Temperature decay time (τ0) 4 ns 

Heat efficiency (B) 3.0×1014 K/Js 

Polarization scaling coefficient (εP) 1.5 
 

Table 7.2 (a) Magnetic and (b) geometric and thermal parameters used in the macrospin 

simulations at room temperature (T = 300 K). 

 

7.3 Results 

To understand the working principles of our MTJ-device different aspects were studied 

including the change in resistance and temperature of the device which is essential during 

the switching process. Moreover, the firing rate as a function of the applied impulse is 

also reported. The flexibility of our device allows it to emulate the behavior of not only 

Hodgkin-Huxley but also the LIF neurons. 

 

7.3.1 Resistance and Temperature Relation 
We first applied different currents to analyze the change in average resistance and average 

temperature. Two behaviors are observed as shown in Fig. 7.2(a): in regions (i) and (iii) 

the magnetization is fixed by a strong bias given by the anisotropy or the STT, and (ii) 

where large amplitude auto-oscillations are excited. Notice that the variation of 

temperature is essential for the firing behavior, characterized by a switch between steady 

and auto-oscillating states. The alternation is due to the parameter scaling and the 

stochasticity as seen on the bottom of Fig 7.2(a). Fig. 7.2(b) shows the average temperature 

in terms of applied current which is responsible for the parameter scaling and the amplitude 

of the thermally induced stochasticity. Moreover, we emphasize that the stochasticity of 

the device due to the thermal fluctuations also induce a small level of stochasticity of the 

firing behavior which is relevant for neuromorphic applications. 
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Figure 7.2 (a) and (b) show the dependence of the average normalized resistance and temperature 

as a function of the applied current density, respectively. On (a) we identify three regions where: 

(i) the magnetization is strongly biased towards the easy axis in the free layer (nPMA), (ii) there 

is an auto-oscillation around the easy-axis of the free layer (nPMA), (iii) the magnetization is 

strongly biased towards the direction of the magnetization in the polarizer (p). 

 

7.3.2 Current-Controlled Frequency 
Fig. 7.3(a) shows the spiking frequency as a function of the applied current density 

emulating the continuous firing under constant input. In Fig. 7.3(a) we selected two 

regions, the first region in Fig. 7.3(b) where one observes high frequency for low current 

densities, while lower frequency is observed for larger current densities as shown in Fig. 

7.3 (c). In ref.[39,258]  this current-controlled frequency relation is justified as a result to 

the non-linear frequency shift linking the frequency and the power of the spintronics. Based 

on the parameters of Table 7.2, the range of firing frequencies is between 100 MHz and 3 

GHz. Moreover, we notice in Fig. 7.3(c) that the period between spikes has small 

fluctuations associated with temperature induced noise, thus the time difference between 

spikes is not constant. This thermal induced stochasticity is essential for bio-realistic neural 

networks [4]. The other two thermal phenomena, i.e., the parameter scaling, and the 

resistance variation driven gain-loss, are responsible for another important feature of the 

observed dynamics: the characteristic refractory period. The lower output not only deters 

consecutive spikes as may also be used to tune the synapse weights.  

 

(a) 

 

(a) 

 

(a) 

 

(a) 

(b) 

 

(a)(

b) 

 

(a) 

 

(a)(

b) 

 

(a)(

b) 
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Figure 7.3 (a) Frequency of neuron firing as a function of the applied current density. (b) and (c) 

show the time domain behavior of the resistance (top), magnetization components and 

temperature (bottom) for low (2 × 1010A/m2) and high (2.4 × 1010A/m2) current density 

respectively. 

 

7.3.3 Emulating LIF Neuron 
Our proposed device works not only with the H-H model, but with current pulses within 

the LIF neuron model. In our simulations we considered a sequence of step current input 

characterized by size Δτ and amplitude Δι that respect to higher bias current J0=2.5×1010 

A/m2 showing no spikes Fig. 7.4(a)-(b). As the size of the pulse Δτ increase from 0.1 ns to 

1 ns it was verified that the time to first spike increase from about 1.5 ns to 5.5 ns (see Fig. 

7.4(c)). However, at higher amplitudes Δι, the time to the first spike does not depend on 

the size of the pulses. To complement this analysis, we also show in Fig. 7.4(d) the time 

of the first spike for constant applied currents, corresponding to a pulse of infinite size. We 

notice that the time of the first pulse grows almost exponentially until a certain current 

where firings are no longer expected. Moreover, we notice that for high Δι, i.e. low 

currents, the time to the first spike becomes rather constant around 0.5 ns due to the 

existence of the refractory period. This spiking behavior, which does not require a resetting 

mechanism, is rather robust as a function of different parameters and the device properties 

can be tuned by designing the thickness of the free layer and of the tunnelling layer, which 

influence the temperature variations. 

(b) 

 

(b) 

 

(b) 

 

(b) 

(c) 

 

(c) 

 

(c) 

 

(c) 

(a) 

 

(a) 

 

(a) 

 

(a) 
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Figure 7.4 (a) Difference between the H-H model and the LIF model. In the LIF model, we 

consider pulses of amplitude Δι and period Δτ. (b) Evolution of the device properties under the 

presence of current pulses. From top to bottom panels, we show the normalized resistance, the 

evolution of the magnetization components, the profile of the applied current and the temperature 

of the device. (c) shows the time between the first pulse and the first synapse. Different colors 

represent different pulse sizes, while the x-axis represent the lowest current value in the pulse. To 

include thermal induced stochasticity, we simulated each pulse amplitude and size five times. (d) 

The time of the first synapse for a constant current. 

 

7.4 Analogy between H-H & LLG Models 
In the previous sections, we showed how the non-linear dynamics of the designed MTJ 

device combined with thermal effects can mimic the firing behavior of a Hodgkin-Huxley 

neuron.  

Based on the summation of current over all ion channels given in Eq. (6.7) and on the 

activation functions of Eq. (6.8), can be generalized into,  

𝑑𝑥

𝑑𝑡
= −

1

𝜏𝑥
(𝑥 − 𝑥0(𝑉)) (7.7) 

(a) 

 

(a) 

 

(a) 

 

(a) 

(c) 

 

(c) 

 

(c) 

 

(c) 

(b) 

 

(b) 

 

(b) 

 

(b) 

(d) 

 

(d) 

 

(d) 

 

(d) 
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where x stands for m, l, and n (gating variables). Each ion channel in the H-H neuron is 

characterized by a different characteristic time, τx, the different timescales of which allow 

the model with four-time dependent channels to be reduced to only two. We emphasize 

that the H-H model is obtained phenomenologically to fit experimental data. The model 

described by Eq. (6.7) and Eq. (7.7) is highly nonlinear and cannot be easily simulated.  

Our results confirm that the magnetization dynamics is equally complex and can emulate 

the H-H model to produce characteristic sharp spikes followed by the refractory period 

under constant input based on its own dynamics. We derive a minimal model based on the 

LLG Eq. (2.20) with some modifications to become,  

𝑑𝐦

𝑑𝜏
= −

𝛾

1+𝛼2
(𝐦 × (𝐡eff + 𝐡𝐭𝐡𝐞𝐫) + 𝛼𝐺𝐦 × (𝐦 × 𝐡eff)) − τSTT𝐦 × (𝐦 × 𝐩) (7.8) 

Where, the effective magnetization is given by Eq. (7.6) and τSTT in a simplified form of 

Eq. (2.21). The form of Eq. (7.8) constrains the rich magnetization dynamics to the specific 

device configuration and allows for a clear understanding of the model comparability. The 

minimal model is also useful for reducing the computational cost of numerical simulations.  

We consider magnetization in spherical coordinates, m = cosθ ( x̂ cosϕ + ŷ sinϕ) + ẑ sinθ, 

and by restricting it to the dynamics in the self-oscillation regime, with small variations of 

polar angle θ, we obtain the following equation of motion: 

𝑑𝜑

𝑑𝑡
= −𝐺 +ι, (7.9) 

Where, 

𝐺 =
ι0

1−𝑃(𝑡)2𝑐𝑜𝑠𝜑
𝑠𝑖𝑛𝜑 −

𝛾𝜇0𝑀𝑠(𝑇)

2
(𝐷𝑥 + 𝐷𝑦 − 2𝐷𝑧 + (𝐷𝑥 − 𝐷𝑦)𝑐𝑜𝑠2𝜑)𝜃 − 𝛾𝐻𝐹𝑐𝑜𝑠𝜑𝜃

 (7.10) 

Here, ι0 = γ ħ PJ0/Msed and ι = γ ħPJ /Msed are, respectively, the reference spin current, 

which biases the magnetization towards p, and the spin-current difference, which allows 

for the firing behavior, as described in the previous section (Section 7.3). We neglect 

damping because in the active region the magnetic losses are compensated for by the 

negative damping originating from the spin-transfer-torque.  

Moreover, notice that the model above emulates the H-H behavior, even in the absence of 

the dipolar field, i.e., HF = 0. However, the field is necessary to set the tilted configuration 

of magnetization to achieve a low critical current for excitation of the self-oscillation of 

magnetization. The parameters Ms(T) and P(T) depend on temperature, as shown in Eqs. 

(7.3-7.4). The model from Eqs. (7.9-7.10) based on the LLG reproduces the firing behavior 

reported in Figs. 7.1(b) & 7.2(a) emulating the H-H model.  
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7.5 Variation of Current 
To derive the minimal model from Eqs. (7.9-7.10), we consider the LLG Eq. (7.8) and 

substitute the unitary magnetization in the spherical coordinates. Notably, for m parallel to 

the easy axis, θ = π/2, while, for m along p, θ = ϕ = 0. We expand the LLG equation to 

linear order in θ, to consider auto-oscillations at high input currents. Thermal effects are 

included in the minimal model, Eqs. (7.9-7.10),  as effective changes to the material 

parameter values in the LLG Eq. (7.8), shown in Eqs. (7.2),(7.5). Moreover, in the main 

text, we neglect the contribution of fieldlike torques. We can include such torques by 

adding the following term to the LLG Eq. (7.8): 

τFL = αFLτSTT𝐦 × (𝐦 × 𝐩) (7.11) 

 

 

 

Figure 7.5 Behavior of magnetization dynamics for different currents and including the fieldlike 

torque. Material parameters are those given in Table 7.2. 

 

where αFL is a coefficient for the strength of the fieldlike torque and is often assumed to be 

small (i.e., αFL << 1). Fig. 7.5 shows the spiking behavior for different currents and αFL. 

We notice that the fieldlike torque qualitatively increases the frequency of the spikes, 

requiring a higher current for a lower spiking frequency. 

 



123 
 

7.6 Designing an Unsupervised SNN 
To test the device concept in a simple SNN, we considered a rate-based information 

encoding (discussed in Section 6.5.1). We employed SNN to perform the classification of 

binarized images, where pixels can assume values “0” and “1”. The SNN is given by two 

layers, an input and output layer, where the MTJs correspond to the firing neurons. For the 

current input of the first layer, we considered that “0” corresponds to a high current where 

spikes are not observed, and “1” corresponds to a lower current with a high frequency of 

spikes. The input current of output neurons Iout is given in terms of weighted voltage of the 

input neurons Vin,  

𝐼𝑚(𝑡) = ∑ 𝜒𝑚(𝑡)𝑔(𝑊𝑚𝑛𝑉𝑛(𝑡))𝑛=𝑖𝑛𝑝𝑢𝑡 , 𝑤ℎ𝑒𝑟𝑒 
𝑑𝑔(𝑉)

𝑑𝑡
= 𝜌𝑔(𝑉 − 𝑉𝑟𝑒𝑓) +

𝑔(𝑉)−𝑔(𝑉𝑟𝑒𝑓)

𝜏𝑔

 (7.12) 

Here the function g(V) is an exponential function that allows to integrate spikes over time 

and maintain the input current for the output neurons rather constant, and the parameters 

ρg and τg were chosen according to the range of currents and frequency of spikes desired. 

The parameters 𝜒𝑚(𝑡) = {0.1,1} emulates the lateral inhibition, i.e., if an output neuron 

spikes the parameter 𝜒𝑚(𝑡)is decreased for all other neurons for a period given by the 

characteristic time interval between two spikes of the input neurons.  

Fig. 7.6(a), shows the behavior of a simple SNN with 4 firing neurons, two input and two 

output. For the learning process, we considered an unsupervised mechanism where the 

weights were updated according to the Hebbian and anti-Hebbian rule [259]. If an output 

neuron fired, the weight associated to the input neurons that had just spiked increase while 

the weight associated to the input neurons that haven’t spiked recently decreased.  

Furthermore, we let the SNN weights evolve until an output neuron has a considerably 

higher frequency compared to the other neurons. To strengthen the learning, after this 

process we fix the input currents of the output neurons according to the following 

algorithm: if the frequency of the output neuron is similar or higher than the frequency 

obtained with other input images for that same output neuron, the input current is set to the 

lowest value of the current achieved; else, if the frequency is significantly lower than the 

frequency obtained with other input images for that same output neuron, the neuron with 

second highest frequency is set with the lowest current achieved; the input of all other 

output neurons is fixed not to fire (i.e. the current associated to “0”). With these fixed input 

currents on inputs and output neurons, the weights then evolve normally according to the 

Hebbian and anti-Hebbian learning. 

The SNN was tested on two different input sets of three patterns with 3 × 3 pixels as shown 

in Fig. 7.6(b). The tested net shown in Fig. 7.6(c) is composed of nine input neurons, one 

for each pixel, and three output neurons. The pixels assumed values “0” or “1”, which was 

uniquely identified to two different currents with different firing rates (0 – low frequency;1 

– high frequency). The tests were performed by initiating the SNN with random weight 

matrices. After repeating in a temporal sequency each pattern from three to five times, the 

final weight matrix uniquely identified each of the input patterns, see Fig. 7.6(d) for an 

example. 
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Figure 7.6 An example of SNN built with the proposed MTJ device. (a) Shows the behavior of 

an SNN with 4 neurons. The current of the two input neurons is set as constants. For each MTJ 

we show the behavior of the resistance (upper panel) and the input current (lower panel). The 

input currents of the output neurons are generated according to Eq. 7.12, with the respective 

weights Wmn shown. (b) shows the two sets considered for verifying the learning process and (c) 

shows a sketch of the Feed-forward All-connected SNN. Each pixel is associated with a single 

input neuron. (d) shows the evolution of the weight matrix. Starting from a random distribution of 

weights, after the training process, each figure can be represented by a single output neuron 

which has the highest frequency. 

 

7.7 Summary  
In this chapter we showed how the single MTJ device mimics the bio-realistic spiking 

neurons. Our device succeeded in emulating both the simpler LIF model as well as the 

more realistic H-H model without the need for a resetting mechanism. The proposed device 

works at room temperature and leverages two physics to produce constant firing at constant 

input. We demonstrate the frequency dependence on the applied current, as well as a firing 
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mechanism based on the amplitude and length of input pulses. The rate of spikes is in the 

range from MHz to GHz. The device presents several properties expected for the hardware 

implementation of bio-realistic neurons, which include: (i) highly scalable, reproducible, 

and robust; (ii) the characteristic refractory period, showing a depression of the potential 

after the spike; (ii) a small but non vanishing stochasticity, which allows for random 

fluctuations without significantly increasing the error rate. 

We verified the behavior of the device by simulating a spiking neural network to recognize 

different figures. The information was encoded in the spiking ratio. The neural network 

was successfully able to classify the figures. The largest set we considered was 3x3 pixels, 

due to computational limitations. It is important to emphasize that while these calculations 

are usually computationally expensive, requiring a significant amount of memory and 

calculation time, the device’s inherent nonlinear and time non-local dynamics can realize 

the calculation fast at low power input. Overall, the proposed device corresponds to a low-

input, highly reproducible, scalable, robust, CMOS-compatible single MTJ working at 

room temperature, that emulates the bio-realistic H-H model. The device properties can be 

engineered to fit the network requirements by modifying the temperature gain/loss of a 

previously experimentally realized MTJ concept. This proposal allows for an easy drop-in 

replacement in current SNN CMOS-based hardware implementations to increase area, 

energy, and memory efficiency. 
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