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Abstract

The interaction between light and matter is one of the most fundamental phenomena in

physics, and it has been extensively studied in various contexts, such as atomic physics,

quantum optics, and solid-state physics. In particular, the regime of strong coupling,

where the light-matter interaction energy exceeds the dissipation rates of the system,

has attracted a lot of attention for its potential applications in quantum information

processing, quantum metrology, and quantum simulation. However, in recent years, new

regimes of light-matter interaction have emerged, where the coupling strength becomes

comparable to or even larger than the bare frequencies of the subsystems. These regimes,

known as the ultrastrong coupling regime and the deep-strong coupling regime, pose

new challenges and opportunities for both theoretical and experimental investigations.

In particular, it has been shown that as the coupling enters the ultrastrong coupling

regime, many issues arise, like the violation of the gauge invariance principle, and the

presence of virtual excitations in the ground state.

In this thesis, I explore some novel aspects of the ultrastrong coupling (USC) and deep-

strong coupling (DSC) regimes on hybrid systems. The focus will be on cavity quantum

electrodynamics and I will use two prototypical models: the quantum Rabi model and

the Hopfield model, which describe the interaction between a single-mode cavity field

and a two-level system, or a multimode cavity field and a collection of two-level sys-

tems, respectively. I also consider the effects of pure dephasing, which originates from

the non-dissipative information exchange between quantum systems and environments,

and plays a key role in both spectroscopy and quantum information technology. Addi-

tionally, I will study the hopping mechanism in optomechanics.

The main results of this thesis are as follows:

• I derive an effective Hamiltonian for a nonlinear oscillator coupled to a qubit
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using a polariton model. I show the importance of correctly applying the minimal

coupling to satisfy the gauge invariance principle.

• I investigate the pure dephasing of light-matter systems in the USC and DSC

regimes, using a dissipative quantum Rabi model and a Hopfield model. I find

that the interaction can significantly affect the form of the stochastic perturbation

describing the dephasing of a subsystem, depending on the adopted gauge.

• I study the optomechanical two-photon hopping in a system of two cavities sep-

arated by a vibrating two-sided perfect mirror. I show that this system displays

photon-pair hopping between the two electromagnetic resonators, which is not due

to tunnelling, but rather to higher-order resonant processes.

This thesis is organized as follows:

• In Chapter 1, I introduce the basic concepts and tools of cavity quantum electro-

dynamics and the USC and DSC regimes.

• In Chapter 2, I present the model and the results for the nonlinear oscillator both

uncoupled and coupled to a qubit.

• In Chapter 3, I present the model and the results for the pure dephasing of light-

matter systems.

• In Chapter 4, I present the model and the results for the optomechanical two-

photon hopping.

• In Chapter 5, I summarize the main conclusions and outlooks of this thesis.
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Chapter 1

Introduction: Light-matter

coupling

With light-matter interaction we usually intend processes that involve the absorption,

emission or scattering of a photon by a distribution of charges. This definition follows a

perturbative description of quantum electrodynamics, where the strength of the interac-

tions is related to the dimensionless fine structure constant α ≃ 1
137 . The smallness of α

explains why a satisfactory description is obtained by considering only first (absorption

and emission) or second (scattering) order processes.

In 1946 Purcell [1] showed that, while the value of α is fixed by nature, it was possible

to engineer systems with a modified coupling strength, usually indicated with the letter

g. In these systems is possible to increase or decrease the lifetime of an excited state

by modifying the local density of photonic states at the emitter position. For example,

Chang et al. [2] were able to experimentally demonstrate full control of the spontaneous-

emission dynamics of single quantum dots (QDs) in a photonic-crystal nanocavity, by

showing time-resolved micro-photoluminescence intensities of InGaAs QDs on resonance

with the cavity, off-resonance and in bulk without any cavity. Compared with the case

without any cavity, the QDs decay more quickly in a resonant cavity (which enhances

the density of states that the QDs can decay to) and more slowly in an off-resonant

cavity (which shields the QDs from the environment).

This marked the birth of a new field of research called cavity quantum electrodynamics

(cQED). A few decades later, this led to the possibility of building devices with low

energy losses and controllable coupling strength. A cornerstone of this field is the Nobel
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Chapter 1: Introduction: Light-matter coupling

prize winner experiment by Haroche and co-workers [3], which in 1983 used a collection of

Rydberg atoms in a high-Q microwave cavity to obtain a system whose coupling strength

was bigger than its losses. This regime of coupling, known as the strong coupling (SC)

regime, is characterized by coherent quantum dynamics and processes, like the quantum

Rabi oscillation, where an excitation jumps back and forth between the cavity and an

atom.

Now we can formally define the first scale of light-matter interaction. Comparing the

coupling strength g with the photonic losses (γ) or atomic losses (κ), we say that the

system is in the strong coupling regime when γ,κ≥ g and in the weak coupling (WC)

regime in other cases.

The ability to control the property of light-matter interaction with the Purcell effect in

the WC regime, led to a plethora of applications and innovations such as low-threshold

solid-state lasers [4] and efficient single-photon and entangled-photon emitters [5, 6],

while the more experimentally complex SC regime made it possible to manipulate and

control quantum systems, enabling tests of fundamental physics [7] and applications

[8] such as high-precision measurements [9] and quantum information processing (QIP)

[10].

A different scale is obtained by comparing g with the bare frequencies of the subsystems

ω (with bare we intend the frequency of the non-interacting components of the system).

Usually is considered that when the ratio between g and ω, called normalized coupling

strength (η), is at least 0.1, the system is in the ultrastrong coupling (USC) regime,

although this value should not be considered a hard threshold. Again, it is important to

stress that the USC is not the SC with a stronger coupling, but they are two different

scales. On the other hand, if we further increase the coupling in the USC regime, we

enter another domain of interaction, called the deep-strong coupling (DSC). Both USC

and DSC are characterized by the impossibility of separating light and matter states

as they mix and, their properties get intertwined, as it will be explained in more detail

later.

The achievement of these regimes is more recent, as the USC was first theoretically

defined in 2005 by Ciuti et al. [11] and its first experimental observation in 2009 by

Anappara et al. [12] by using intersubbands polaritons. Afterwards, greater coupling

strength values were achieved in this kind of system, for example [13, 14], and many
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Chapter 1: Introduction: Light-matter coupling

other systems were brought into the USC regime: superconducting systems [15, 16, 17],

Landau polaritons [18, 19, 20], organic molecules [21, 22, 23] and optomechanics [24,

25]. These are only some examples of a very extensive (and growing) literature, proving

the vast interest in this topic, further stressed by two recent reviews [26, 27].

We are just starting to see the innovations that these interaction regimes can bring, but

as with many other novelty, these new light-matter interaction regimes brought many

questions, some of them still awaiting answers. Two of the big issues raised by the

USC and DSC regimes are the so-called vacuum emission and the gauge dependence

of the theoretical description [28]. Now these original questions are, for the most part,

answered. Almost two decades after its introduction, we finally have a satisfying theo-

retical description and the technical skills that allow the fabrication of devices in these

regimes.

Undoubtedly, in the coming years, we will witness the advent of more efficient devices

that exploit USC and DSC regimes. For instance, the interaction between a single pho-

ton and a single emitter leads to significant nonlinearity, which has found applications in

electro-optical devices operating in the SC regime. By transitioning from SC to USC, the

performance of such devices will improve considerably. This transition enables faster

control and response, even for components with shorter lifetimes. Moreover, certain

quantum effects, including quantum gates in specific short-lifetime systems, can only

be observed above the USC threshold. The list of emerging applications of USC is ex-

tensive and encompasses Quantum Information Processing (QIP), Quantum Metrology,

Nonlinear Optics, Quantum Optomechanics, Quantum Plasmonics, Superconductivity,

Metamaterials, Quantum Simulations, Quantum Thermodynamics, Chemistry QED,

Materials Science, and more. Furthermore, it remains an open question whether en-

tirely new phenomena can be predicted and observed within the USC or DSC regimes.

For instance, experimental observations have revealed new stable states of matter. These

states could be entangled hybrid light-matter ground states in the DSC regime [16] or

as discrete time crystals, predicted [29] to exist in systems described by the Dicke model

with tunable USC.
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Chapter 1: Introduction: Light-matter coupling

1.1 Quantum Rabi model

A single atom in a single frequency cavity is the simplest case of cavity QED and is

described by the quantum Rabi model (QRM) [30, 31, 32]. This model considers the

atom as a two-level system whose upper level |e⟩ is connected to the lower level |g⟩ by an

electric dipole transition at angular frequency ωq. This system is equivalent to a 1
2 spin

particle in an external magnetic field (conventionally oriented along the Z-axis) because

the spin can only be parallel or antiparallel to the field, i.e. it has two energy levels and

energy eigenstates. We make the correspondence |e⟩ → |0⟩ and |g⟩ → |1⟩, so that |e⟩

and |g⟩ are eigenstates of σz with eigenvalue +1 and −1. With these definitions, the

atomic Hamiltonian is (ℏ = 1):

Ĥq = ωq

2 σ̂z . (1.1.1)

Note that the state |1⟩ has lower energy than the state |0⟩. This is only a convention,

so using the opposite definition is possible if convenient.

We also introduce the atomic raising and lowering operators σ±:

σ̂± = 1
2 (σ̂x ± iσ̂y) , (1.1.2)

these atomic excitations creation and annihilation operators follow the fermionic com-

mutation relation [σ̂−, σ̂+] = 1.

The single-frequency cavity (ωc) is described with a bosonic harmonic resonator whose

Hamiltonian is:

Ĥc = ωcâ
†â. (1.1.3)

The classical coupling Hamiltonian is −D ·Ec, where Ec is the electric field and D = qR

is atomic dipole vector and R. Assuming that |0⟩ and |1⟩ are levels of opposite parities,

the odd-parity qR̂ dipole operator is purely non-diagonal in the Hilbert space spanned

by |0⟩ and |1⟩ and develops along the σ̂± matrices according to:

D = d (ϵaσ̂− + ϵ∗
aσ̂+) , (1.1.4)

where we have introduced the notation:

q ⟨g| R̂ |e⟩ = dϵa, (1.1.5)

with d being the dipole matrix element of the atomic transition and ϵa the polarization

vector. The electric field is:

Er = iEr

[
ϵre

−iωrte−iφ − ϵ∗
re

+iωrteiφ
]
, (1.1.6)
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Chapter 1: Introduction: Light-matter coupling

where Er is the real amplitude of the classical field, ωr is its frequency, ϵr is the complex

unit vector describing its polarization and φ is its phase. Following the usual quantiza-

tion procedure, we obtain the interaction Hamiltonian Ĥint = ηωc

(
â† + â

)
(σ̂+ + σ̂−),

so the quantum Rabi Hamiltonian in the dipole gauge is:

Ĥd = ωcâ
†â+ ωq

2 σ̂z + ηωc

(
â† + â

)
(σ̂+ + σ̂−) . (1.1.7)

The interaction Hamiltonian consists of four terms, two of them
(
â†σ̂− + âσ̂+

)
called

rotating or co-rotating terms and the other two
(
â†σ̂+ + âσ̂−

)
called counter-rotating or

anti-resonant terms. The rotating terms conserve the number of excitations since they

create one excitation in one field and destroy one in the other, while the counter-rotating

terms create or destroy two simultaneously in both fields.

Outside of the USC and DSC regimes, i.e. for coupling η ≲ 0.1, is possible to apply the

rotating wave approximation (RWA) and discard the counter-rotating terms, obtaining

the well-known Jaymes-Cumming model (JCM) [32]. The eigenstates of the JCM are

also called ‘dressed states’ and, due to the exclusive presence of exchange terms in the

Hamiltonian of the JCM, only states with an equal number of excitations are capable

of interacting. For each excitation is possible to identify two states |+⟩ and |−⟩, called

JC doublets. They are superpositions of two states containing both light and matter

excitations. Considering this, a full diagonalization can be obtained in a subspace of n

JC doublets |±⟩n, with n number of excitations. This model has had widespread use

in a variety of physical platforms, ranging from neutral atoms in optical and microwave

cavities, trapped ions with quantized motion, to superconducting qubits coupled to

electromagnetic cavities, transmission line resonators, and nanomechanical resonators.

By contrast, lifting the RWA and considering the full Rabi Hamiltonian has intrinsic

difficulties but the most relevant are the presence of virtual excitations in the ground

state [33, 34] and the violation of the gauge principle [28, 35].

1.1.1 Virtual excitations in the ground state

Before addressing the problem of the virtual excitations in the ground state, it is in-

teresting to talk about the eigenstates of the QRM. As the coupling strength increases

and the counter-rotating terms can be no longer neglected, the number of excitations

(N̂exc = â†â+ σ̂+σ̂−) is no longer conserved and states with different numbers of excita-
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Chapter 1: Introduction: Light-matter coupling

tions can interact and get hybridised, leading to the phenomenology that distinguishes

USC with non-USC regimes. The dressing of the eigenvalue is no longer restricted to

two levels at a time, defined by a fixed number of excitations, but multiple bare levels

with different numbers of excitations participate in the dressing process. This posed a

challenging problem and the QRM was long considered to be unsolvable by analytical

means and also non-integrable [36], until an analytic solution was found in 2011 by Braak

[37], although it still requires the numerical calculation of transcendental functions.

Indeed, the Rabi Hamiltonian presented in (1.1.7) has a conserved quantity, the parity

operator P̂ = exp
(
iπN̂exc

)
, but, is also possible to generalize this model, a necessity

in superconducting circuits [15, 16], breaking even the parity symmetry [38]. This

model is called asymmetrical QRM and is obtained by replacing the interaction term(
â† + â

)
(σ̂+ + σ̂−) =

(
â† + â

)
σ̂x with

(
â† + â

)
(cos θσ̂x + sin θσ̂z), considering θ ̸=

0, π.

The presence of excitations in the ground state is maybe the distinguishing property

between USC and non-USC regimes. As shown in see Fig. 1.1 (from [26]), as the

coupling strength increases the mean value in the ground state of both
〈
â†â

〉
and ⟨σ̂−σ̂+⟩

increases. One of the first points discussed at the birth of USC was the nature of these

excitations. Since the mean value
〈
â†â

〉
gs

̸= 0 does it mean that in USC even the

ground state will radiate? If it does not and the excitations are only virtual, how can

they enable non-linear processes like the one shown by Kockum et al. [39]?

Figure 1.1: Mean number of virtual photonic and atomic excitation in the ground state. As

the coupling increases, the ground state of the quantum QRM starts to contain a

considerable number of (virtual) atomic and photonic excitations
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Chapter 1: Introduction: Light-matter coupling

A first solution considering the colored nature of the dissipation bath was proposed

by Ciuti et al. [33], but this method is numerically demanding. A different, less com-

putationally onerous solution was proposed by Ridolfo et al. [34]. Both paths show

that the excitations contained in USC states are indeed virtual, "trapped" in the states

and unable to be emitted. Following the approach by Ridolfo et al. [34], let us recall

Glauber’s photodetection theory [40]. He defined Ê− and Ê+ as the positive and neg-

ative frequency components of the electric field operator of the output field to be used

in photodetection. The probability per unit time that a photon be absorbed by an

ideal detector is proportional to
〈
Ê−(t)Ê+(t)

〉
. This quantity calculated in the ground

state must be zero, otherwise it would not be a ground state, since if it emits then it

is decaying into a lower energy state, defying the definition of ground state. With this

in mind, the only explanation is that â† and â are not the correct operators to use in

photodetection. This becomes evident when we consider the electric field operator in the

dressed basis, i.e. ⟨j| â+ â† |k⟩. For coupling strength close to zero, ⟨j| â |k⟩ generate the

positive frequency component of the electric field operator, while ⟨j| â† |k⟩ generates the

negative frequency components. But, as the coupling strength increases and we enter

the USC regime, that is not the case, as both ⟨j| â |k⟩ and ⟨j| â† |k⟩ are not exclusively

composed by positive or negative frequency. On the other hand, considering ⟨j| â+ â† |k⟩

and defining its positive frequency component as Ê− and its negative component as Ê+,

ensures a consistent result.

Still, there needs to be a relation between the intra-cavity field X̂− and X̂+ and the

extra-cavity â and â†, and to derive it we consider a cavity coupled to an output

waveguide via the standard position-momentum interaction, i.e. an interaction be-

tween the cavity field X̂ and the momentum quadrature Π̂ω of the waveguide field

outside the cavity. Therefore the interaction Hamiltonian is Ĥi = ϵc
∫
dωX̂Π̂ω, with

Π̂ω = −i
√
ω/4πϵ0ν

[
âω − â†

ω

]
, where ϵc is a coupling parameter, ϵ0 is a parameter de-

scribing the dielectric properties of the output waveguide and ν is the phase velocity.

The input (output) field operators are:

âout(in)(t) = 1√
2π

∫
dω

√
ωe−iω(t−t̄)âω(t̃), (1.1.8)

where t̃ = t1 → ∞ for the input field and t̃ = t0 → −∞ for the output field. With this

definition
〈
â†

out(t)âin(t)
〉

is proportional to
〈
Ê−(t)Ê+(t)

〉
, that describe the photon flux

emitted by the cavity. Following the standard procedure [41], we obtain the input-output

7



Chapter 1: Introduction: Light-matter coupling

relation:

âout (t) = âin (t) − i
ϵc√

8π2ϵov

˙̂
X+. (1.1.9)

To separate X̂ into its positive and negative frequency components ˙̂
X+and ˙̂

X−, we

expand it in terms of the energy eigenstates |j⟩ and find ˙̂
X+ = −i

∑
j,k>j

∆kjXjk|j⟩⟨k|,

where Xjk = ⟨j|X̂|k⟩ and X̂− =
(
X̂+

)†
.

Analogously to the James-Cummings model’s dressed state, X̂+ and X̂− are usually

called dressed operators and they describe the real photons inside the cavity, as

they follow the usual definition of creation and annihilation operators. Calling the

system ground state |0⟩, ⟨0| X̂−(t)X̂+(t) |0⟩ = 0 and X̂+|0⟩ = 0, in contrast to â and â†

that describe the virtual photons, as ⟨0| â†â |0⟩ ≠ 0 and â|0⟩ ≠ 0.

Still, even if they are virtual excitations, in the sense that if we put a photodetector

inside the cavity it would not detect anything except with very small probability at short

timescales set by the time–energy uncertainty [42], they can have a detectable effect on

different phenomena. For example, they can induce a measurable change in the Lamb

shift of an ancillary probe qubit coupled to the cavity [43], and they also generate a

radiation pressure in optomechanical system [44].

On the other hand, is possible to detect these excitations by converting them into real

ones and there are many proposals based on different approaches, but most of them

rely on a rapid modulation of either g or the atomic frequency [45, 46, 47, 48, 49] or

on utilizing additional atomic levels [50, 51, 48, 52] non in USC. Both of them require

USC, since these processes are not active in SC, stressing once more that USC and SC

are two independent regimes [53]. Interestingly, the rapid modulation of g is connected

to the dynamical Casimir effect, in which vacuum fluctuations are converted into pairs

of real photons when a mirror (or another boundary condition) is moved at high speed

[54, 55].

1.1.2 Violation of the gauge principle

The violation of the gauge independence principle in USC is tightly connected to the

two-level approximation, a fundamental step in the derivation of the QRM. De Bernardis

et al. [28] raised the question about the validity of this step, as it depended explicitly

on the gauge choice once the system entered the USC regime, because in the electric
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dipole gauge the two-level approximation can be performed as long as the Rabi fre-

quency remains much smaller than the energies of all higher-lying levels, but it failed

dramatically in the Coulomb gauge even for highly anharmonic spectrum above the USC

threshold, as shown in Fig. 1.2 (from [28]), where the eigenvalues of the Hamiltonian

without the two-level approximation (labelled full) are in perfect accordance with the

Rabi Hamiltonian in the dipole gauge (HD
Rabi), but deeply different from the eigenvalues

of the Hamiltonian in the Coulomb gauge (HC
Rabi). Still, is very well known that while

choosing a different gauge leads to a different interaction form (see for example [56]),

all the observable of the system must be independent of this choice, and this obviously

includes eigenvalues, thus the two-level approximation seems to ruin this property.

Figure 1.2: Failure of the dipole approximation in the Coulomb gauge. We see how HC
rabi

shows a total discordance with the full Hamiltonian in the USC regime.

At the very heart of the problem is that the derivation of the two-level Rabi Hamiltonian

in the Coulomb gauge does not take into account that the truncation process can lead

to a non-local potential [35], as shown by Starace in a similar problem [57], where he

studied how the approximation procedure gave rise to non-local potential, causing gauge

ambiguities in the calculation of atomic oscillator strength.

In order to understand why local potentials become non-local when the Hilbert space is

9



Chapter 1: Introduction: Light-matter coupling

truncated, let us consider a one-dimensional potential V̂ . In the position basis, it can

written as

V̂ =
∫
dxdx′ ⟨x|V̂ |x′⟩

∣∣x〉〈x′∣∣ . (1.1.10)

The matrix elements of a local potential, denoted as ⟨x|V̂ |x′⟩, can be expressed as

V (x, x′) = W (x)δ(x − x′). A complete basis is represented by {|n⟩} and the matrix

elements can be shown as V (x, x′) =
∑

n,n′ Wn,n′ψ∗
n′(x′)ψn(x) = W (x)δ(x − x′), where

we have defined ψn(x) as ⟨x|n⟩. It’s important to note that the Dirac delta function

can only be reconstructed by retaining in its entirety the basis vectors. The two-level

approximation truncates the space to only the two lowest energy levels:

V (x, x′) ≈ W1,0
[
ψ∗

0(x′)ψ1(x) + ψ∗
1(x′)ψ0(x)

]
, (1.1.11)

which is clearly not a reproduction of the Dirac-delta function, so the two-level approx-

imation lead to a highly non-local potential.

A non-local potential in the position representation is described with an integral oper-

ator, that does not commute with the position operator, but it is possible to make it

local by giving it a momentum dependency, V (r̂, p̂), as shown by several authors [57, 58,

59]. By using the translation operator ψ(x′) = e[i(x′−x)p̂]ψ(x), where p̂ is the momentum

operator, we obtain

∫
V (x, x′)ψ(x′)dx′ = V (x, p̂)ψ(x) . (1.1.12)

Let’s take a step back and reconsider how Hamiltonian in different gauges are obtained.

The starting point is a non-relativistic quantum particle of mass m in a local potential

V (x), which is described by the Hamiltonian Ĥ0 = qϕ(x) + 1
2m(p̂)2 + V (x). where q is

the charge, ϕ(x) and A(x) are the scalar and vector potential. Applying the minimal

coupling replacement p → p − qA(r, t) ensures the gauge invariance of the Hamiltonian

(see App. B for a general procedure). We still have to add the Hamiltonian of the free

field, choose a gauge and quantize. If we consider the Coulomb gauge, where the particle

momentum is coupled only to the transverse part of the vector potential, and consider

a single-frequency cavity we obtain [56]:

ĤC = 1
2m(p̂− qÂ)2 + V̂ (x) + Ĥph , (1.1.13)

where Â = A0
(
â+ â†

)
is the quantized expression for the vector potential calculated

10



Chapter 1: Introduction: Light-matter coupling

at the particle position, A0 is the zero-point-fluctuation amplitude and Ĥph = ωcâ
†â is

the cavity field Hamiltonian.

The Hamiltonian in the dipole gauge, ĤD, corresponds to the Power-Zienau-Woolley

Hamiltonian after the dipole approximation. It can be obtained directly from the Hamil-

tonian in the Coulomb gauge with the electric dipole approximation (1.1.13) by means

of a gauge transformation, which is also a unitary transformation: ĤD = ÛĤCÛ
†, where

the unitary operator is Û = exp
[
−iqxÂ/ℏ

]
. The resulting Hamiltonian in the dipole

gauge is

ĤD = Ĥph + Ĥ0 + q2A2
0ωc

ℏ
x2 + iqωcxA0

(
â† − â

)
. (1.1.14)

Equations (1.1.13) and (1.1.14) have no gauge issue, as every observable leads to the

same result.

The quantum Rabi Hamiltonian is obtained by projecting in a two-level space. Project-

ing (1.1.13) we obtain:

Ĥ′
C = ℏωcâ

†â+ ℏωq

2 σ̂z + ℏgCσy(â† + â) + q2A2
0

2m (â† + â)2 , (1.1.15)

where gC = gD ωq/ωc, while in the dipole gauge we obtain:

ĤD = Ĥph + ℏωq

2 σ̂z + iℏgD
(
â† − â

)
σ̂x , (1.1.16)

where gD = ωcA0dq/ℏ = gCωc/ωq, and dq ≡ q⟨1|x|0⟩ is the dipole matrix element.

Eq. (1.1.15) presents the inconsistencies expressed above because the minimal coupling

replacement has been applied incorrectly. In (1.1.13) the potential has a dependency on

p̂, thus we need to apply the minimal coupling replacement. This leads to

ĤC = ℏωcâ
†â+ ℏωq

2
{
σ̂z cos

[
2η(â+ â†)

]
+ σ̂y sin

[
2η(â+ â†)

]}
. (1.1.17)

It is worth noting that the Hamiltonian in both gauges can be rewritten in a similar

way to the non-interacting Hamiltonian, given that we redefine the system operators,

the matter ones for the dipole gauge and the photonic one for the Coulomb gauge. To

show this we consider that eq. (1.1.17), the correct Rabi Hamiltonian in the Coulomb

gauge, can be written as the sum of the free photonic field Ĥc (1.1.3) and an interacting

matter contribution obtained by applying the unitary transformation Û to the free

matter Hamiltonian Ĥq (1.1.1) [60]:

ĤC = Ĥc + Û †ĤqÛ . (1.1.18)

11



Chapter 1: Introduction: Light-matter coupling

Introducing the Coulomb-gauge Pauli operators [61]

σ̂′
z = Û †σ̂zÛ

† = σ̂z cos
[
2η
(
â† + â

)]
+ σ̂y sin

[
2η
(
â† + â

)]
, (1.1.19)

the Hamiltonian in (1.1.15) can be rewritten in a more compact way as:

ĤC = Ĥ(0)
c + ωq

2 σ̂
′
z . (1.1.20)

As a consequence, the dipole gauge Hamiltonian can be directly obtained as

ĤD = ÛĤCÛ
† = ÛĤcÛ

† + Ĥq . (1.1.21)

The result is

ĤD = Ĥ(0)
c + Ĥ(0)

q + V̂cq
D , (1.1.22)

where the interaction term is

V̂cq
D = iηωc

(
â† − â

)
σ̂x + η2ωc σ̂

2
x , (1.1.23)

being η the normalized qubit-cavity coupling strength and σ̂2
x = Î just corresponds to

the identity operator. Introducing the dipole gauge photon operators [61]

â′ = T̂ âT̂ † = â+ iησ̂x ,

â′† = T̂ â†T̂ † = â† − iησ̂x ,
(1.1.24)

(1.1.22) can be written as

ĤD = ωcâ
′†â′ + Ĥ(0)

q . (1.1.25)

Equations (1.1.18) and (1.1.21) show that, in general, while the Coulomb gauge can

be correctly implemented by applying a unitary transformation (generalized minimal

coupling replacement) to the bare matter Hamiltonian, the dipole gauge Hamiltonian

can be obtained by applying a generalized minimal coupling replacement (with opposite

coupling constant) to the free-field Hamiltonian. The form of the operators in the two

gauges are summarized in the table 1.1.

Of course, the two gauges, being related by a unitary transformation, provide the same

physical results [61]. We also notice that, while the correct Coulomb-gauge quantum

Rabi Hamiltonian is very different from the corresponding standard quantum Rabi

Hamiltonian [28, 35], the standard dipole gauge model is not affected by gauge issues

as shown by (1.1.22).
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Chapter 1: Introduction: Light-matter coupling

Dipole gauge Coulomb gauge

âD = â′ = â+ iησ̂x âC = â

â†
D = â′† = â† − iησ̂x â†

C = â†

σD
x = σx σC

x = σx

σD
y = σy σC

y = σ′
y = σ̂y cos

[
2η
(
â† + â

)]
− σ̂z sin

[
2η
(
â† + â

)]
σD

z = σz σC
z = σ′

z = σ̂z cos
[
2η
(
â† + â

)]
+ σ̂y sin

[
2η
(
â† + â

)]
Table 1.1: Atomic and photonic operators in dipole and Coulomb gauge

1.1.3 Decoupling

Another feature of the Rabi model worth mentioning is the decoupling [62], a character-

istic feature of the DSC regime, where the light-matter system for high coupling value

lose its dependency on the coupling strength, acting as it is effectively decoupled. As

shown in Fig. 1.2, for η → ∞ the eigenvalues have a pairwise degeneration and their

value corresponds to that for η = 0. A further indication of the inadequacy of the HC
Rabi

is its failure to exhibit decoupling.

We start considering HD (1.1.22):

ĤD = ωq

2 σ̂z + ωcâ
′†â′ . (1.1.26)

We recall Eqs. (1.1.24):
â′ = â+ iησ̂x ,

â′† = â† − iησ̂x .
(1.1.27)

When ηωc ≫ ωq, the term ωq

2 σ̂z can be treated as a perturbation and can be neglected in

the limit η → ∞. The resulting Hamiltonian commutates with σ̂x, thus we can project

it into the eigenstates of σ̂x (|±⟩):

ĤD → Ĥ∞
D± = ωcâ

′†
±â

′
± , (1.1.28)

where we have now defined:
â′

± = â± iη ,

â′†
± = â† ∓ iη .

(1.1.29)

The operators â′
± and â′†

± are just bare creation and annihilation operators â† and â dis-

placed by a quantity ±iη. By using the displacement operator D̂(α) = exp
(
αâ† − α∗â

)
(in our case α = ±iη), the unitary condition D̂(α)D̂†(α) = D̂†(α)D̂(α) = 1̂ and
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Chapter 1: Introduction: Light-matter coupling

D̂†(α) = D̂(−α), it can be shown that (1.1.28) corresponds to the Hamiltonian of a

displaced anharmonic oscillator:

Ĥ∞
D± = D(±iη)

(
ωcâ

†â
)
D̂†(±iη) . (1.1.30)

Since the transformation D̂(±iη) is unitary, it does not affect the eigenvalues. Hence,

in the limit η → ∞, the eigenvalues of ĤD are those of the anharmonic oscillator

Ĥ−
c = ωcâ

†â.

It is worth noticing that this is a general behaviour of generalized QRMs satisfying

the gauge principle. Specifically, it can be applied to every general quantum Rabi

Hamiltonian, whose expression is,

ĤDipole = ωq

2 σ̂z + ωcâ
′†â′ + V̂ , (1.1.31)

as long as
[
V̂ , σ̂x

]
= 0.
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Chapter 2

Non Linear oscillator

In this chapter, we investigate the gauge issues arising from considering a generalized

QRM with a non-linear electromagnetic resonator and how an incorrect application of

the minimal coupling replacement, will exacerbate the issue presented in the previous

chapter. We will show a simple model for a non-linear electromagnetic resonator, a

polaritonic model to obtain the correct form of interaction and combine this result with

the one presented in the previous chapter to obtain a consistent expansion of the QRM

to non-linear systems. These results are published in [63] and all the figures in this

chapter were originally published there.

2.1 Simple models for the non-linear electromagnetic res-

onator

Let us consider a general Hamiltonian of a single-mode electromagnetic resonator with

a non-linear self-interaction:

Ĥc,α = Ĥ(0)
c + V̂α , (2.1.1)

where H(0)
c = ωcâ

†â is the harmonic term.

We are going to consider different interaction Hamiltonians and compare their results.

A widely used non-linear Hamiltonian that shows a third-order anharmonicity self-

interaction term is the Kerr Hamiltonian (α = k)

Ĥc,k = ωcâ
†â+ J ωc â

†2 â2 . (2.1.2)
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Chapter 2: Non Linear oscillator

This term is obtained by applying the RWA to the more general interaction (α = ±)

Ĥc,± = ωcâ
†â+ Jωc

6 (â† ± â)4 . (2.1.3)

When the resonator interacts with qubits in the strong coupling regime, the photon

operator â (â†) may contain also negative (positive) frequency components. As a con-

sequence, a more careful RWA has to be applied.

Finding a precise formulation for the non-linear potential operator, denoted as V̂nl,

is a complex undertaking. The likelihood of photons interacting with each other in

a vacuum is incredibly low, which means that non-linear optical phenomena require

the interaction of photons and matter. The Kerr effect, among other effective photon-

photon interactions, emerges from the interaction of photons in a spectral range that

corresponds to the transparency window of a medium in the dispersive regime. To

obtain a Hamiltonian for a non-linear optical resonator, one can follow a straightforward

approach. This involves examining the classical representation of the electromagnetic

field’s energy density within a dielectric medium.

The contribution arising from the interaction with the medium is

U = 1
2 E · P , (2.1.4)

where E is the electric field, and P is the polarization density.

The polarization induced in a medium can be expanded in a power series in the electric

field, with the third order non-linear polarization expressed as P (3)
i = χ

(3)
ijklEjEkEl,

where χ(3) is the third-order non-linear optical susceptibility tensor. This implies that

the contribution of non-linear processes to the total field energy is proportional to the

fourth power of the electric field.

In the case of a single-mode electromagnetic resonator, the vector potential amplitude

can be expanded as Â = A0(â + â†), where A0 is the zero-point-amplitude of the field

coordinate and â and â† are the destruction and creation photon operators, and the

amplitude electric field operator can be written as Ê = iωcA0(â − â†). This leads to a

non-linear interaction term proportional to the fourth power of the electric field operator,

V̂− = (Jωc/6)(â − â†)4. However, a more rigorous microscopic approach is needed to

eliminate any concerns, so in section 2.2, we will present a simple microscopic model

able to provide indications on the right choice for the effective non-linear potential.
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Chapter 2: Non Linear oscillator

One interesting point to make note of is that V̂+ and V̂− are related by the unitary

transformation â → iâ. This transformation will not change the linear term Ĥ
(0)
c ,

but will change other quantities such as the vector potential Â. Although these two

options yield the same output for any single non-linear optical resonator described by

the Hamiltonian in (2.1.1), they may produce dissimilar outcomes when combined with

an additional system, such as a qubit.

To gain a more detailed understanding of the system, it is helpful to compare the lowest

energy eigenvalue of Ĥc,K with those of Ĥc,± (Fig. 2.1 where we set to zero the energy

of the ground state for each value of J). Since changing the parameter J affects the

transition frequency between the first excited state and the ground state only of Ĥc,±, the

frequency ωc in Ĥc,± is modified as a function of J , so that these transition frequencies

do coincide.

1 2 3 4 5 6 7 8 9 10
0

2

4

Figure 2.1: Comparison between the lowest-energy eigenvalues of the non-linear Hamiltonians

Ĥc,± and Ĥc,K as function of the normalized non-linear coefficient J . We assume

the respective ground state energy equal to zero at each value of J . The bare cavity

frequency ωc is opportunely renormalized as a function of J in the Hamiltonians

Ĥc,± so that transition frequency between the first excited state and the ground

state do coincide to that calculated for the non-linear Kerr Hamiltonian Ĥc,K .
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2.2 Polariton model of the non-linear resonator

In this section we present a polariton model to discern the correct form for the non-linear

interaction between Ĥc,±.

As mentioned before, since is extremely unlikely that photons interact with each other,

we considered that the non-linearity comes from the interaction with an optically active

medium placed inside the cavity. The medium is modelled as an additional bosonic field

describing the collective electronic excitations, coupled in the dispersive regime. In the

dispersive regime we can identify two polaritons, one corresponding to the cavity mode

dressed by the interaction, and the other to the dressed matter field.

Neglecting the non-linear potential of the matter field allows us to exactly diagonalize

the resulting Hopfield model. Then, we add the non-linear term and express it in terms

of the polariton operators, effectively modelling the non-linear cavity.

The resulting Hamiltonian for a single-mode electromagnetic resonators interacting with

a single-mode bosonic collective matter excitation in the dipole gauge [64] is:

ĤD = Ĥ(0)
c + Ĥ(0)

b + V̂cb , (2.2.1)

where the non-interacting contributions are Ĥ(0)
c = ω0â

†â, Ĥ(0)
b = ωcb̂

†b̂, and the inter-

action term is

V̂cb = ω0
[
iλ(â† − â)(b̂+ b̂†) + λ2(b̂+ b̂†)2

]
. (2.2.2)

This Hamiltonian can be diagonalized by an Hopfield-Bogoliubov transformation [65]

(see App.A for details):

â =
∑

n=1,2
AnP̂n + A′

n P̂
†
n , (2.2.3)

and

b̂ =
∑

n=1,2
BnP̂n +B′

nP̂
†
n , (2.2.4)

where P̂n and P̂ †
n (n = 1, 2) are the lower (n = 1) and upper (n = 2) polariton (bosonic)

operators, and An, A′
n, Bn, B′

n are complex numbers that can be obtained through the

Hopfield-Bogoliubov diagonalization procedure (see Appendix A for their explicit form).

The resulting diagonal form can be written as:

ĤD =
∑

n=1,2
ωnP̂

†
nP̂n . (2.2.5)
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and ωn can be obtained from the dispersion relation

1 + 4λ2ω0ωc

ω2
0 − ω2

n

= ω2
c

ω2
n

. (2.2.6)

Using the expressions (2.2.3) and (2.2.4), is possible to obtain the explicit form for the

polariton operators in terms of the bare photon and matter operators:

P̂n = A∗
nâ+B∗

nb̂−A′
nâ

† −B′
nb̂

†. (2.2.7)

Given (2.2.3),(2.2.4) and (2.2.7), we can obtain an explicit expression for the non-linear

term of (2.1.3). Assuming an even potential, the lowest order above the harmonic

potential is the fourth power of the matter field coordinate x̂4, where x̂ = x0(b̂ + b̂†),

being x0 the zero-point-fluctuation amplitude. The total system Hamiltonian can be

expressed as

Ĥ = ĤD + Jbωc

6 (b̂+ b̂†)4 , (2.2.8)

that in terms of the polariton operators is:

b̂+ b̂† =
∑

n

(
Bn +B

′∗
n

)
P̂n + h.c. . (2.2.9)

By inspecting the phases and moduli of the Hopfield coefficients (see Appendix A.1),

the non-linear term in (2.2.8) can be written as

Ĥ =ω1P̂
†
1 P̂1 + ω2P̂

†
2 P̂2+

+ Jb

6
[
iC1

(
P̂1 − P̂ †

1

)
+ C2

(
P̂2 + P̂ †

2

)]4
,

(2.2.10)

where Cn = |Bn|
[
2ω0/(ωn + ω0)

]
.

Considering that we are in the dispersive regime, is possible to neglect the contribution

coming from the upper polariton, since, when the detuning |∆| ≫ ω0λ, light-matter

hybridization is rather small. This means that one polariton can be interpreted as a

dressed photon mode, since its eigenfrequency will be close to the one of the bare photon,

while the other as a dressed matter mode, with an eigenfrequency close to the one of

the bare matter field. This latter interpretation is also supported by the fact that the

polariton quanta are those really detected in photo-detection measurements [66].

When describing processes and experiments occurring in a spectral range well separated

by ωb, it is possible to discard the contributions of the matter-like polariton. Assuming

ωb > ωc, the resulting approximate Hamiltonian is
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ĤD,1 = ω1P̂
†
1 P̂1 + Jωc

6
(
P̂1 − P̂ †

1

)4
, (2.2.11)

with J = Jb(C1)4. The polariton operators P1 and P †
1 can be interpreted as photon op-

erators exhibiting non-linear self-interaction caused by their interaction with the matter

field. This interaction has resulted in a frequency shift from ωc → ω1 ≃ ωc, as well as

an effective non-linear self-interaction.

This result shows that the correct interaction form in (2.1.3) is V̂nl− = Jωc(â − â†)4,

where the photon operator â actually corresponds to the polariton operator P̂1.

2.3 Non-linear-resonator quantum Rabi model

In this section we will study the interaction of a qubit with the non-linear oscillator

presented in Section 2.1.

All the calculations will be in the dipole gauge since the Hamiltonian will have a simpler

form.

The immediate way to obtain the Hamiltonian for the system would be to just add the

non-linear potential to the Rabi Hamiltonian (1.1.16):

Ĥα
sD = ĤD + V̂α . (2.3.1)

Yet, this simple Hamiltonian violates the gauge principle since V̂α does not commute

with Û (α ̸= ±). In fact, transforming (2.3.1) to obtain the Coulomb gauge Hamiltonian,

we obtain a result which differs from the minimal coupling:

ÛĤα
sDÛ† = ĤC + Û V̂αÛ† ̸= Ĥc,α = ĤC + V̂α . (2.3.2)

The correct procedure to obtain a gauge-independent Hamiltonian is to apply the min-

imal coupling replacement, shown in (1.1.21). This leads to:

Ĥα
D = Û†Ĥc,α Û + Ĥ(0)

q . (2.3.3)

As shown in Sec. 1.1.2, applying the minimal coupling replacement is equivalent to

transforming all the photonic operators in the non-interacting Hamiltonian through the

transformation (1.1.24).
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But, this transformation only modify V̂− and V̂K , while it commutes with V̂+, thus

leaves it unaffected. For this exact reason it is imperative to consider the microscopic

model presented in Sec. 2.2 to choose the correct form for the Hamiltonian, since the

three potentials V̂+, V̂− and V̂K provides gauge independent results.

2.4 Energy spectra of non-linear-resonator quantum Rabi

models

Here we present a set of numerical calculations clarifying the impact of using the dif-

ferent models above described, and the impact on the energy spectra of violating gauge

invariance. We will compare the five different Hamiltonians illustrated previously, the

two non gauge invariant Ĥ−
sD, ĤK

sD and the other three that satisfy the gauge principle

Ĥ−
D, Ĥ+

D and ĤK
D . As proven in Sec. 2.2 we know that the correct non-linear interaction

term has a minus sign, so the correct Hamiltonian describing this system is Ĥ−
D, yet,

it may be beneficial to compare the energy eigenvalues of the different Hamiltonians to

determine the impact of using an incorrect non-linear photonic potential.

Let us start with a comparison between the two non-gauge invariant Hamiltonians Ĥ−
sD

and ĤK
sD and Ĥ−

D. Fig. 2.2 show the eigenvalues as function of the normalized coupling

strength η with no detuning, ωq/ωc = 1. We present two specific values of the normalized

non-linear coefficient J = 0.05 (a) and J = 0.1 (b).

The first problem that we see with the two gauge dependant Hamiltonians Ĥ−
sD and

ĤK
sD is that there is no decoupling. As expressed in Sec. 1.1.3, one notable aspect

of the QRM is that when η ≫ 1, the bare energy of the qubit can be viewed as a

minor perturbation. As η approaches infinity, this perturbation becomes insignificant in

comparison to the interaction term, leading to a pairwise degeneration of the eigenvalues.

This phenomenon results in the QRM displaying the same energy levels as it would at

zero coupling (η = 0) when this perturbation becomes insignificant. Yet, only the

eigenvalues of Ĥ−
D exhibit this tendency, as they become uncorrelated with η.

We also observe that the region where the eigenvalues of Ĥ−
sD and ĤK

sD agree with those

of Ĥ−
D is very limited around very low coupling values and for the lowest energy levels.

Moving to the analysis of the gauge independent Hamiltonians, Fig. 2.3 shows the com-

parison between Ĥ−
D, Ĥ+

D and ĤK
D . We fixed the same parameters as before, zero-
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Figure 2.2: Comparison of the lowest energy eigenvalues of the Hamiltonians Ĥ−
sD, ĤK

sD and

Ĥ−
D, as function of the resonator-qubit normalized coupling η, for (a) J = 0.05 and

(b) J = 0.1. The eigenvalues of Ĥ−
sD, ĤK

sD and Ĥ−
D are compared setting at zero

the respective ground state energy at each value of η.
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detuning (ωq/ωc = 1) and normalized non-linear coefficient J = 0.05 (a) and J = 0.1

(b).

When analyzing the behaviour of all three elements at high coupling, one can observe the

light-matter decoupling, as they gradually become independent of η. This observation

emphasizes the importance of adhering to the gauge principle, which ensures consistent

outcomes at higher coupling strengths. Additionally, it is worth noting that the eigenval-

ues of Ĥ+
D start to exhibit a decoupling effect at slightly higher η values. Furthermore,

the eigenvalues of ĤK
D demonstrate the most significant discrepancies in comparison to

those of Ĥ−
D, particularly in the energy levels of the excited states at η = 0. When

the normalized non-linear coefficient is increased to J = 0.1 [refer to Fig. 2.3 (b)], the

distinctions become more prominent. Even the fourth excited eigenvalues of the three

Hamiltonians present notable differences, even at coupling strengths that are considered

moderate.

This is an extremely important result as the non-linearity shows how important it is

to have a consistent Hamiltonian that satisfies the gauge principle. While usually the

contribution shown in sec. 1.1.2 can be discarded outside the USC, here we show how

it is not always the case. Additionally, the specific range of validity of the standard

Kerr model depends on the normalized coefficient J of the photonic non-linearity, on

the qubit-oscillator normalized coupling strength η, and on the considered energy levels,

as shown in Fig. 2.3.
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Figure 2.3: Comparison between the lowest energy energy levels of Ĥ±
D, and ĤK

D as function

of the normalized coupling η for (a) J = 0.05 and (b) J = 0.1. The eigenvalues of

Ĥ±
D and ĤK

D are compared assuming the respective ground state energy equal to

zero at each value of η.
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Dephasing

Dephasing is a phenomenon that occurs in quantum systems when they interact with

their environment and lose their coherence. As no quantum system can be considered

isolated from its environment, dephasing gives us a time scale for the "quantumness" of a

system, since coherence is the property of quantum systems that allows them to exist in

superpositions of states and exhibit interference effects and the dephasing is the process

that destroys these quantum features and makes the system behave more classically [67,

7]. Dephasing is important for understanding the limitations of quantum technologies,

such as quantum computing and quantum metrology, as well as the fundamental aspects

of quantum physics, such as the measurement problem and the emergence of classicality.

Since the decoherence time increases with the dimension of the system [68], it is clear

why is so hard to see quantum effects in the macroscopic scale [69]. Yet, decoherence is

not always a detrimental factor, as it has been shown that pure dephasing is a promising

resource for solid-state emitters since it can improve the performance of nanophotonic

devices, such as single-photon sources and nanolasers [70]. Considering the widespread

interest in using quantum effects to build either more efficient devices or entirely new

devices it is clear the importance of a correct description for this phenomenon.

In this chapter, we show how to correctly describe a stochastic perturbation describing

the dephasing of one of the system’s components, depending on the adopted gauge. We

find that neglecting the modification on the operators describing the dephasing caused

by choosing a gauge leads to unphysical and wrong results in both USC and DSC. These

results are published in [71], and all the figures in this chapter were originally published

there.
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3.1 Quantum Rabi model

We will start our discussion by pointing out that the interaction between light and matter

can significantly affect the form of a stochastic perturbation describing the dephasing of

one of the components. Neglecting this issue can lead to wrong and unphysical results

in both USC and DSC regimes. To show this, we consider that dephasing effects on

both the qubit and electromagnetic field can be described by introducing two zero-mean

stochastic functions fc(t), fq(t) modulating their resonance frequency. The perturbation

Hamiltonian can be written as

V̂dep = V̂c
dep + V̂q

dep = fc(t)â†â+ fq(t)σz . (3.1.1)

Usually, the decoherence in hybrid quantum systems is described by using a master

equation approach [46, 72], by expanding the perturbation V̂dep in the basis of the

eigenstates of the total system Hamiltonian and moving to the interaction picture, we

obtain:

V̂dep(t) = fq(t)
∑
j,k

⟨j|σ̂z|k⟩ |j⟩⟨k| eiωjkt + fc(t)
∑
j,k

⟨j|â†â|k⟩ |j⟩⟨k| eiωjkt , (3.1.2)

where |j⟩ are the eigenstates of the total Hamiltonian and ωjk are the transition frequen-

cies. Using the Fourier decomposition of f(t), and assuming that the main contribution

to dephasing results from a small frequency interval around ωjk, we obtain:

V̂dep(t) =
∑
j,k

σ̂jk
z |j⟩⟨k| f (q)

−ωjk
(t) +

∑
j,k

⟨j|â†â|k⟩ |j⟩⟨k| f (c)
−ωjk

(t) , (3.1.3)

where

f (x)
ωjk

(t) =
√
S

(x)
f (ωjk)ξωjk

(t) , (3.1.4)

with x = q, c, S(x)
f (ω) is the spectral density of f (x)(t), and, since are assuming a white

noise, the condition on ξ(ω) are ⟨ξ(ω)⟩ = 0 and ⟨ξ(ω)ξ(ω′)⟩ = δ(ω−ω′). If the transition

frequencies ωjk are well-separated, we can treat each term of the above summation as

an independent noise.

The resulting master equation (ME) can be written as (ℏ = 1) [73]:

d

dt
ρ̂(t) = −i[Ĥs, ρ̂] + Ldrρ̂ , (3.1.5)
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where Ĥs is the Hamiltonian of the total system and Lc,qρ̂ is the Lindblad dissipator:

Ldr· = D

∑
j

Φj |j⟩⟨j|

 · +
∑

j,k ̸=j

Γjk
ϕ D [|j⟩ ⟨k|] · , (3.1.6)

where

D[Ô]ρ̂ = 1
2(2Ôρ̂Ô† − ρ̂Ô†Ô −O†Ôρ̂) (3.1.7)

is the Lindbladian superoperator,

Φj =

√√√√γ
(q)
ϕ (0)

2 σjj
z +

√√√√γ
(c)
ϕ (0)

2 ⟨j|â†â|j⟩ , (3.1.8)

and

Γjk
ϕ =

γ
(q)
ϕ (ωkj)

2

∣∣∣σjk
z

∣∣∣2 +
γ

(c)
ϕ (ωkj)

2

∣∣∣ ⟨j|â†â|k⟩
∣∣∣2 . (3.1.9)

The bare dephasing rates γ(x)
ϕ = 2Sf (0) are determined by the low-frequency spectral

densities S(x)
f (ω) of fx(t), with x = q, c.

As explained in sec. 1.1.2, the creation and annihilation operators for the atomic and

photonic excitations do not have the same expressions in the dipole and Coulomb gauge

(see tab. 1.1):

âD = Û†âÛ = â+ iησ̂x ,

σC
z = Û σ̂zÛ† = σ̂z cos

[
2η
(
â† + â

)]
+ σ̂y sin

[
2η
(
â† + â

)]
.

(3.1.10)

Thus, these expressions show clearly that (3.1.1) is inadequate. Indeed, following the

standard approach, pure dephasing effects can be directly introduced by using Eqs.

(3.1.1) and (3.1.5), leading to eq. (3.1.6), but this will lead to incorrect and/or gauge

dependent results, because significantly different results will be obtained using Ĥs = ĤD

(eq. 1.1.16) or Ĥs = ĤC (eq. 1.1.15) in eq. (3.1.5), especially when the light-matter

interaction strength is very strong, as not the Coulomb gauge nor the dipole one can

express both photonic and atomic operators in their bare form. As expressed before,

light-matter interaction modifies the form of quantum operators describing physical

observables, and these changes are gauge dependent [74]. For example, in the Coulomb

gauge the form of the physical momentum of the particle is affected by light-matter

interaction, while in the dipole gauge, it is interaction independent. On the contrary,

the dipole gauge affects the definition of the field momentum. As a consequence, in this

gauge, the canonical momentum is no longer proportional to the electric field operator.
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Figure 3.1: Quantum Rabi Model. The normalized pure dephasing rate for the two lowest

energy transitions, for a small qubit-cavity detuning δ = 3 × 10−3 and consider-

ing only the qubit pure dephasing. (a) Correct gauge-invariant versus (b) wrong

Coulomb gauge results.

We may thus expect that the form of operators describing pure dephasing shall be

modified by light-matter interaction too.

In order to obtain correct descriptions of pure dephasing effects, as well as gauge-

invariant results, in the presence of light-matter interactions one has to apply the

generalized minimal coupling replacements explained in sec. 1.1.2 to pure dephasing

perturbations in eq. (3.1.1) too. Applying eqs. (3.1.10) we obtain, in the Coulomb and

dipole gauge respectively:

V̂C
ϕ = fq(t)σ̂C

z + fc(t)â†â , (3.1.11)

V̂D
ϕ = fq(t)σ̂z + fc(t)â†

DâD , (3.1.12)

These equations allow us to obtain gauge invariant results, restoring, once again, the

absolutely arbitrary of choosing a gauge over another.

We will generalize the notation of the JCM to label the QRM states in the following

discussion. The ground state will be referred to as |0̃⟩, while the states that approach

the JC states |n±⟩ as the coupling tends to zero will be labelled as |ñ±⟩. To differentiate

between the Coulomb and dipole gauge states, we will use non-primed and primed states,

respectively. To illustrate, an analysis of the pure dephasing consequences on the QRM’s

two lowest transitions, α± ≡ (1̃±, 0̃), will be conducted with a sole focus on qubit pure
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dephasing (fc(t) = 0).

After translating to the interaction picture, eq. (3.1.5) yields the following results (see

App. C for details):
˙̃ρα′

±
(t) = −

(
γ

α′
±

ϕ /2
)
ρ̃α′

±
(t) , (3.1.13)

with

γ
α′

±
ϕ =

γ
(q)
ϕ

2

∣∣∣∣σ1̃′
±,1̃′

±
z − σ0̃′,0̃′

z

∣∣∣∣2 . (3.1.14)

We observe that the obtained dephasing rates are gauge invariant (γα′
±

ϕ = γ
α±
ϕ ), because

the expectation values are unitary invariant, when transforming both operators and

states: γα±
ϕ = γ

(q)
ϕ |σC,1̃±,1̃±

z − σC,0̃,0̃
z |2/2.

Figure 3.1 displays the normalized pure dephasing rate γ1̃′
±,0̃/γ

0
ϕ for the two lowest energy

transitions, considering a small qubit-cavity detuning δ = 3 × 10−3 and in the case of

only qubit pure dephasing (γc = 0). In the limit of negligible coupling strength, where

|1̃′
+⟩ → |e, 0⟩ and |1̃′

−⟩ → |g, 1⟩, the standard results are recovered, and only (1̃′
−, 0̃′) is

affected by the qubit pure dephasing.

When the detuning and the coupling are comparable, pure dephasing is divided between

the two transitions. This is due to the energy eigenstates |1̃′
±⟩ becoming a equally

weighted superposition of |e, 0⟩ and |g, 1⟩. For normalized coupling strengths η > 0.1

(the USC regime) we start to see discrepancies between the two pictures. For the results

obtained with the correct expressions (a), dephasing is less effective for the transition

(1̃′
−, 0̃) until both transitions become dephasing-free at stronger couplings (the DSC

regime). This phenomenon reflects the fact that a fluctuation at the qubit resonance

frequency has a very minor effect on the dressed-state energies when the coupling rate

surpasses the bare qubit frequency. Conversely, Fig. 3.1b indicates an incorrect high

rate of pure dephasing for the lowest energy transition, showing a maximum in the

dephasing rate for the transition (1̃′
−, 0̃′), implying that a zero frequency transition (see

the degeneration in Fig. 1.2 impact maximally the dephasing.

3.2 Hopfield model

Another widely used model worth investigating is the Hopfield model [65], also used in

Sec. 2.2. Its simplest form describes the interaction of a single-mode electromagnetic

resonator with a matter system composed of a collection of fermionic oscillators. The
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bosonic matter field creation and annihilation operators are respectively b̂† and b̂. In

the dipole gauge the system Hamiltonian is [64]:

ĤD = Ĥ0 + iλ ωc(â† − â)(b̂+ b̂†) + ωc λ
2 (b̂+ b̂†)2 , (3.2.1)

where Ĥ0 = ωcâ
†â + ωxb̂

†b̂, and λ is the normalized coupling strength. While in the

Coulomb gauge is [64]:

ĤC = Ĥ0 − iωxλ (b̂† − b̂)(â† + â) + D(â† + â)2 , (3.2.2)

where D = ωxλ
2. These two Hamiltonians can be directly obtained by generalized

minimal coupling replacements: HC = ωcâ
†â+ ωxT̂

†b̂†b̂T̂ and HD = ωcT̂ â
†âT̂ † + ωxb̂

†b̂,

where T̂ = exp[−iλ(â+ â†)(b̂+ b̂†)], similarly to what is shown in sec. 1.1.2 (note that

in this section the unitary transformation is T̂ , defined as Û = T̂ † to avoid confusion

with the Bogoliubov coefficients that will appear shortly after).

The quasiparticles describing the excitations of this system are called polaritons and

the system can be solved by using a Hopfield-Bogoliubov transformation [65]. Since we

have two bosonic fields, we will have two polaritons P̂µ, the lower polariton (µ = 1) and

the upper polariton (µ = 2), obtained through a linear combination of â, â†, b̂ and b̂†:

P̂µ = Uµ
b b̂+ Uµ

a â+ V µ
b b̂

† + V µ
a â

† . (3.2.3)

Where we imposed the commutation rules with:

|Uµ
b |2 + |Uµ

a |2 − |V µ
b |2 − |V µ

a |2 = 1 . (3.2.4)

Inverting this equations we obtain:

â =
2∑

µ=1

(
Uµ

a Pµ − V µ
a P

†
µ

)
, (3.2.5a)

b̂ =
2∑

µ=1

(
Uµ

b Pµ − V µ
b P

†
µ

)
. (3.2.5b)

This procedure allows us to obtain the polariton eigenfrequencies Ωµ (which are observ-

able, thus not modified by the gauge choice), and the Hopfield coefficients which are

gauge dependent. As a consequence, the polariton operators are gauge dependent.

As said in the previous Sec. 3.1, the expression describing the stochastic fluctuation of

the resonance frequencies of the components’ dephasing cannot be expressed with

V̂dep(t) = fc(t)â†â+ fx(t)b̂†b̂ , (3.2.6)
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since it will mix operators defined in different gauges. The corrected gauge dependent

form is:

V̂ D
dep(t) = fc(t)â†

DâD + fx(t)b̂†b̂ , (3.2.7)

V̂ C
dep(t) = fc(t)â†â+ fx(t)b̂†

C b̂C , (3.2.8)

where âD = T̂ âT̂ † = â+ iλ(b̂+ b̂†) and b̂C = T̂ †b̂T̂ = b̂− iλ(â+ â†). The polariton pure

dephasing rates can be obtained by expanding Eqs. (3.2.7) and (3.2.8) in terms of the

polariton operators, and then applying the standard master equation method to obtain

the Lindbladian terms, in analogy with the results of the previous sec. 3.1. Since the

two dephasing contributions are independently from each other, we will treat separately

the dephasing on the two bosonic operators to simplify the expressions.

The contribution coming from the matter pure dephasing V̂ x
dep = fx(t)b̂†b̂, in terms of

the polariton operators is:

b̂†b̂ = A1P̂
†
1 P̂1 +A2P̂

†
2 P̂2 +B12P̂

†
1 P̂2 +B21P̂

†
2 P̂1 , (3.2.9)

with

Aµ =
∣∣Uµ

b

∣∣2 +
∣∣V µ

b

∣∣2 , (3.2.10)

B12 = B∗
21 = U1 ∗

b U2
b + V 1

b V
2 ∗

b . (3.2.11)

In this expression we discarded the terms that oscillate at high frequency (RWA) and

the constants that have no effects on the dynamics. In the interaction picture, this

contribution becomes

V̂ x
dep(t) = fx(t)

[
A1P̂

†
1 P̂1 +A2P̂

†
2 P̂2 + e−iω21tB12P̂

†
1 P̂2 + eiω21tB21P̂

†
2 P̂1

]
, (3.2.12)

where ω21 = ω2 − ω1 with the polaritonic eigenfrequencies ωi. (3.2.12) can be written

in a more compact form as

V̂ x
dep = fx(t)

[
D̂12 + e−iω21tM̂12 + eiω21tM̂ †

12

]
,

with

D̂12 = A1P̂
†
1 P̂1 +A2P̂

†
2 P̂2 , (3.2.13)

M̂12 = B12P̂
†
1 P̂2 , (3.2.14)

and using the results presented in the previous sections, we obtain

V̂ x
dep(t) = f0(t)D̂12 + fω21(t)M̂12 + f−ω21(t)M̂ †

12 , (3.2.15)
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with fω(t) expressed in (3.1.4). Thus, the resulting Lindbladian in the case of matter

pure dephasing is

L• = 1
2γϕ(ω21)D[M̂12] • +1

2γϕ(−ω21)D[M̂ †
12] • +1

2γϕ(0)D[D̂12]• , (3.2.16)

with γϕ(ω) = 2Sf (ω).

The contribution from the cavity pure dephasing in terms of the polariton operators is:

â†â = A1P̂
†
1 P̂1 +A2P̂

†
2 P̂2 +B12P̂

†
1 P̂2 +B21P̂

†
2 P̂1 , (3.2.17)

where

Aµ = |Uµ
a |2 + |V µ

a |2 , (3.2.18)

B12 = B∗
21 = U1 ∗

a U2
a + V 1

a V
2 ∗

a . (3.2.19)

This yields a Lindbldian of the same form of (3.2.16) with the only difference for the

polariton coefficients expressed in Eqs. (3.2.18) and (3.2.19).

As long as we do not consider both these contributions simultaneously, is possible to

choose a gauge and obtain correct results. But, as we have seen in sec. 3.1, this

approach leads to wrong results if it is not possible to neglect one of them. The use

of the Coulomb gauge results in a transformation of the matter operator b̂ to b̂C =

T̂ †b̂T̂ due to the application of minimal coupling to the matter system. Conversely,

the dipole gauge applies minimal coupling to the photonic system, which leads to a

dressed photonic operator âD = T̂ âT̂ †. This key distinction indicates that the process of

polariton diagonalization produces divergent Hopfield coefficients, contingent on whether

one chooses the Coulomb or dipole gauge. In particular, in the dipole gauge we have:

b̂ =
2∑

µ=1

(
Uµ′

b P
′
µ − V µ′

b P ′†
µ

)
, (3.2.20)

where P ′
µ are the polariton operators obtained by diagonalizing the Hopfield Hamiltonian

in the dipole gauge. While in the Coulomb gauge we have

b̂C = T̂ †

 2∑
µ=1

(
Uµ′

b P
′
µ − V µ′

b P ′†
µ

) T̂
=

2∑
µ=1

(
Uµ′

b T̂
†P ′

µT̂ − V µ′
b T̂ †P ′†

µ T̂
)

=
2∑

µ=1

(
Uµ′

b Pµ − V µ′
b P †

µ

)
, (3.2.21)
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which contains the polariton operators obtained by diagonalizing the Hamiltonian in the

Coulomb gauge, but with the same coefficients of the dipole gauge. To obtain (3.2.21),

we have used the relation

Pµ = T̂ †P ′
µT̂ . (3.2.22)

To prove this relation we consider the definition of polaritonic operators:

[Pµ, ĤC ] = ΩµPµ , (3.2.23a)

[P ′
µ, ĤD] = ΩµP

′
µ , (3.2.23b)

and we can calculate how they transforms from the Coulomb to dipole gauge. Gauge

invariance implies that the final result has to be equal to (3.2.23b). We obtain:

T̂ [Pµ, ĤC ]T̂ † = ΩµT̂PµT̂
† , (3.2.24a)

T̂ [Pµ, ĤC ]T̂ † = T̂ (PµĤC − ĤCPµ)T̂ † (3.2.24b)

= T̂PµĤC T̂
† − T̂ ĤCPµT̂

†

= T̂PµT̂
†T̂ ĤC T̂

† − T̂ ĤC T̂
†T̂PµT̂

†

= T̂PµT̂
†ĤD − ĤDT̂PµT̂

† = [T̂PµT̂
†, ĤD] .

Combining the results of Eqs. (3.2.24a) and (3.2.24b), we obtain:

[T̂PµT̂
†, ĤD] = ΩµT̂PµT̂

† , (3.2.25)

which is the definition of the polariton operators P ′
µ in the dipole-gauge (which are the

operators that allow the diagonalization of ĤD) given by (3.2.23b). Hence, (3.2.22) is

the correct gauge transformation for the polaritonic operators.

The whole analysis described above can be summarized as follows: in the case of matter

pure dephasing, the stochastic perturbation is: V̂ x
dep = fx(t)b̂†b̂ in the dipole gauge, and

V̂ x
dep = fx(t)b̂†

C b̂C in the Coulomb gauge, where

b̂†b̂ = A′
1P̂

′†
1 P̂

′
1 +A′

2P̂
′†
2 P̂

′
2 +B′

12P̂
′†
1 P̂

′
2 +B′

21P̂
′†
2 P̂

′
1 , (3.2.26)

and

b̂†
C b̂C = A′

1P̂
†
1 P̂1 +A′

2P̂
†
2 P̂2 +B′

12P̂
†
1 P̂2 +B′

21P̂
†
2 P̂1 , (3.2.27)

with

A′
µ =

∣∣∣Uµ′
b

∣∣∣2 +
∣∣∣V µ′

b

∣∣∣2 , (3.2.28)

B′
12 = B′ ∗

21 = U1′ ∗
b U2′

b + V 1′
b V 2′ ∗

b . (3.2.29)
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In order to accurately depict pure dephasing, it is necessary to incorporate the dipole

coefficients provided in Eqs. (3.2.28) and (3.2.29) into the Lindbladian formula presented

in (3.2.16), despite the use of the Coulomb gauge. Conversely, when dealing with pho-

tonic pure dephasing, the stochastic perturbation is represented by V̂ c
dep = fc(t)â†â in

the Coulomb gauge, and V̂ c
dep = fc(t)â†

DâD in the dipole gauge. This means that the

Coulomb polariton coefficients must be utilized in the Lindbladian formula even when

employing the dipole gauge.

From the obtained master equation, the equations of motion for the mean values of the

polariton operators are ∂t⟨P̂µ⟩ = (−iΩµ − γµ
ϕ/2)⟨P̂µ⟩, where

γµ
ϕ = γ0

c

(
|Uµ

a |2 + |V µ
a |2

)
+ γ0

x

(
|Uµ ′

b |2 + |V µ ′
b |2

)
. (3.2.30)

The outcome that can be obtained by disregarding the alterations in the perturbation

Hamiltonian induced by the interaction of light and matter, and starting from (3.2.6),

can be vastly different from the result obtained through the incorporation of these

modifications.

In Fig. 3.2a, we can see the normalized rates of pure dephasing for both polariton modes

(γµ
ϕ/γ

0
x) in the scenario where there is no photonic noise (γ0

c = 0) and considering three

distinct values of the detuning between the exciton and cavity (δ). We can observe that,

at high coupling rates, the dephasing rate of the lower polariton tends towards zero,

regardless of the detuning. This effect is a direct result of the lower polariton’s resonance

frequency rapidly approaching zero for λ → ∞ [refer to Fig. 3.3c], independently of the

detuning. This implies that even minor fluctuations in the resonance frequencies of the

components do not induce fluctuations or dephasing in the polariton mode.

For comparison, Fig. 3.3ab exhibits an incorrect outcome γµ
ϕ/γ

0
x = |Uµ

b |2 + |V µ
b |2, which

was achieved by ignoring the alterations to the structure of subsystems and observables

that may arise due to interaction. This result was obtained for two different detunings,

and notable discrepancies become apparent once the system enters the USC regime,

with λ ∼ 0.1. Additionally, as the coupling rates become larger and the system enters

the DSC regime, the behaviour of the upper and lower polaritons is inverted, leading to

further contrasts.

It is important to notice that in a number of experiments, it has been noted that

the upper polariton exhibits a greater degree of line broadening compared to the lower

34



Chapter 3: Dephasing

polariton, a discovery which aligns with the outcomes presented in this paper [75, 76, 20,

77]. However, additional research is necessary due to the various broadening mechanisms

involved in these systems. The method demonstrated here has the potential to be

implemented in more intricate light-matter systems and/or complete quantum models

of pure dephasing, as noted in prior works [46, 78].
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Figure 3.2: Hopfield model. Normalized pure dephasing rate of the lower and upper polari-

tons, originating from exciton dephasing, versus the normalized coupling strength,

obtained for different exciton-cavity detunings, and considering only the matter

pure dephasing.
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Figure 3.3: Hopfield model. Wrong (see text) normalized pure dephasing rates of the lower

and upper polaritons, originating from exciton dephasing, versus the normalized

coupling strength, obtained for two different exciton-cavity detunings, and consid-

ering only the matter pure dephasing (a, b). Panel (c): frequencies of the two

polariton modes for a qubit-cavity detuning δ/ωc = 3 × 10−3.
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Optomechanics

In this chapter we will move our focus to optomechanics, a different hybrid light-matter

system and we will show different quantum effects that rise when the coupling is strong

enough.

The simplest optomechanical system is a cavity with a movable mirror, but it is still

quite complicated to obtain a Hamiltonian description for this system. The challenge of

quantizing an electromagnetic field is amplified when the boundary, such as a mirror, is

in motion due to radiation pressure. The complexity arises because the movable mirror’s

boundary condition is contingent upon the field itself. The fluctuation of the field at the

quantum level can alter the mirror’s position, which subsequently impacts the field. As

a result, the most logical approach is to view the mirror and the field as a self-consistent

system [79].

Through the use of radiation pressure, it was possible to manipulate quantum mechanical

systems, allowing for essential examinations of quantum theory [80, 81], precise mea-

surements [82, 83, 84], and innovative quantum technologies [85, 86, 87]. Laser cooling

methods [88, 89, 90] have made it possible to observe quantized vibrational modes of

objects on a macroscopic scale and even reach their ground-state [91, 92, 93]. This

breakthrough has opened up the potential for the realization of entangled macroscopic

states, leading to fresh methods to store and process quantum information [94, 95, 96,

97]. In particular, optomechanical crystals [98, 99, 100] can be scaled to form optome-

chanical arrays, in which hopping mechanisms can be used to propose applications for

quantum information processing [101, 102].

In the following sections, we will introduce the principles of optomechanical coupling
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[103] and, after that, our work on two cavities coupled by a movable mirror and its

applications. These results are published in [104], and all the figures in this chapter

were originally published there.

4.1 Principles of optomechanical coupling

4.1.1 The radiation pressure force and optomechanical coupling

The basic process that links the characteristics of the radiation field within a cavity

to the motion of the mechanical system is through the transfer of momentum from

photons, which is also known as radiation pressure. The most elementary form of this

phenomenon can be considered the transfer of momentum that results from reflection

within a Fabry-Perot cavity. A single photon is responsible for transferring momentum

of |∆p| = 2h/λ, where λ is the photon wavelength. The radiation pressure force is given

by

⟨F̂ ⟩ = 2ℏk ⟨â†â⟩
τc

= ℏ
ω

L
⟨â†â⟩ , (4.1.1)

where τc = 2L/c is the travel time from one side of the cavity to the other, and ℏ
ω

L
is

the force of radiation pressure produced by one photon. The ratio G = ω/L describes

the change in cavity resonance frequency with position. In the following section, a

Hamiltonian explanation of the interaction between an optical cavity and a movable

mirror will present this relationship in its complete generality.

In a more broad context, the optomechanical coupling can manifest in various ways.

One such way is through the transfer of momentum via reflection, which occurs in sys-

tems such as Fabry-Perot cavities with a movable end-mirror or microtoroids. Another

method involves coupling through a dispersive shift in the frequency of the cavity, which

can be seen in setups that feature a membrane at the centre or levitated nano-objects

trapped within the cavity. Finally, the coupling can also be achieved through optical

near-field effects, where nano-objects are positioned within the evanescent field of a

resonator or a waveguide that is situated just above a substrate.

Regardless of how the force is interpreted physically, the optomechanical interaction that

occurs in an optomechanical system can always be deduced by examining the shift in

cavity resonance frequency in relation to displacement, which is known as the "dispersive"

shift. This will serve as the foundation for our Hamiltonian description, which will be
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discussed in the following section.

4.1.2 Hamiltonian formulation

We consider the two uncoupled systems as two harmonic oscillators, the optical part is

described by the frequency ωcav and the operators â and â†, while the mechanical part

has frequency Ωm and operators b̂ and b̂†. Thus, the non-interacting Hamiltonian is:

Ĥ0 = ℏωcavâ
†â+ ℏΩmb̂

†b̂ . (4.1.2)

Since the movable mirror at one end of the cavity modifies the length of the cavity itself,

it has an effect on the optical eigenfrequency. We model it by its series expansion:

ωcav(x) ≈ ωcav + x∂ωcav/∂x+ . . . . (4.1.3)

Usually, stopping the expansion at the linear term is sufficient to describe most of

the phenomena appearing in these systems. Calling the optical frequency shift per

displacement as G = −∂ωcav/∂x, for a cavity of length L we have G = ωcav/L. We

defined that for x > 0 we have an increase in cavity length, leading to a decrease in

ωcav(x) if G > 0. Considering this, the optical Hamiltonian becomes:

ℏωcav(x)â†â ≈ ℏ(ωcav −Gx̂)â†â . (4.1.4)

Since x̂ is the mirror’s position, we have x̂ = xZPF(b̂+ b̂†), where xZPF is the zero point

fluctuation of the mirror. The interaction part of the Hamiltonian, after applying the

RWA, can be written as:

Ĥint = −ℏg0â
†â(b̂+ b̂†) , (4.1.5)

where

g0 = GxZPF (4.1.6)

is the optomechanical coupling strength expressed as a frequency. Its purpose is to

measure the interaction between a single phonon and a single photon. It is important

to note that while G depends on the definition of displacement, which can be arbitrary

for complex systems, g0 does not, thus is considered more essential. Another commonly

used symbol is g, which is used for the effective optomechanical coupling in the linearized

regime. It is amplified compared to g0 because of the photon field’s amplitude. The

Hamiltonian indicates that the interaction between a movable mirror and the radiation
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field is fundamentally a nonlinear process that involves three operators (three wave

mixing).

The radiation pressure force is simply the derivative of Ĥint with respect to displacement:

F̂ = −dĤint
dx̂

= ℏGâ†â = ℏ
g0
xZPF

â†â (4.1.7)

Similarly to the Rabi model, is possible to define a SC regime if g > κ, where g is

the coupling strength defined as g = g0
√
n̄cav and κ are the losses of the system. This

definition depends on the number of photons inside the cavity and, thus, on the laser

intensity. In order to see nonlinear quantum effects the condition becomes much more

stringent, as the single-photon optomechanical coupling rate needs to exceed the cavity

decay (g0 > κ).

4.2 Extension to two cavities

Moving to a more complex system, in this section we will study two electromagnetic

resonators separated by a moving mirror (see Fig. 4.1). This will allow the two cavities

to interact through an optomechanical coupling and make photon-pair hopping possible.

This particular mechanism has a purely quantum nature since it is also activated in the

absence of the field on one side of the cavity (see App. D.1), making it classically

impossible. In this case is the presence of virtual particles that fill the quantum vacuum

that activates the process.

We obtained the system’s Hamiltonian by quantizing the classical problem, generalizing

Figure 4.1: Two non-interacting electromagnetic cavities separated by a movable two-sided

perfect mirror.
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the results in Ref. [79]. While it accounts also for generic equilibrium positions of the

mirror, in the following sections we consider only the symmetric case.

Similar models have been explored in previous studies, such as in Ref. [105], where

ground state dressing and correlation functions between two distinct regions were ana-

lyzed, and in Ref. [106], where dielectric separated the two resonators. Our approach

involves second-order effective dynamics, where the two-photon hopping mechanism is

a spontaneous coherent process. It is worth noting that the optomechanical hopping

described in this study is distinct from photon tunnelling, which is a commonly studied

photon hopping mechanism elsewhere [107, 108, 109, 110, 111].

The reason for our interest in these jumping phenomena is the potential for imagining

optomechanical lattices and researching their properties concerning thermodynamics

and information. As a result, the extended optomechanical lattices would showcase a

captivating exchange between the creation of Casimir photon-pairs and the movement of

the lattice between sites. Most of the mathematical details of this system can be found

in the Appendix. In particular, we present the classical Hamiltonian in App. D.1, how

to quantize it in App. D.2, how to apply the generalized James’ method to provide an

effective resonant explanation in App. D.3 and, briefly the Monte Carlo wave function

approach in App. D.4.

In the following sections, we will show both analytical and numerical results for the

dissipative system dynamics. In particular, we will present the wave function’s evolu-

tion over a single quantum trajectory and over an average of 500 quantum trajectories,

starting from a Fock state and from a Gaussian coherent pulse.

4.2.1 Quantum Hamiltonian

In this section we present the quantum Hamiltonian of the system. As said before, we

consider two non-interacting electromagnetic cavities separated by a vibrating two-sided

perfect mirror as sketched in Fig. 4.1. Following Ref. [79] we quantized (see App. D.1

and App. D.2) the classical system obtaining the Hamiltonian (ℏ = 1)

Ĥ = ωaâ
†â+ ωbb̂

†b̂+ ωcĉ
†ĉ (4.2.1)

+ g

2

[
(ĉ+ ĉ†)2 −

(
ωa

ωc

)2
(â+ â†)2

]
(b̂+ b̂†) .

We denoted as b̂† and b̂ the creation and annihilation operators of the moving mirror,
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the creation and annihilation operators of the left cavity are represented as â and â†,

those of the right cavity are represented as ĉ and ĉ†. ωa, ωb, and ωc are the respective

bare energies of the three boson modes. The coupling strength g is defined as g =

ω2
c xzpf/π = ωc xzpf/(I−q0), where I and q0 share the same units as xzpf (as explained in

D.1). This coupling strength is dependent on both the zero-point-fluctuation amplitude

of the mirror (xzpf) and the bare energy of a cavity (ωc), which is taken as the right

cavity for convenience. The asymmetrical configurations are considered by the weight

ω2
a/ω

2
c . The linear approximation implicit in (4.2.1) does not lead to instabilities of the

ground state, provided that gωa < ω2
c , or xzpfωa < π.

At the resonance ωa = ωc the hopping mechanism is enabled. The scenario we are

examining is one in which the mirror’s bare frequency is lower than that of the cavity

frequency. Fig. 4.2(a) shows a portion of the lowest energy eigenvalues of the full Hamil-

tonian (4.2.1) (blue dashdotted curves), obtained for a coupling g = 0.6ωb. Based on the

parameters’ choice, is possible to identify different sets of avoided levels, each described

by its dynamics. In particular, we focussed on the avoided crossing at ωa = ωc in the

black rectangle, and we showed an enlarged view in Fig. 4.2(b). The gap is indicative

of the hybridization of the two states |ψ1⟩ and |ψ2⟩, which are eigenstates of the full

Hamiltonian (4.2.1).

The generalized James’ effective approach [112] (see to D.3) allows for the creation of

a local effective description represented by red dashed curves, with great accordance

with the full Hamiltonian. The obtained Hamiltonian is easier to read and allows us to

highlight the different processes that appear. The effective Hamiltonian to the second

order is:

Ĥ
(2)
eff = Ĥ

(2)
shift + Ĥ

(2)
hop ,

Ĥ
(2)
shift =

[
ωa + g2(4ωa + ωb)

8ω2
a − 2ω2

b

]
(ĉ†ĉ+ â†â)

+g2(3ω2
b − 8ω2

a)
(8ω2

a − 2ω2
b )ωb

[
(ĉ†ĉ)2 + (â†â)2

]
+
[
ωb + 4g2ωa

4ω2
a − ω2

b

(â†â+ ĉ†ĉ+ 1)
]
b̂†b̂

+2g2

ωb
â†âĉ†ĉ+ g2

2ωa − ωb
1 ,

Ĥ
(2)
hop = − g2ωb

8ω2
a − 2ω2

b

(â2ĉ†2 + â†2
ĉ2) . (4.2.2)
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Figure 4.2: (a) The lowest energy levels of the system Hamiltonian versus the ratio between the

two cavity frequencies. For a coupling g = 0.06ωb, the position of the avoid level

crossing is contained in the black rectangular. (b) An enlarged view of the latter

is given. The presence of the labels stresses the hybridization of the two states

|2, 0, 0⟩ and |0, 0, 2⟩. The frequency mirror was conveniently set as ωb = 3/4ωc.
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In Ĥ(2)
shift we grouped all the terms that correspond to only a shift in the system energy.

Since [â†â, Ĥ
(2)
shift] = [b̂†b̂, Ĥ

(2)
shift] = [ĉ†ĉ, Ĥ

(2)
shift] = 0 the unperturbated states |na, nb, nc⟩,

respectively the number of excitations in the left cavity, the mirror and the right cavity,

are still a good basis for the system. In Ĥ
(2)
hop are grouped the terms responsible for the

two-photon hopping, as these terms destroy two photons in one cavity to create them

in the other one.

4.3 Results

4.3.1 Analytical approach

The two states |ψ1,2⟩ = (|2, 0, 0⟩ ± |0, 0, 2⟩) /
√

2 are eigenstates of the full (effective)

Hamiltonian.

For the purpose of a straightforward analysis, we limit our examination to the subspace

spanned by {|2, 0, 0⟩ , |0, 0, 2⟩}, specifically in the vicinity of the avoided-level crossing.

When the system is initialized in either |2, 0, 0⟩ or |0, 0, 2⟩, we can observe a coherent

and oscillatory behaviour between the two states of photon-pair that are maximally

entangled. The effective interaction Hamiltonian Ĥ(2)
hop in equation (4.2.2) can be applied

to solve the stochastic development of the system wave function by disregarding any

dressing energy shifts that have been absorbed by selecting the appropriate coefficients

(refer to App. D.4 for more information). By projecting the time-evolution operator

Û(t) = exp
(
−iĤt

)
onto the 2D subspace {|2, 0, 0⟩ , |0, 0, 2⟩}, with

Ĥ = Ĥ
(2)
hop − i(γaâ

†â+ γbb̂
†b̂+ γcĉ

†ĉ)/2 , (4.3.1)

in the interaction picture we obtain

Û(t) = e−2γt [cos (g̃t) (|2, 0, 0⟩ ⟨2, 0, 0| + |0, 0, 2⟩ ⟨0, 0, 2|)

− i sin (g̃t) (|2, 0, 0⟩ ⟨0, 0, 2| + |0, 0, 2⟩ ⟨2, 0, 0|)] ,

(4.3.2)

where we choose γ = γa = γc and g̃ = g2ωb/2(4ω2
a − ω2

b ). If we initialize the system in

the state |2, 0, 0⟩, its evolution at time t, before a quantum jump takes place, is

|ψ(t)⟩ = e−2γt [cos (g̃t) |2, 0, 0⟩ − i sin (g̃t) |0, 0, 2⟩] . (4.3.3)
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By appropriately renormalizing the wave function, we obtain the mean photon number

for the left and right cavities and for the mechanical resonator

⟨â†â⟩ = 2 cos2 (g̃t) ,

⟨b̂†b̂⟩ = 0 ,

⟨ĉ†ĉ⟩ = 2 sin2 (g̃t) . (4.3.4)

4.3.2 Numerical approach - Initial Fock state

We will now analyze numerical simulations obtained using eq. (4.3.4). In Fig. 4.3 (a)

we see the expectation values on a single quantum trajectory, obtained by solving the

stochastic evolution of the system wave function. We initialized the system in |2, 0, 0⟩,

while the parameters are g = 0.06ωb, ωa = ωc = 4ωb/3, and γa = γb = γc = γ = 10−4ωb.

As above, a refers to the left cavity (blue line), b refers to the mirror (red dashed

line) and c refers to the right cavity (black dashed-dotted line). Since this is a single

trajectory, we see a coherent hopping of a photon pair from one cavity to the other

while the mirror remains in its ground state, as predicted in (4.3.4). When one of

the two cavities emits a photon, in this case the one on the right, the photon number

inside the cavity that has emitted jumps to one (in this case corresponding to the state

−i |0, 0, 1⟩ = ĉ |ψ(t)⟩ /[⟨ψ(t)| ĉ†ĉ |ψ(t)⟩]1/2), while the other jumps to zero, showing the

collapse of wave function after a measurement. This excitation is trapped in the cavity

until another emission process because the Hamiltonian (4.3.4) does not permit the

tunnelling of a single photon from one cavity to the other.

Fig. 4.3 (b) shows the averaged quantities over 500 trajectories (ideally the average

should be over infinite trajectories). We clearly see a coherent oscillation of photon-

pair. This result, if averaged over a sufficient number of trajectories, is equivalent to the

one obtained through a master equation approach, but it lacks the trapping effect after

an emission that is possible to see only applying a post-selection procedure [113, 114].

Note that, with the parameters used we obtain an effective coupling g̃ ≈ 3 × 10−4ωb,

which is almost three times greater than the loss rate γ (the latter related to the cavity

quality factor Q). This regime, defined as strong coupling, allows the photon pairs to

flow from one cavity to the other for a certain time before one photon is lost to the
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environment.

4.3.3 Numerical approach - Gaussian coherent pulse drive

Finally, we consider the case of an incoming Gaussian coherent pulse driving the left

cavity while the system is initially in its ground state. For simplicity, we present a

numerical simulation for the closed dynamics. Figure 4.4 shows the first matrix elements

of the density operator at the end of the dynamics. The state of the right cavity contains

only even occupation numbers: in a closed dynamics no loss is possible and the hopping

mechanism always involves photon pairs.

The phenomena discussed in this paper could be verified experimentally by employ-

ing circuit-optomechanical systems, with the chosen parameters. These systems would

require either ultra-high-frequency mechanical micro- or nano-resonators operating in

the GHz spectral range, or two LC circuits coupled by a SQUID. Furthermore, the

optomechanical system proposed in this paper would enable the investigation of a novel

mechanism of photon-pair propagation in optomechanical lattices [115, 116], by utilizing

arrays of cavities that exhibit non-linear interactions and photon blockade [117]. This

would result in the formation of a photon crystal with a periodic modulation.
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〈ĉ†ĉ〉

0 1 2 3 4
γt

0

1

2

(b)

〈â†â〉
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Figure 4.3: The figure shows the quantum dynamics of two cavities and a mirror. Panel (a) is a single

quantum trajectory, where the system starts with two photons in the left cavity and none

in the right cavity or the mirror. The photon number in each subsystem oscillates until a

quantum jump happens in the right cavity, which traps the photon there. After another

jump, the system ends up with no photons nor phonons. Panel (b) is an average of 500

trajectories, which shows a coherent evolution of photon pairs. This can also be obtained

by a master equation, but it does not capture the trapping effect. The parameters are

g = 0.06 ωb, ωa = ωc = 4ωb/3, and γa = γb = γc = γ = 10−4ωb.
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Figure 4.4: Density matrix elements for the right cavity obtained by tracing out the left cavity

and the mirror. When the right cavity starts empty and a coherent pulse enters

the left cavity, only the states with an even number of photons are populated.

This confirms our proposed mechanism of photon hopping. We used the following

parameters: g = 0.09ωb, ωa = ωc = 1.1ωb, and γa = γb = γc = 0.
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Conclusions and outlooks

In this thesis I analyzed multiple hybrid quantum systems in the USC regime. In the

first chapter, I showed the state of the art, introducing the Quantum Rabi model and

the peculiar effects that arise when the light-matter coupling enters the USC regime. I

discussed the presence of virtual photons in the ground state and the apparent violation

of the gauge invariance, the principal theoretical problems that emerged in this regime,

and showed how to solve these issues.

In the second chapter, I analyzed the gauge issues of a generalized QRM, obtained by

considering a non-linear cavity interacting with a two-level atom. I provided a polaritonic

model to obtain the correct Hamiltonian for the non-linear interaction and used it to

show how important it is to correctly apply the minimal coupling procedure to obtain

consistent results that avoid unphysical effects. Differently from the usual QRM, I

have found that also the standard dipole-gauge interaction violates the gauge principle,

and provides wrong results, in the present case of a nonlinear optical resonator. I also

showed how the standard Kerr model becomes questionable for strong coupling rates,

comparable with the frequency of the atom and how it depends on the normalized

coefficient J of the photonic nonlinearity, on the qubit-oscillator normalized coupling

strength η, and on the considered energy levels.

In the third chapter, I demonstrated a correct method for computing the pure dephasing

rate through the examination of two representative models of cavity QED systems: the

QRM and the Hopfield model. Our findings indicate a decrease in the impact of pure

dephasing on the lower polariton branch in the USC regime within the latter model,

with further coupling serving to additionally suppress this effect. Conversely, an increase
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in pure dephasing is observed in the upper polariton branch with increases in coupling

strength. The primary takeaway is that when the rate of light-matter interaction reaches

a level comparable to the bare resonance frequencies of the relevant transitions of the

system components, the generalized minimal coupling replacements that introduce the

light-matter interaction must be applied to any perturbation that affects the matter or

light subsystems.

In the fourth chapter, our analysis has delved into the theoretical aspects of an optome-

chanical system composed of two electromagnetic resonators separated by a vibrating

mirror. The Hamiltonian for this system is obtained through canonical quantization and

also considers the mirror’s generic equilibrium positions. The most significant outcome

of our analysis is the revelation of a mechanism where photon pairs can hop in a co-

herent second-order effective resonant dynamics. The generalized James’ approach has

been employed to provide analytical insight into this specific phenomenon. Upon con-

ducting a numerical analysis of the energy levels with the lowest values, an avoided-level

crossing was observed in proximity to the resonant condition. This gap is indicative

of the hybridization of two photon-pair states. By conducting a stochastic evolution

of the system’s wave function, it was possible to observe coherent oscillatory dynamics

between the |2, 0, 0⟩ and |0, 0, 2⟩ states.

About the possible expansion of the results presented in this thesis, an immediate ex-

pansion of the work presented in the second chapter would be to include system losses

and study its dynamics, finding a threshold on both the nonlinearity and the coupling

strength that allows us to see experimentally the results obtained.

A future objective is to apply and expand the work presented in this thesis to supercon-

ducting circuits. USC has been achieved in many setups, but the environmental noise

needed to see the coherent effects characterizing USC has to be low enough that very low

temperatures have to be involved (in the order of the tenth-hundreds of mK). Adding

this to the recent advancements in experimental techniques that allowed different types

of superconducting qubits to reach the USC regime, attracted much focus to this topic.

Additionally, superconducting systems have also been used to simulate optomechani-

cal systems. To this end, the results presented in chapter three would also be very

important, since losses and dephasing are major issues to build a quantum computer.

Another focal point would be expanding the study of the USC regime in optomechanics.
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Considering the system presented in the fourth chapter, it would be interesting to see

how the system behaves if the two cavities have different sizes. Additionally, considering

an array of cavities coupled in the USC regime by oscillating mirrors might be an

interesting platform to study new and maybe surprising thermodynamical effects.

I believe that with minimal adjustments it is possible to apply the various results of this

thesis to superconducting circuits and observe them experimentally soon.
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Appendix A

Hopfield-Bogoliubov

transformation

A.1 Coefficients

Here we show the procedure used to obtain the explicit expression for the Hopfield

coefficients. We define the polariton operator P̂n = A∗
nâ+B∗

nb̂−A′
nâ

† −B′
nb̂

† that must

satisfy the commutation relation:

[
P̂n, ĤD

]
= ΩnP̂n . (A.1.1)

Then, we solve the resulting system for the coefficients obtained from (A.1.1) and after

some algebra, we obtain the following expressions:

An =
∣∣ω2

0 − ω2
n

∣∣ ∣∣ω2
n − ω2

c

∣∣
2 (ωn − ωc)

×

1√(
ω2

0 − ω2
n

)2
ωnωc + 4λ2ω0ω5

n

e−i(ϕn+π/2) ,
(A.1.2)

A′
n =

∣∣ω2
0 − ω2

n

∣∣ ∣∣ω2
n − ω2

c

∣∣
2 (ωn + ωc)

×

1√(
ω2

0 − ω2
n

)2
ωnωc + 4λ2ω0ω5

n

e−i(ϕn+π/2) =

= An
(ωn − ωc)
(ωn + ωc)

, (A.1.3)
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Bn = λω2
n

∣∣ω2
0 − ω2

n

∣∣ ∣∣ω2
n − ω2

c

∣∣
(ω2

n − ω2
c ) (ωn − ω0) × (A.1.4)

1√(
ω2

0 − ω2
n

)2
ωnωc + 4λ2ω0ω5

n

e−i(ϕn+π) ,

B′
n = λω2

n

∣∣ω2
0 − ω2

n

∣∣ ∣∣ω2
n − ω2

c

∣∣
(ω2

n − ω2
c ) (ωn + ω0) ×

1√(
ω2

0 − ω2
n

)2
ωnωc + 4λ2ω0ω5

n

eiϕn

= Bn
(ωn − ω0)
(ωn + ω0)e

i(2ϕn+π) , (A.1.5)

The value of the phases can be obtained by imposing that lim
λ−>0

P̂n is either â or b̂. For

example if we choose ωc < ω0 we obtain that ϕ1 = π/2 and ϕ2 = π, and, in the λ → 0

limit, the lower polariton P̂1 results the photonic operator â while P̂2 is the operator b̂.
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Appendix B

Minimal coupling replacement on

a generic operator

By using some general operator theorems [118], we show how to implement the minimal

coupling replacement on a generic operator O(x̂, p̂) by a unitary transformation [119].

Given two noncommuting operators α̂ and β̂ and a parameter µ we want to calculate

eµβ̂O(α̂)e−µβ̂. Let us consider the power expansion of the function O(α̂):

O(α̂) =
∑

n

cnα̂
n . (B.0.1)

It follows that

eµβ̂O(α̂)e−µβ̂ =
∑

n

cne
µβ̂α̂ne−µβ̂ . (B.0.2)

Observing that

eµβ̂α̂ne−µβ̂ = eµβ̂α̂e−µβ̂eµβ̂α̂e−µβ̂ . . . eµβ̂α̂e−µβ̂ =
(
eµβ̂α̂e−µβ̂

)n
. (B.0.3)

We have:

eµβ̂O(α̂)e−µβ̂ =
∑

n

cn

(
eµβ̂α̂e−µβ̂

)n
= O(eµβ̂α̂e−µβ̂) . (B.0.4)

We now apply (B.0.4) to eiχ(x̂)/ℏO(x̂, p̂)e−iχ(x̂)/ℏ. For simplicity’s sake, we consider the

1D case. The generalisation to 3D is straightforward. We obtain

eiχ̂(x)/ℏO(x, p̂)e−iχ̂(x)/ℏ = O(x, eiχ̂(x)/ℏp̂e−iχ(x)/ℏ) . (B.0.5)

Then we use the Baker-Campbell-Hausdorff Lemma:

eiχ̂(x)/ℏp̂e−iχ̂(x)/ℏ = p̂+ i

ℏ
[χ̂(x), p̂] + 1

2

(
i

ℏ

)2 [
χ(x̂), [χ(x̂), p̂]

]
+ . . .

= p̂− ∂xχ̂(x)
(B.0.6)

65



Appendix B: Minimal coupling replacement on a generic operator

where we have used the result [χ̂(x), p̂] = iℏ∂xχ̂(x). In conclusion, using (B.0.6), (B.0.5)

becomes

eiχ̂(x)/ℏO(x, p̂)e−iχ̂(x)/ℏ = O(x, p̂− ∂xχ̂(x)) . (B.0.7)

Let us introduce the special function

χ̂(x) = xÂ0 , (B.0.8)

where Â0 ≡ Â(x0) is the field potential calculated at the atom position x0, we obtain

∂xχ̂(x) = Â0 . (B.0.9)

Thus, Eq. (B.0.7) becomes:

eiχ̂(x)/ℏO(x, p̂)e−iχ̂(x)/ℏ = O(x, p̂− Â0) , (B.0.10)

demonstrating that the unitary transformation in Eq. (B.0.7) corresponds to the appli-

cation of the minimal coupling replacement in the dipole approximation.
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Appendix C

Analytical derivation of the pure

dephasing rates

We consider the Coulomb gauge and using eq. (3.1.6), we discard the off-diagonal terms

Γjk
ϕ since this contribution is significant only if the dephasing bath has a spectral weight

at the potentially high frequency ωjk, leading to the following equation:

˙̂ρ = −i
[
ĤC , ρ̂

]
+ γϕ(0)

2 D

∑
j

σC,jj
z |j⟩⟨j|

 ρ̂ , (C.0.1)

where σC,jj
z = ⟨j|σ̂z|j⟩. We now expand the Lindblad dissipator

D
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j
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2

2
∑

j

∑
j′

σC,jj
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z |j⟩⟨j| ρ̂
∣∣j′〉〈j′∣∣+

−
∑

j

∑
j′

σC,jj
z σC,j′j′

z

∣∣j′〉 〈j′∣∣j〉 ⟨j| ρ̂

−
∑

j

∑
j′

σC,jj
z σC,j′j′

z ρ̂
∣∣j′〉 〈j′∣∣j〉 ⟨j|

 ,
(C.0.2)

and we focus on the matrix element of the density matrix relative to the transition

(1̃−, 0̃), but the same procedure can be applied to all the other transitions. The corre-
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sponding equation (in the interaction picture) for that matrix element becomes

d

dt
ρ̂

(I)
1̃−,0̃ = γϕ(0)

4
〈
1̃−
∣∣ 2

∑
j

∑
j′

σC,jj
z σC,j′j′

z |j⟩ ⟨j| ρ̂(I) ∣∣j′〉 〈j′∣∣+
−
∑

j

|σC,jj
z |2 |j⟩ ⟨j| ρ̂(I) −

∑
j

|σC,jj
z |2ρ̂(I) |j⟩ ⟨j|

 ∣∣0̃〉

=γϕ(0)
4

2
∑

j

∑
j′

σC,jj
z σC,j′j′

z

〈
1̃−
∣∣j〉 ⟨j| ρ̂(I) ∣∣j′〉 〈j′∣∣0̃〉+

−
∑

j

|σC,jj
z |2

〈
1̃−
∣∣j〉 ⟨j| ρ̂(I) ∣∣0̃〉∑

j

|σC,jj
z |2

〈
1̃−
∣∣ ρ̂(I) |j⟩

〈
j
∣∣0̃〉


=γϕ(0)
4

[
2σC,1̃−1̃−

z σC,0̃0̃
z

〈
1̃−
∣∣ ρ̂(I) ∣∣0̃〉+

−|σC,1̃−1̃−
z |2

〈
1̃−
∣∣ ρ̂(I) ∣∣0̃〉− |σC,0̃0̃

z |2
〈
1̃−
∣∣ ρ̂(I) ∣∣0̃〉]

= − γϕ(0)
4

∣∣∣σC,1̃−1̃−
z − σC,0̃0̃

z

∣∣∣2ρ̂(I)
1̃−,0̃ .

(C.0.3)

By choosing the dipole gauge, one should replace σC,jj
z → σjj

z . The same procedure is

valid also for cavity pre dephasing, where we need to use â†â in the Coulomb gauge and

â†
DâD in the dipole gauge.
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Optomechanics

D.1 Derivation of the classical optomechanical Hamilto-

nian

Our starting point is two non-interacting electromagnetic cavities, with a movable per-

fect mirror separating them. We follow the methodology outlined in Ref. [79] and, in

order to simplify the process, we conduct our analysis in one dimension and then we

generalize our findings to our specific case. In terms of notation, we use ±I to refer

to the endpoints of the cavity, while M and q(t) denote the mass and position of the

movable mirror, respectively. Since there are no charges present, the electromagnetic

field follows the wave equation. However, the motion of the movable mirror is impacted

by the radiation pressure of the fields in both cavities, as depicted in Fig. 2(a) in the

main text. Therefore, it follows the laws of motion as outlined by Newton’s equation.
∆A = 0 x ∈ (−I, q) ∪ (q, I)

Mq̈ = −∂qV + 1
2
[
(∂−A)2 − (∂+A)2]|q (D.1.1)

where ∆ := ∂2
t − ∂2

x and ∂−, ∂+ are the left and right derivatives. We consider the

potential V (q) to be infinite at the two mirror positions ±I. Considering a movable

mirror of negligible thickness, the two radiation pressures (∂±A)2/2 come with opposite

signs and in the form of lateral derivatives.

By defining Lk and Rk as the Fourier components on the left and right cavity, respec-

tively, the completeness of the mode functions enables to write (from now on, we adopt
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the Einstein summation convention),

A(t, x) =


Lk(t)φk(t, x) x ∈ (−I, q)

Rk(t)ϕk(t, x) x ∈ (q, I)
(D.1.2)

where the summation in k is understood and,

φk =
√

2
q + I

sin [ωk(x+ I)] ,

ϕk =
√

2
I − q

sin [Ωk(x− I)] , (D.1.3)

with ωk = kπ/(q + I), Ωk = kπ/(I − q). We can still fix a normalisation for φk and ϕk

choosing,

δij =
∫ q

−I
φiφj =

∫ I

q
ϕiϕj , (D.1.4)

as the Kronecker delta. The wave equation (D.1.1) can be projected along one Fourier

component, and the equation of motion of the movable mirror becomes,

L̈k + ω2
kLk −

gkm

(
2q̇L̇m + q̈Lm

)
I + q

+ q̇2
(
gkm + gkjg

j
m

)
Lm

(I + q)2 = 0 ,

R̈k + Ω2
kRk −

γkm

(
2q̇Ṙm + q̈Rm

)
I − q

− q̇2
(
γkm − γkjγ

j
m

)
Rm

(I − q)2 = 0 ,

Mq̈ + ∂qV + (−1)k+m

(
ΩkΩmR

kRm

I − q
− ωkωmL

kLm

q + I

)
= 0 , (D.1.5)

with,

gkm = (q + I)
∫ q

−I
∂q(φk)φm = −γkm = −(I − q)

∫ I

q
∂q(ϕk)ϕm , (D.1.6)

that satisfy,

gkjg
j
m = −(q + I)2

∫ q

−I
∂qφk∂qφm = γkjγ

j
m = −(I − q)2

∫ I

q
∂qϕk∂qϕm , (D.1.7)

and ∫ q

−I
φk∂

2
qφm = 1

(q + I)2

(
gkjg

j
m − gkm

)
,∫ I

q
ϕk∂

2
qϕm = 1

(I − q)2

(
γkjγ

j
m + γkm

)
. (D.1.8)
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The system of equations (D.1.1) can be derived from the following Lagrangian,

L(q, q̇, L, L̇, R, Ṙ) =1
2
(
L̇kL̇

k − ω2
kLkL

k + ṘkṘ
k − Ω2

kRkR
k
)

+

− q̇

(
gkm

L̇kLm

q + I
+ γkm

ṘkRm

I − q

)
+

− q̇2

2

[
gkjg

j
m

LkLm

(q + I)2 + γkjγ
j
m

RkRm

(I − q)2

]
+ 1

2Mq̇2 − V ,

(D.1.9)

and the corresponding Hamiltonian is,

H(q, p, L,Λ, R,W ) = 1
2M

(
p+ gkm

ΛkLm

q + I
+ γkm

W kRm

I − q

)2

+

+ V + 1
2
(
ΛkΛk + ω2

kL
kLk

)
+ 1

2
(
WkW

k + Ω2
kR

kRk
)
.

(D.1.10)

Let us first examine the classical system equations presented in (D.1.5) before quantizing

the classical Hamiltonian as shown in (D.1.10). The equations that govern Lk and Rk

are homogeneous, and their coefficients are non-trivial functions of q, q̇, and q̈. If the

initial condition is given as Rk(0) = Ṙk(0) = 0, which implies that there is no field

present on the right side of the cavity at the starting time, then the solution Rk(t) = 0

holds true for all times. This is a well-posed Cauchy problem, and as such, the solution

of the equation is unique. Therefore, regardless of what values Lk may take, Rk(t) will

remain zero. Furthermore, if we consider the energy of the right electromagnetic field,

U = 1
2

∫ I

q
[(Ȧ)2 + (∂xA)2]dx

= 1
2[ṘkṘk − q̇2

(I − q)2γkiγ
i
jR

kRj ] , (D.1.11)

by virtue of (D.1.2), (D.1.3), (D.1.4) and (D.1.7) (the sum over k, i and j is understood).

The energy present in the system is evidently linked to the states of the mechanical

mirrors, dictated by the equations of motion. If the right cavity does not contain any

photons, it follows that the energy in the system will remain at zero, which in turn

prevents the left electromagnetic field from being transferred to the right side. These

properties of the system reflect the perfection of the mirrors and the fact that the

classical vacuum is empty.
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D.2 Quantization of the classical system Hamiltonian

Consider the operators {q̂, p̂, L̂k, Λ̂k, R̂k, Ŵk} and impose the commutation relations (ℏ =

1), [q̂, p̂] = i, [L̂k, Λ̂m] = iδkm and [R̂k, Ŵm] = iδkm, while [q̂, L̂m] = [q̂, R̂m] = [L̂k, R̂m] =

[p̂, L̂m] = [p̂, Ŵm] = [Λ̂k, Ŵm] = 0. Using the ladder operators,

âk = 1√
2ωk

(
ωkL̂k + iΛ̂k

)
,

ĉk = 1√
2Ωk

(
ΩkR̂k + iŴk

)
, (D.2.1)

the Hamiltonian (D.1.10) becomes,

Ĥ ′ =(p̂+ Γ̂ )2

2M + V̂ +
∑

k

ωkâ
†
kâk

+
∑

k

Ωk ĉ
†
k ĉk − πq1̂

6(q + I)(q − I) , (D.2.2)

where we have already resummed the vacuum point fluctuations, and

Γ̂ = i

2

√
m

k

[
gkm(â†

k − âk)(â†
m + âm)

q + I

+γkm(ĉ†
k − ĉk)(ĉ†

m + ĉm)
I − q

]
. (D.2.3)

This is the full Hamiltonian of the problem. Eq. (1) in the main text is obtained by

considering the unimodal case and linearising it. To do this we first consider Γ ≈ Γ0

constant and then introduce a variation from the expected position of the mirror q =

q0 + δq, and expand all the terms accordingly,

ωk = kπ

q0 + I

(
1 − δq

q0 + I

)
+ O

[
δq2

(q0 + I)2

]
,

Ωk = kπ

I − q0

(
1 + δq

I − q0

)
+ O

[
δq2

(I − q0)2

]
, (D.2.4)

which in turn, from (D.2.1), induces

âk ≈ (â0)k − δq

2(q0 + I)(â†
0)k ,

ĉk ≈ (ĉ0)k + δq

2(I − q0)(ĉ†
0)k . (D.2.5)

Performing the unitary transformation Û = exp(iδqΓ̂0) on (D.2.2), proves that,

Ĥ = ÛĤ ′Û † = p̂2

2M + V̂ +
∑

k

[
(ω0)k(â†

0)k(â0)k

+ (Ω0)k(ĉ†
0)k(ĉ0)k

]
− δq(Ĝ0 + F̂0) , (D.2.6)
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where V̂ = V̂ − πq1̂/6(q + I)(q − I), and

F̂0 =
∑
k,j

(−1)k+j

2(q0 + I)

√
(ωkωj)0 (â†

k + âk)(â†
j + âj) ,

Ĝ0 =
∑
k,j

(−1)k+j+1

2(I − q0)

√
(ΩkΩj)0 (ĉ†

k + ĉk)(ĉ†
j + ĉj) . (D.2.7)

Finally, we consider a quadratic potential V and introduce the vibrating mirror ladder

operators {b, b†} in a way that δq = xzpf(b+ b†), where xzpf is the zero-point-fluctuation

amplitude of the vibrating mirror. By reducing all the modes to one (k = j = 1), the

system Hamiltonian in (D.2.2) can be written down as,

Ĥ =ωaâ
†â+ ωbb̂

†b̂+ ωcĉ
†ĉ

+ xzpf
2π

[
ω2

c (ĉ+ ĉ†)2 − ω2
a(â+ â†)2

]
(b̂+ b̂†) . (D.2.8)

Defining a coupling strength g = ω2
c xzpf/π = ωc xzpf/(I − q0) the (4.2.1) in the main

text is obtained. Note that since ℏ = 1 the coupling strength g has the right units.

D.3 Effective Hamiltonian with the generalized James’ method

The generalized James’ effective Hamiltonian method [112] allows us to obtain an ef-

fective Hamiltonian for strongly detuned quantum systems. To apply this method to

(4.2.1) in the main text, we first rewrite it in the interaction picture,

ĤI(t) =g
[
ĉ†ĉ− ω2

a

ω2
c

â†â

]
b̂ e−iωbt + g

2

[
(ĉ)2b̂ e−i(ωb+2ωc)t − ω2

a

ω2
c

(â)2b̂ e−i(ωb+2ωa)t
]

+ g

2

[
(ĉ†)2b̂ ei(2ωc−ωb)t − ω2

a

ω2
c

(â†)2b̂ ei(2ωa−ωb)t
]

+ h.c. . (D.3.1)

This can be rewritten as,

ĤI(t) =
∑

k

[
ĥke

−iωkt + ĥ†
ke

iωkt
]
, (D.3.2)

where now the ωk are a combination of the bare transition frequencies. The second-

order generalized James’ effective Hamiltonian already shows a photon-pair hopping

mechanism. The second order effective Hamiltonian is:

Ĥ
(2)
I (t) =

∑
j,k

1
ωk

[
ĥj ĥ

†
ke

i(ωk−ωj)t − ĥ†
j ĥke

i(ωj−ωk)t
]
. (D.3.3)
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We can neglect all frequency contributions which are different from zero by applying the

rotating-wave approximation. Since the frequencies ωk are all different, we only keep

the terms in Ĥ
(2)
I (t) where the sum of the exponent is zero.

Starting from (D.3.1) and considering the resonant condition ωa = ωc, only three terms

need to be considered,

ĥ1 = g

2(ĉ†2 − â†2)b̂† ω1 = 2ωa + ωb,

ĥ2 = g

2(ĉ†2 − â†2)b̂ ω2 = 2ωa − ωb,

ĥ3 = g

2
(
{ĉ, ĉ†} − {â, â†}

)
b̂† ω3 = ωb . (D.3.4)

From the canonical commutation relations it follows that,

[
ĥ1, ĥ

†
1

]
=g2

4
[
â2ĉ†2 + â†2

ĉ2 − ĉ†2
ĉ2 − â†2

â2 + 2b̂†b̂
(
{ĉ, ĉ†} + {â, â†}

) ]
,[

ĥ2, ĥ
†
2

]
=g2

4
[
ĉ†2
ĉ2 + â†2

â2 − ĉ†2
â2 − â†2

ĉ2 + 2b̂b̂†
(
{ĉ, ĉ†} + {â, â†}

) ]
,[

ĥ3, ĥ
†
3

]
= − g2(ĉ†ĉ− â†â)2 , (D.3.5)

so James’ effective Hamiltonian is,

Ĥ
(2)
eff =

[
ωa + g2(4ωa + ωb)

8ω2
a − 2ω2

b

]
(ĉ†ĉ+ â†â)+ (D.3.6)

+ g2(3ω2
b − 8ω2

a)
(8ω2

a − 2ω2
b )ωb

[(ĉ†ĉ)2 + (â†â)2] + 2g2

ωb
â†âĉ†ĉ+ g21̂

2ωa − ωb
+

+
[
ωb + 4g2ωa

4ω2
a − ω2

b

(ĉ†ĉ+ â†â+ 1̂)
]
b̂†b̂− g2ωb

8ω2
a − 2ω2

b

(â2ĉ†2 + â†2
ĉ2) . (D.3.7)

All the terms but the last one are energy shifts. The latter is the desired hopping

mechanism.

D.4 Monte Carlo wave function approach: Quantum tra-

jectory

The Monte Carlo wave function (MCWF) approach is introduced in Refs. [120, 121]

by describing the effect of the environment between two quantum jumps through a

non-Hermitian Hamiltonian:

Ĥ = Ĥ − i

2
∑
m

γm Γ̂†
mΓ̂m . (D.4.1)
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Here, Ĥ represents the Hamiltonian part of the dynamics, either the full one or obtained

through approximation methods, and Γ̂m are the jump operators. The evolution of a

quantum trajectory is thus dictated by a non-Hermitian evolution via Ĥ interrupted by

random quantum jumps. The algorithm to obtain such a dynamics reads:

(i) |ψ(t)⟩ is the normalized wave function at the initial time t.

(ii) The probability that a quantum jump occurs through the m-th dissipative channel

in a small amount of time dt is,

δpm(t) = dtγm ⟨ψ(t)|Γ̂†
mΓ̂m|ψ(t)⟩ , (D.4.2)

such that δpm(t) ≪ 1.

(iii) One randomly generates a real number ε ∈ [0, 1].

(iv) If
∑

m δpm(t) < ε, no quantum jump occurs, and the system evolves as,

|ψ(t+ dt)⟩ = exp
(
−iĤdt

)
= 1 − idtĤ |ψ(t)⟩ + O(dt2) . (D.4.3)

(v) Otherwise, if
∑

m δpm(t) > ε, a quantum jump occurs. To decide which channel

dissipates, a second random number ε′ is generated, and each quantum jump is selected

with probability δpm(t)/(
∑

n δpn(t)). The wave function then becomes,

|ψ(t+ dt)⟩ = Γ̂m |ψ(t)⟩ . (D.4.4)

(vi) At this point, independently of whether a quantum jump took place, the wave

function |ψ(t+ dt)⟩ is renormalized and used for the next step of the time evolution.

A quantum jump corresponds to the projection of the wave function associated with a

generalized measurement process (wave-function collapse through a positive operator-

valued measure) [122].

Averaging over an infinite number of trajectories allows us the certainty to obtain the

Lindblad master equation results. Concretely, the number of trajectories needed to

obtain the convergence of the two approaches is determined by noise effects.
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