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ON THE FRACTIONAL DIFFERENTIABILITY
OF THE SPATIAL DERIVATIVES OF WEAK SOLUTIONS
TO NONLINEAR PARABOLIC SYSTEMS OF HIGHER ORDER

ROBERTO AMATO, Messina

(Received 1992')

Abstract. We are concerned with the problem of differentiability of the derivatives of
order m + 1 of solutions to the “nonlinear basic systems” of the type

=™ 3 D*A*(D™Mu) + % -0 inQ.

laj=m
We are able to show that
D% € L*(—a,0, H" (B(0),RY)), |a| =m+1,

for ¥ € (0,1/2) and this result suggests that more regularity is not expectable.

Keywords: mnonlinear parabolic system; fractional differentiability; spatial derivative;
weak solution

MSC 2010: 35R11, 35K41

1. INTRODUCTION

Let Q be a bounded open subset of R™, with n > 1, let « be a point of R", ¢t € R
and X = (x,t) a point of R” x R. Let N be an integer N > 1, and (, ) and ||-||x
the scalar product and the norm in R¥, respectively.
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If T is a positive number we set @ = 2 x (—=T,0) and we denote by B(2°, ) the
cube of R™:

B2’ o) ={zcR": |z; —2V| <0, i=1,2,...,n},

and we set
Q(Xo,0) = B(2°,0) x (tg — o®™, tg)
where m is a positive integer and X = (2°,¢), with 20 = (29, 29,...,2%) € R” and
o > 0. For the sake of brevity we set B(z°,0) = B(0).
Moreover, we say that Q(Xo,0) CC Q if

B(z%,0) ccQ and ¢*" >ty +T > T.

Let a = (a1, a2, ..., ap) be a multindex and |a] = a1 + az + ... + a,; we denote
by #, #* and %' respectively the Cartesian products [[ RY, [ RY and
lal<m © lal<m—1

[T RY, while p = {p“}aj<ms P* = {P*}ajxm—1 and p' = {p*}|aj=m, P* € RY,

|al=m
are respectively points of Z, Z* and %#’'.
If u: Q — R™, we set

Du = {Dau}la\émv du = {Dau}\algm—la
DRy = {D%u} o=y k=1,2,...,m,

while Dsu, s = 1,2,...,n, denotes the derivative of u with respect to the variable x.
Let A%(p'), |a| = m, be vectors of RY defined in %', continuous in p’ and such
that
A%(0) =0, |a| =m;

we shall call “basic system” the nonlinear differential system

Ju
a pa (m) _
(1.1) Bou=(— § DA (D) 4 S8~ 0.

loe|=m

We suppose that the vectors p’ — A%(p) are twice differentiable with derivatives
814%/8])5, 82142/8])78])5, la] = |B| = |y| = m, with h,k,l =1,2,..., N, continuous
and bounded in %'

(12) {zlz mz\ o
(S 5 5 5 2a

=1lal=m [B|=m |v|=

/2
} <M, pez

1/2
} <M, ped

where M, M’ are positive constants.
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We also suppose that the operator Ej is strongly parabolic, that is there exists
v > 0 such that

(1.3) Z > Z 86 W) s > vy lle?

hok=1|a|=m |8|= laf=m

for every p € %"' and for any system {fa}w —m of vectors of RY. If we set A,s =

{Ahk 5} with A fo (0AY (tp )/8pk) dr, then thanks to the fact that A*(0) = 0,
we get:
S 045 (7))
> At m</22: e
k=1|8|=m 0 k=1|p|= 0
= AR ()

and therefore

APy = > Aap® )’

|Bl=m
Furthermore setting
(1.5) Angy = {1
and ot o |
D)+ NP
7hkl _/ aﬁ—d
aBy 8pl 77
with
Pi = {"Yaj=ms b = PP Naj=m, PV PP € RV,
lal, 18], |yl =m and h,k1=1,2,...,N,
we obtain
al 1 9ah
(2 P+ 105) (o
(19) ZZJ%”ZZ/ﬂL—%%

1 y|= I=1|v|=

LOAM () + nph)
=/ — Pl T2 A = A (p + ph) — ARE(p)).
0

on

The object of the present work is to show a result on fractional differentiability for
the spatial derivatives of order m + 1 of the solutions to basic systems of order 2m
of the type (1.1). The type of solution that we consider is the following: a vector
u € L%(=T,0, H™(Q, RY)) is a solution of the system (1.1) if it satisfies

(1.7) /Q{ 3 /(A“(D(m)u), Do) — (u %) } dX =0

lor|=m
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for all ¢ € LQ(—T,O,H(?”(Q, [RN)) NnH! (—T,O,LQ(Q, R)N) such that p(z,-T) =
o(x,0) =01in Q.

We recall that H™(Q, RY) and HJ*(2, RY) are the usual Sobolev spaces. After-
wards we shall set

o 2 1/2
|u|m_</ dy M@ Co<d<l
Q Q

[l =yl +2?

In [1] it has been shown that if u € L2(—T,0, H™(2,RY)) is a solution to the
system (1.1) then there exist D%u € L2 (Q,RY) for all a, |a| = m + 1, and the

loc
derivative Dsu, s = 1,2,...,n, satisfies the system

(1.8) /Q(Xo,a'){ 3 S (Aap(D™u)DPDyu, D) — (Dsu,%—f)}dX ~0

lo|=m |B]=m

for all ¢ € C§°(Q(Xo,0"), RY) and for all Q(Xo,0") CC Q.
Under the above assumptions (1.2) and (1.3), we are able to show that, if D €
L3 (Q,RN), |a] < m+ 1, then D € L?*(—a,0,H"(B(0),RY)) for |a| = m + 1,
€ (0,7) and for all ¥ € (0, 1/2); such result suggests that this is the sharpest
regularity for the solutions of a nonlinear parabolic system not only of basic type
but also of general type (see [2] and [3] for such type of systems; for the case m =1
see also [4], [5], [8], [9] and [10]).

2. LOCAL DIFFERENTIABILITY OF THE DERIVATIVES OF ORDER m + 1

In this section we show the result on fractional local differentiability for the deriva-
tives of order m+ 1 of the solutions to basic systems that is the purpose of this paper.
In fact the following theorem holds:

Theorem 2.1. Let u € L?(—=T,0, H™(Q,R™)) be a solution of the system

m - « « m 8U _
(2.1) (-1)™ Y~ D*A*(D! )u)—i—a =0

lo|=m

and assume that D®u € L} (Q,RY), |a| < m + 1. Then for ¢ € (0,1/2), for all

2a € (0,T), and for all o, o’ such that B(z°,30) CC B(2°,0’) CC Q it results

D% € L*(—a,0,HY(B(0),RY)), |a|=m+1,
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and the following inequality holds
0
/ |Dau|129,B(a) dt < C(Va Mﬂ Mlvmvnaa)ﬂ

where <7 is defined by (2.5).

Proof. To achieve this result let us take in (1.8), as test function, the function
¢ constructed in the following way: let ¥(x) € C5°(RM) be a function with the
following properties

0<9¥<1, ¥9=1 inB(o), 9=0 inR"\B(30),

D79 < eo 1, ] <m.
Let g,(t), with p an integer greater than 2/a, be a function defined in R as follows
)=1 if —a<t<-2/p,
op(t) =0 ift >—1/port< —2a,
y=t/a+2 if —2a<t<—a,
y=—(pt+1) if —2/p<t<—1/p.

Let {gs(t)} be a sequence of symmetric mollifying functions such that

gs(t) € C5°(R), gs(t) =20, gs(t) = gs(—1),
supp gs(t) C [-1/s,1/s],
S gs(t)dt = 1.

Then for every p > 2/a, for all s > max {p,l/(T—2a)}, and for |h| < o we
consider the function

Y= Tr,—h{ﬁszQp[(QanhDsu) * gsl} = Tr,—hw(xa t)

where, for the sake of brevity, we set

Y(x,t) = ﬁQme[(QpTr,hDsu) * gs]
and furthermore
Trptt = u(x + he”,t) —u(zx, t),

r integer, 1 <7 < n, with e = (e!,e?,...,e") the canonical basis.
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From (1.8) we then obtain

/Q{ Z Z Aas( D(m YDP Dyu, D® Tr bz, t))

lee|=m | B|=m

_ (Dsu, M)}d)( =0,

ot
that is,
/{}: mZ a,8(D"™u(z, 1)) DP Dgu, D*p(x — he’“,t))}dx
/Q{ > Z D™ y(z,t))D? Dyu, D*9(x, t))}dX

loe|=m |B]=

—/ 92" (x — he")(Dsu, 0,(1))(0pTrn Dsu(x — he', t) x g;) dX
Q
- [ @)D gy O) @Dk 9.) X =0,

Q

having taken into account that by virtue of the symmetry of g, () the integral term
vanishes. By a simple calculation we obtain

/Q{ Y D (Aas(D™ula + he", 1) D Dyu(x + he", 1), D*(x, 1))
lel=m |Bl=m

— (Aag (D™ u(x, 1)) DP Dou(z, t), D*h(z, t))]} dXx

— /Qﬁzm(a:)gg,(t) (TNLDSu7 0p(Trn Dsu * gs)) dX =0,
and then, adding and subtracting the term

(Aap (D™ u(z,t))DP Dyu(z + he",t), DY (x,t))

we get
/[ E g (ThhA(yg(D(m)u)DﬁDsu(x—l—her,t),Daw(x,t))
Q _ _
la|=m |B|=m

+ Z Z M u(z, 1)1 n DP Dgu, DY (x, 1)) | dX

lee|=m | B]=m

- / 9™ (@)pl, () (7r.n D, 0p(Trn Dsu x g5)) dX = 0.
Q
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Taking into account (1.5) and (1.6), we obtain, with obvious meaning of the math-
ematical symbol,

1
OA,5(D(™) D(m)
R e

/ 8AQB(D(m)u—|— nrrﬁD(m)u)
0 8p7

dn

Tr DV updn
=1 Iv\

= Z ﬂaﬂvTr’hDvu,

[y]=m

and hence

/{Z Z Z oy TrnDYuDP Dgu(z + he', t), D (, t))

lee|=m | Bl=m |y|=m

+ > Z 5(D™ )7,y DP Dgu, D*(x, 1))
la|=m|B|=

— ﬁQm(x)p;(t)(TnhDsu, 0p(Trn Dsu % gs))} dX =0.
Adding and subtracting the term
(FopyTrn D TuDP Dgu, D (, 1))

we get

/{Z Z Z Aoy Trn DT, DP Dyu, D*4) (2, 1))

la|=m [B|=m |y|=

+ 3 % Z (HapyTrn D uDP Dyu, D9, t))

lee|=m | Bl=m |y|=m

+ 3 Y (Aap(D )7, DP Du, D*p(, 1))

la|=m |B]=m
— 0% (&) gl (1) (1) (7 D, (e D gs»} ax =0,
Since )
D*Y(z,t) = D* (97" 0p[(0pTrn Dsu) * gs))
= ﬁQme[(QanhDsu) * s
+ 7927”’91) Z Cas (ﬂ)[(QpTr,hDéDsu) * ]

<o
with
|Cas ()] < coldl—™
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we obtain

/ 9™ 3 ST ST (s mn D gy D Doty (057 D Dytt) 5 ;) dX
Q

la|=m [B|=m |y|=m

+/Qq9mz 3

le|=m |B]=m

> (Fasmen D u0y7n DDyt > Cas(9)l(0pmn D Dytt) # g,]) X

|y|=m i<a

+ / PN D Y (Hapymn D ueeD’ Dau, (0p7rn D Dsu) * g5) dX
Q

lee|=m | Bl=m |y|=m

+/Ql9mz 3

lo|=m |B]=m

Z (daﬁVTth”unghhDBDsu, Z Cos(9)[(0pTrn D Dgu) * gs]) dx

|v|=m o<

+/ 192"1/ Z Z (AaﬁtQPTT,hD/BDsu7 (QPTT,hDO(DSU') * gg) dX
Q

lee|=m | B|=m

—l—/QQ92m Z Z (A(yggprr7hDBDsu, Z C’aa(ﬁ)[(ngNLD‘stu) *gs]) dx

la|=m|B|=m d<a

= / 9™ (Tr Dot (0pTr n Dstr) * gs) dX.
Q

Taking the limit for s — oo, we obtain:

(2.2)
/ SN (AapyTrn DV ugyTr n DP Do, 07 4 D* Dou) dX
Q

la|=m |B|=m |y|=m
RS
Q@ Jal=m|Bl=m
Z (:Q{aﬁ—YTr,hDryunghhDBDS’U,, Z Cus (ﬁ)ngNLD‘SDsu)

|v|=m o<

—l—/ 92m Z Z Z (fxz{(ygvrnhDvungﬁDsu, 0pTrn D*Dgu) dX
Q

lee|=m |B|=m |y|=m

3 (%Mn,hmugppﬁpsu, 3 Cag(ﬁ)ngnhDéDsu) ax

[v]=m o<
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+ / 9*™ >N (AapopTrnDP Du, 0p7rn D* Du) dX
Q

lee|=m | B|=m

+/ o™ Z Z (AaﬁQpTr,hDﬁDsuaan5(7-9)9p7'r,hD6Dsu) dX
Q

|lal=m |B|=m 0<a

:/ﬁzmg;gp(Tr’hDsu,Trthsu)dX.
Q

Let us observe now that, since Du € L} _(Q,RY), |a| < m + 1, it results for the
first integral of (2.2)

‘/ 192m Z Z Z (vQ{(yB’YTth’YU'TthBDSU';TthaDSU)dX‘
Q

lee|=m [B|=m |y|=m

<M / 902 3" |raDDyul? Y rnDul| dX
Q

lee|=m [v[=m

2/3
<M ([ @m0 X (lmaDe Dl ax )
Q

|al=m

1/3
x < JRGEDS |n,th||3dX)
Q

[v[=m

<) ([ 0ma) 3 10Dt -+ e O dm)2/3

lee|=m

+ /Q(qsimgp)a’/2 > ||D“D5u(x,t)||3dX)2/T

(e 2
(

1/3
/Q(qslmgp)‘3 > |Tr,hmu||3dx) .

[v[=m

X

Where, here and in the sequel ¢(M’) denotes a positive constant depending on M’.

Since

2/3
(/ (Wm0 Y ||D(’Dsu(a:+he7",t|3dX)
Q

lee|=m

0 2/3
<L af e X IDDate ol ds )
—2a B(30/2)

|al=m
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we also have

‘/Qﬁzmg Z Z Z O(B,YTT}LD’YU,TT}LD/BD u, Trn D*Dgu dX‘

lee|=m |B|=m |y|=

2/3
dt/ (9™ 0,)3/? |D*Dgu(x,t |3dx)
(/za B(30/2) Z | (@)

le|=

0 1/3
X dt/ (9™o )3 ||Tr7hD7u|3dx)
(/2(1 B(30/2) ? Z

ly|=m
2/3
< |hle(M (/ dt/ Z 1D° Du(z, t)||‘3dx)
2a 20’)‘ =
1/3
« (/ dt Z 1D, D7u||3da:>
B29) |y~

< |hle(M") / D S A
—2a B(20

) |a]=m+1

having first increased ¥ and g, with 1 and then applied a Nirenberg lemma (see [2],
Chapter I, Lemma 3.IV).

In a similar way an analogous inequality can be obtained for the third integral of
the first term of (2.2) while for what concerns the second integral of (2.2) we get

IR
\a| m

3 (%ﬁVTT,hDVuTT,hDﬁDSu, 3 ca(;(ﬁ)n,hpﬁpsu) dX‘

[v|=m o<

/3
<> Z (m |<s|) (/ dt/ |D* Dgul ||| D D, U||3/2d3?)
la|=m <o B(20)

1/3
(/ dt/ 3 ||Tth7u|3dx)
2a (30 m

MO 32 > <m e}

la|=m d<a

2/3
(/ dt/ |D* Dgul|*/2(| D° Dyul|*/? dx)
2a B(20)

1/3
( dt Z | D, DYul|? dx)

B(20) lv=
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1/3
MO Y D (m ) </ dt/ |DQDS“|3dx)

la|=m d<a

x(/ dt/ |DaDsu|3dx)
2a B(20)

1/3
X / dt | D, DYl dx)
< B(20)|Z
> |Dau|3dx)

< |h|e(M </ dt/
2a B(20) la|=m+1

1 0 1/3
- fe 3
<X Y ([0, WD)

la|=md<a

1/3

2/3

Finally an analogous estimate holds also for the fourth integral of (2.2). By (2.2),
using the estimates already obtained for the first four integrals of the left hand
side and estimating the other therms by means of a well known technique (see [1],
page 116, for an analogous calculation) we reach

(2.3) / dt/ Z |7.n D® Dgul|? da:

) lal=

(I/MM o,m,n,a)

{|h|2/ dt/ | D, Dyul|? dz
—a B(20)

TS /dt/ 1Dou|® da
2a B

1<|a]=m+1 (29)
S / dt/ 1D%u|? da
|a|=m+1 2a

1/3

0
S Z</2adt/3(2a) ||DaDsu||3dx)

la|=m d<a
2/3
( / dt/ |Dau|3dx) }
2a B(20)

From (2.3) for |h| < ho = min{1, o} it follows that

|a]=m+1

(2.4) Z/ dt > lmnDDaul® dz < e(v, M, M', 0,m, n, a)|h|/
r—17—a B(o) la|=m
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where we have set:

| D%ul|® dz + / / | D%u|® da
/ /B(Sa | Z B(30) ‘ H

|a]=m+1

+ Z Z(/Qadt/B(ga)|D5D ulf? dx) "

< > /%dt/ | D%ul|? dx)2/3}.

|a]=m+1
The inequality (2.4) is also verified for hy < |h| < o and, then, it results for
¥ € (0,1/2)

n 20
(2.6) Z/ dt/ |h|1+2”9 /( )||Tr7hD(’Dsu||2d$

c(v, M,M',o,m,n,a)s/

{1<|a<m+1

and, then, by means of Lemma I1.3 of [3], we get the assertion:

D%y € L*(—a,0,HY(B(0),RY)), |a|=m+1,

0
(2.7) / |Dul§ gy dt < c(v, M, M',0,m,n,a)d.
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