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Preface

In the last decades, a new class of artificial materials, going by the name
of mechanical metamaterials, has received considerable attention owing to
their exotic mechanical properties and found an extremely wide range of
applications (e.g., among others, sensing [52, 61], soft robots [36], seismic
barriers [37, 38, 45, 51, 57], elastic cloacking [22, 28]). Among other be-
haviours, mechanical metamaterials may exhibit remarkable wave attenua-
tion properties due to two intrinsic features, namely periodicity and local
resonance. These two characteristics lend themselves to be included in new
conceptions of structural systems.

Metamaterial structures are structural systems that are tailored in such
a way to possess periodicity in conjunction with local resonance effects. To
the first class belong all the structures that exhibit a structural periodicity
whose scale is comparable to the wave length of the propagating wave [26];
these structures go by the name of phononic crystals. In the second class are
included all the structural systems, known as locally-resonant acoustic meta-
materials, that are endowed with periodic arrays of suitably tuned resonant
subsystems.

Metamaterial structures have been subject of numerous studies and sev-
eral structural typologies have been investigated, such as locally-resonant
metamaterial beams [23, 24, 34, 59, 76, 82, 88, 91, 92], locally-resonant meta-
material plates [2, 25, 32, 33, 43, 44, 56, 60, 63, 77–81, 87, 89, 90, 93] and
periodic lattices [53, 72, 73]. As a consequence, the formulation of exact
and analytical methods is of fundamental interest for the investigation of
the dynamic response and dispersion properties of metamaterial structures,
which can serve as a benchmark for the standard numerical techniques that
are usually employed [2, 33, 43, 44, 56, 78, 87, 93].

The purpose of this thesis is to propose new exact and analytical meth-
ods for the computation of the dynamic response and the wave propa-



14 Preface

gation analysis of metamaterial structures by means of dynamic-stiffness
based techniques. The dynamic-stiffness method presents itself as a very
powerful method since it allows to exactly relate the response variables of
continuous system, i.e. containing an infinite number of degrees of free-
dom, in the frequency domain through a finite set of degrees of freedom,
namely the response variables sampled at the boundary nodes of the sys-
tem. This result is achieved by making use of the analytical solutions of the
governing equations of the structure, which leads to a frequency-dependent
relationship between the response variables at the boundary, that is the gen-
eralized forces and displacements defined at the boundary nodes; such a
relationship is given by the so-called dynamic-stiffness matrix [3].

The origin of the dynamic-stiffness matrix concept can be traced back
to the Dynamic Slope Deflection Method proposed by Koloušek [39–41],
where, for the first time, frequency-dependent dynamic stiffness coeffi-
cients, known as Koloušek functions, have been derived from the free vibra-
tion response of a Euler-Bernoulli beam. This work enabled the develop-
ment of the concept of dynamic-stiffness matrix, that is the exact relation-
ship between the nodal response variables in the frequency domain [19].
Subsequently, the dynamic-stiffness matrix has been formulated for beams,
such as tapered beams [15, 16], rotating beams [5, 6, 13], twisted beams
[7, 10], sandwich beams [9, 12, 14], functionally graded beams [74, 75],
and more recently for plates [46–49]. Remarkably, the dynamic-stiffness
approach has been employed to investigate beams carrying mass-spring
systems [11], although the study has been limited only to cantilever beams
carrying a spring-mass system at the tip and without performing any dy-
namic condensation. The application of the dynamic-stiffness method to
locally-resonant structures has been directly addressed by Russillo and
Failla [66], who presented closed-form formulae for computing the free
vibration response of locally-resonant metamaterial plates by means of the
Wittrick-William algorithm when the dynamic condensation of the degrees
of freedom within the resonators is performed. Yet, no use of the dynamic-
stiffness method has been made so far to investigate the dynamic response
of metamaterial structures in time and frequency domain.

In this thesis, it is demonstrated that the dynamic-stiffness method is
particularly suitable for computing the dynamic response and performing
the wave propagation analysis of metamaterial structures very efficiently,
as it allows implementing an ad hoc exact dynamic condensation of the
degrees of freedom within the resonators with a significant model order
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reduction, not obtainable by approximate finite element methods. Fur-
thermore, in this thesis it is shown that the dynamic-stiffness method can
be profitably employed to compute the dynamic response in the time do-
main by deriving appropriate orthogonality conditions for the modes of the
structure under the assumption of both classical and non-classical damping
and by employing the modal superposition principle. This is an important
result, because the dynamic-stiffness method is typically implemented in
the frequency domain and no study in existing literature has ever demon-
strated its applicability in the time domain as well, for any structure in-
cluding metamaterial ones.

The first chapter is devoted to introduce the dynamic-stiffness method
for locally-resonant metamaterial beams, i.e. beams coupled with a peri-
odic array of visco-elastic systems with one or more degrees of freedom.
Upon deriving the closed-form solution of the governing equations of the
metamaterial beam, the nodal generalized forces and displacements for a
given frequency are exactly related by the dynamic-stiffness matrix. This
relationship, together with the boundary conditions, provides the exact
dynamic response of the beam in the frequency domain. Furthermore,
for boundary conditions associated with the free vibrations problem, the
dynamic-stiffness matrix represents a key ingredient in finding the natural
frequencies and modes of the metamaterial beam by making use of spe-
cialized algorithms. Finally, the derivation of the orthogonality conditions
associated with the modes of the metamaterial beam allows to decouple
the governing equation leading to the modal response for arbitrary loads
both in time and frequency domains.

The second chapter addresses an extension of the spectral dynamic-
stiffness method, based on the analytical solution of the governing equation
of Kirchhoff plates, to deal with locally-resonant metamaterial plates, i.e.
systems of one or more plates coupled with periodic arrays of resonators
with one or more degrees of freedom. The model lends itself to compute
both the frequency-domain forced response and free vibrations response of
locally-resonant metamaterial plates; the free vibration problem is tackled
by providing an extension of the well-established Wittrick-William algo-
rithm to compute the natural frequencies and modes of locally-resonant
structures. Furthermore the derivation of orthogonality conditions perti-
nent to the modes of the plates only leads to the modal response for arbi-
trary loads in frequency and time domains.

In the third chapter, the exact dynamic-stiffness method is applied to
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study the wave propagation in small-size metamaterial structures, namely
planar microlattices. The dispersion curves of microlattices, modelled as an
ensemble of stress-driven nonlocal Rayleigh beams, are calculated by solv-
ing the exact nonlinear eigenproblem that arises from the application of
the Bloch’s theorem to the equilibrium equations involving the dynamic-
stiffness matrix of a unit cell. This procedure serves as a benchmark for
validating the finite-element approximation of the equilibrium equations
obtained by deriving appropriate shape functions from the exact static equi-
librium equations.

In each Chapter, a detailed description of the proposed dynamic-stiffness
methods is provided, along with the main novelties introduced. The con-
clusions of the thesis are drawn in a final Section. The lists of symbols for
each chapter are reported in Appendix.



1Locally-resonant metamaterial beams

This chapter addresses the formulation of a reduced-order dynamic-stiffness model for
locally-resonant metamaterial beams. Upon performing the exact dynamic condensa-
tion of the degrees of freedom within each resonator, orthogonality conditions for the
modes of the beam only are retrieved. By means of the modal superposition principle,
the dynamic response of the reduced-order model both in time and frequency domain
is computed in analytical closed form.

1.1 Problem under study

Beams endowed with periodically attached arrays of resonators, i.e. locally-
resonant metamaterial beams, represent an innovative structural typology
that exhibits remarkable wave attenuation properties. Locally-resonant
metamaterial beams can be modelled as continuous-discrete systems, where
a continuous Euler-Bernoulli or Timoshenko beam is coupled with a peri-
odic array of resonators, that is single- or multi-degrees-of-freedom mass-
spring-dashpot systems as the system depicted in Figure 1.1, being the
generic attached resonator symbolically represented with a circled “R”.

In the following Sections, closed analytical formulae for computing the
frequency- and time-domain responses will be introduced. First, the fre-
quency-domain response is retrieved by building the exact dynamic-stiffness
matrix of the locally-resonant beam; the time-domain response is obtained
by first deriving orthogonality conditions for a reduced-order model of the
beam not involving the degrees of freedom of the resonators and by us-
ing the complex modal superposition principle in order to find the modal
impulse response function. Consequently, the time-response under any ar-
bitrary load can be straightforwardly obtained by means of the Duhamel’s
integral.
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Figure 1.1: Locally-
resonant metamate-
rial beam.

xjO

av, V

ϕ, Φ

s, S

m, M m, M

s, S

1.2 Governing equations

The locally-resonant beam in Fig. 1.1 is, for generality, modelled as a Tim-
oshenko beam coupled with an array of Nr resonators placed at xh = ha,
with h = 1, ..., Nr, where a is the relative distance between two consecutive
resonators. The governing equations can be concisely written in operator
form as follows:

L v(x, t)−M v̈(x, t) +R(x, t) + p(x, t) = 0 (1.1)

where the vector v =
[
v φ

]T
collects the deflection (positive downward)

v = v(x, t) and the rotation (positive counterclockwise) φ = φ(x, t) of the

cross section, the vector p =
[

pv pφ

]T
collects the transversal pv = pv(x, t)

and rotational pφ = pφ(x, t) dynamic loads. The operators in Eq. (1.1) are
defined as

L =

[
GA ∂̄2

∂x2 GA ∂
∂x

−GA ∂
∂x −GA + EI ∂̄2

∂x2

]
; M =

[
ρA 0
0 ρI

]
;

R(x, t) =


Nr

∑
h=1

rh(t)δ(x− xh)

0

 (1.2)
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where L is the stiffness operator, M the mass operator and R(x, t) the
operator associated with the reactions of the resonators; the bar in Eq. (1.2)
indicates the generalized derivative and the symbol δ(x − xh) denotes the
Dirac’s delta; rh = rh(t) expresses the reaction of the hth resonator at xh =

ha.
Assuming that the solution of Eq. (1.1) varies harmonically in time, the

vibration response can be written as

y = Yeiωt; uh = Uheiωt (1.3)

where y = y(x, t) =
[
v φ m s

]T
and Y =

[
V Φ M S

]T
collect the

response variables of the beam, i.e. deflection (v, V), rotation (φ, Φ), shear-
force (s, S) and bending moment (m, M) in time and frequency domains,

respectively. Vectors uh = uh(t) =
[
u(1)

h u(2)
h . . . u(nr)

h

]T
and Uh =[

U(1)
h U(2)

h . . . U(nr)
h

]T
collect the displacements of the nr masses of the

resonator applied at x = xh in time and frequency domains, respectively. It Frequency-domain
response representa-
tion

is noticed that Eq. (1.3) is both a representation of the frequency response
function under a harmonic load of frequency ω, i.e. Y = Y(x, ω) and
Uh = Uh(ω), and of the free-vibration response, since for each eigenvalue
ω = ωn, Yn = Y(x, ωn) and Uh,n = Uh(ωn) represent the corresponding
eigenfunctions.

1.3 Dynamic-stiffness method

Consider the free-vibration problem of the beam in Fig. 1.1. The dynamic
response is in this case represented by Eq. (1.3) and Eq. (1.1) follows the
governing equation for free vibration of the LR beam in Fig. 1.1.

LV + ω2MV(x, ω) +R(x, ω) = 0 (1.4)

where V =
[
V Φ

]T
and the operator R(x, ω) defined as

R(x, ω) =


Nr

∑
h=1

Rh(ω)δ(x− xh)

0

 (1.5)

the symbol Rh denotes the reaction force of the hth resonator in the frequency-
domain

Rh = −κeq(ω)V(xh) (1.6)
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In Eq. (1.6), κeq(ω) denotes the frequency-dependent dynamic stiffness of
the resonator, which can be obtained by exact dynamic condensation of
the resonator’s equilibrium equations in the frequency domain. In order
to illustrate the general procedure, consider for simplicity the resonator in
Fig. 1.2.

Figure 1.2: Mass-
spring-dashpot chain
consisting of Nr res-
onators attached at
x = xh.

v(xh), V(xh)

uh
(1), Uh

(1)

k1, c1

k2, c2

rh, Rh

m1

m2

knr
, cnr

mnr-1

mnr

uh
(2), Uh

(2)

uh
(nr-1), Uh

(nr-1)

uh
(nr), Uh

(nr)

The equilibrium in the frequency domain is

Dr(ω)

[
V(xh)

Uh

]
= (Kr + iωCr −ω2Mr)

[
V(xh)

Uh

]
=

[
Rh

0

]
(1.7)

In Eq. (1.7), Kr, Cr and Mr denotes the stiffness, damping and mass ma-
trix of the resonator, respectively. The dynamic-stiffness matrix Dr can be
further partitioned as follows:[

D[vv]
r d[vu]T

r

d[uv]
r D[uu]

r

] [
V(xh)

Uh

]
=

[
Rh

0

]
(1.8)

where the subscript v and u are respectively associated with the deflec-
tion of the resonator application point and the DOFs within the resonator.
Eq. (1.8) gives the relation between the reaction force exerted by the res-
onator Rh on the beam and the displacement of its attachment point V(xh)

Rh =
(

D[vv]
r − d[vu]T

r D[uu]
r d[uv]

r

)
V(xh) (1.9)
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A comparison with Eq. (1.6) provides the frequency-dependent dynamic
stiffness κeq(ω)

κeq(ω) = d[vu]T
r D[uu]

r d[uv]
r − D[vv]

r (1.10)

1.3.1 Dynamic-stiffness matrix of the LR Timoshenko beam

Eq. (1.4) serves as basis for deriving the dynamic-stiffness matrix of the
locally-resonant Timoshenko beam. The first step is finding a closed-form
solution of Eq. (1.4), which can be reduced to a fourth order ordinary dif-
ferential equation satisfied by both V and Φ

d4Z
dx4 + p1

d2Z
dx2 + p2Z + p3 = 0 (1.11)

where Z may denote either the deflection V or the rotation Φ; p1, p2 and
p3 are defined as

p1 =

(
ρEIω2

G
+ ρIω2

)
/EI (1.12)

p2 =

(
ρ2 Iω4

G
− ρAω2

)
/EI (1.13)

p3 =


− EI

GA
d

2
q

dx2 −
(

ρIω2

GA
− 1
)

q if Z = V

− dq
dx

if Z = Φ

(1.14)

The solution of Eq. (1.11) is readily obtained in closed-form

Z(x) = Zom(x) +
Nr

∑
h=1

Rh JZ,h(x) (1.15)

being Zom the solution of the homogeneous differential equation associated
with Eq. (1.11), i.e.

Zom(x) =
4

∑
i=1

ciαieλix (1.16)
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where ci are integration constants, λi are the roots of the characteristic
polynomial

λ1,2 = ∓
((
−p1 −

√
p2

1 − 4p2

)
/2
)1/2

(1.17)

λ3,4 = ∓
((
−p1 +

√
p2

1 − 4p2

)
/2
)1/2

(1.18)

(1.19)

being q the first component of R(x, ω) in Eq. (1.5), i.e.

q(x, ω) =
Nr

∑
h=1

Rh(ω)δ(x− xh) (1.20)

Furthermore the coefficients αi in Eq. (1.16) are given as

αi =


1 if Z = Φ

− GAλi

ρAω2 + GAλ2
i

if Z = V
(1.21)

Furthermore, JZ,h(x) = JZ(x, xh) in Eq. (1.15) the particular integral of
Eq. (1.11) associated with the Dirac’s delta δ(x − xh), obtained by the in-
verse Laplace transform of Eq. (1.11). In particular JV(x, xj) is given as

JV(x, xj) = −(
√

2GAΣ1)
−1[B sinh(C(x− xj))+D sinh(E(x− xj))]H(x− xj)

(1.22)

where B, C, D and E are given by

B =
(√

2C
)−1 [

Σ1 + Σ2 − 2(GA)2
]

C = ((Σ1 − Σ3) /(2EI GA))1/2

D = −
(√

2C
)−1 [

Σ1 − Σ2 + 2(GA)2
]

E = (− (Σ1 + Σ3) /(2EI GA))1/2

(1.23)

being Σ1, Σ2 and Σ3 defined as

Σ1 =
[
(EI)2(ρA)2ω4 + 2EIGAρAω2

(
2GA− Iρω2

)
+ (GA)2 I2ρ2ω4

]1/2

Σ2 = GAIρω2 − EIρAω2 Σ3 = GAIρω2 + EIρAω2

(1.24)
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being H(x) the unit-step function defined as

H(x) =

{
1 if x > 0

0 if x < 0
(1.25)

Also, JΦ(x, xj) is:

JΦ(x, xj) =− GAΥ−1
1 {cosh[S1(x− xj)]− cosh[S2(x− xj)]}H(x− xj)

(1.26)

being S1 and S2 defined as

S1 = ((Υ1 − Υ2)/(2EI GA))1/2 S2 = (−(Υ1 + Υ2)/(2EI GA))1/2 (1.27)

where Υ1 and Υ2 read

Υ1 =
{

ρω2
[
(A EI)2ρω2 + 2AEIGA

(
2GA− Iρω2

)]
+ (GA I)2ρω2

}1/2

Υ2 = AEIρω2 + GAIρω2

(1.28)

Now, the FRF vector Y(x, ω) can be concisely written as follows

Y(x, ω) = Ω(x, ω)c + R(x)Λ(ω) (1.29)

where the matrix R is given by

R(x) =
[
J(x, x1) . . . J(x, xNr )

]
(1.30)

being J(x, xh) defined as

J(x, xh) =


JV(x, xh)

JΦ(x, xh)

JT(x, xh)

JM(x, xh)

 (1.31)

with:

JT(x, xh) = GA

(
dJV
dx

+ JΦ

)
; JM(x, xh) = EI

dJΦ

dx
(1.32)

Making use of Eq. (1.15) with Z = V for V(xh) in Eq. (1.6) it is observed
that every reaction force Rh depends only on the four integration constants
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ch and on the reaction forces Rk at xk < xh. As a consequence the reaction
forces Rh can be expressed in terms of the integration constants ci and the
vector Λ in Eq. (1.29), collecting the unknown reaction forces Rh of the
resonators, satisfies the following linear system

Λ = ΦΩc + ΦJΛ (1.33)

where ΦΩ is matrix whose jth row is the first row of the matrix Ω evaluated
at xh, i.e. Ω1(xh), hence

ΦΩ = −keq(ω)


Ω1(x1)

...
Ω1(xNr )

 (1.34)

In Eq. (1.33), ΦJ is the strict lower triangular matrix

ΦJ = −keq(ω)


0 0 . . . 0

JV(x2, x1) 0 . . . 0
...

. . .
...

JV(xN , x1) . . . JV(xNr , xNr−1) 0

 (1.35)

The solution of Eq. (1.33) is given by

Λ = (I−ΦJ)
−1ΦΩc (1.36)

where the inverse matrix (I−ΦJ)
−1 can be calculated in closed form as:

(I−ΦJ)
−1 =

Nr−1

∑
h=0

Φ h
J (1.37)

Replacing Eq. (1.33) for Λ in Eq. (1.29) leads to

Y(x, ω) = W(x, ω)c (1.38)

where W is a 4× 4 matrix given as

W(x, ω) = Ω(x, ω) + R(x)(I−ΦJ)
−1ΦΩ (1.39)

Consider now the Timoshenko beam in Figure 1.3. In order to build a
general relation between the nodal displacements and forces, appropriate
boundary conditions (BCs) must be enforced to the solutions in Eqs. (1.38).
The deflections V and rotations Φ satisfy the general boundary conditions

V(0) = V1 Φ(0) = Φ1 V(L) = V2 Φ(L) = Φ2 (1.40)
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V1, S1

Φ1, M1

V1, S2

Φ2, M2

Figure 1.3: Boundary
conditions for gener-
alized displacements
and forces.

Likewise the shear forces S and bending moments M need to satisfy the
following boundary conditions:

S(0) = −S1 M(0) = M1 S(L) = S1 M(L) = −M2 (1.41)

Making use of Eq. (1.38), Eqs. (1.40)-(1.41) yields

u = Ac (1.42)

f = Bc (1.43)

being u =
[
V1 Φ1 V2 Φ2

]T
and f =

[
S1 M1 S2 M2

]T
the gener-

alized nodal displacement and forces of a Timoshenko beam, respectively.
Furthermore, A and B are defined as

A =


α1 α2 α3 α4

1 1 1 1
α1eλ1L α2eλ2L α3eλ3L α4eλ4L

eλ1L eλ2L eλ3L eλ4L

 (1.44)

B =


−GA(1 + λ1α1) −GA(1 + λ2α2) −GA(1 + λ3α3) −GA(1 + λ4α4)

EIλ1 EIλ2 EIλ3 EIλ4

GA(1 + λ1α1)eλ1L GA(1 + λ2α2)eλ2L GA(1 + λ3α3)eλ3L GA(1 + λ4α4)eλ4L

−EIλ1eλ1L −EIλ2eλ2L −EIλ3eλ3L −EIλ4eλ4L


(1.45)

Solving Eq. (1.42) with respect the vector c and substituting the result in
Eq. (1.43) leads to the relationship between the generalized nodal displace-
ments and forces of the locally-resonant Timoshenko beam

f = BA−1u = D(ω)u (1.46)

where D(ω) is the frequency-dependent dynamic-stiffness matrix of the
locally-resonant Timoshenko beam. It is noteworthy that the dynamic-
stiffness matrix involved in Eq. (1.46) is a 4 × 4 matrix for any number
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Nr of resonators and any number of DOFs within every resonator, further-
more it exactly related the nodal displacements and forces as it is based on
the closed-form solution of the governing equations of the locally-resonant
Timoshenko beam in the frequency-domain, consequently no discretization
of the beam is needed unlike the finite element method.

Eq. (1.46) can be used to evaluate the transmittance of a cantilever beam,
which is defined as V(L)/V(0), i.e. the frequency response function at
the free end for a unitary harmonic displacement of the clamped end. InTransmittance
particular, making use of the following partition[

D[uu] D[uk]

D[ku] D[kk]

] [
u[u]

u[k]

]
=

[
0

f[u]

]
(1.47)

where u[u] are the unknown nodal displacements and u[k] the imposed
nodal displacements. Eq. (1.47) leads to

u[u] = −D[uu]−1
D[uk]u[k] (1.48)

Assuming u[k] =
[
V(0) Φ(0)

]T
=
[
1 0

]T
, the component of the vector

u[u], computed by means of Eq. (1.48), corresponding to the nodal dis-
placement of the free edge V(L) is the transmittance of the locally-resonant
beam.

1.3.2 Free vibrations problem

As shown in the previous section, the frequency-domain equilibrium equa-
tion of the beam in Figure 1.1 is exactly described by the dynamic-stiffness
matrix in Eq. (1.46). For free vibrations, the nodal forces are set equal to
zero, i.e. f = 0, and the following nonlinear eigenvalue problem arises:

D(ω)u = 0 (1.49)

Due to the nonlinear nature of the eigenproblem in Eq. (1.49), it is not pos-
sible to make use of standard eigensolvers. For the locally-resonant sand-
wich beam under study, calculating the eigenvalues of Eq. (1.49) with the
required accuracy and without missing anyone is a particularly challeng-
ing task because, as a result of local resonance, several modes are expected
to exhibit eigenvalues close to each other. Here, for the fist time, the is-
sue is solved using a contour-integral method, recently introduced in the
literature for nonlinear eigenvalue problems [1, 35, 71].
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The contour-integral method requires the dynamic-stiffness matrix of the
system D(ω) in Eq. (1.49). Specifically, the fundamental steps to calculate
the eigenvalues are [1, 35, 71]:

1. Selection of a circle Γ = γ0 + ρ0eiθ on the complex plane with center γ0,
radius ρ0 and 0 6 θ 6 2π.

2. Computation of two complex random probing matrices U and V with
dimensions n0 × L0, where n0 is the size of the dynamic-stiffness ma-
trix D(ω) and L0 is the assumed maximum algebraic multiplicity of the
sought eigenvalues.

3. Computation of the shifted and scaled moments Mk using N0-point
trapezoidal rule:

Sk =
1

N0

N0−1

∑
j=0

(
ωj − γ0

ρ0

)k+1
D(ωj)

−1V, k = 0, 1, ..., 2K− 1

Mk = UHSk

where K is the maximum order considered for the moment and UH is
the Hermitian transpose of U.

4. Construction of the Hankel matrices ĤKL0 and
Ĥ<

KL0
∈ CKL0×KL0 such that:

ĤKL0 = [Mi+j−2]
K
i,j=1 ĤKL0 = [Mi+j−1]

K
i,j=1

5. Perform a singular value decomposition of ĤKL0 .

6. Omit small singular value components σi < ε ·maxi σi, set m̃ as the num-
ber of remaining singular value components (m̃ < KL0) and construct
Ĥm̃ and Ĥ<

m̃ extracting the principal submatrix with maximum index m̃
from ĤKL0 and Ĥ<

KL0
, that is

Ĥm̃ = ĤKL0 (1 : m̃, 1 : m̃); Ĥ<
m̃ = Ĥ<

KL0
(1 : m̃, 1 : m̃)

7. Compute the eigenvalues ζ j of the linear pencil:

Ĥ<
m̃ = ζĤm̃

8. Calculate the eigenvalues

ωj = γ0 + ρ0ζ j, j = 1, ..., m̃
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The algorithm converges to all the eigenvalues ωk of Eq. (1.49) falling
within the selected circle Γ, including multiple roots [1, 35, 71]. Circles of
increasing radius and centred at the origin can be considered to explore
the complex plane and calculate all the eigenvalues requested for practical
purposes.

1.4 Modal analysis

The dynamic-stiffness method allows to exactly evaluate the frequency-
domain response of a locally-resonant structure as shown in Section 1.3. On
the other hand, the computation of the time-domain response is not directly
obtainable from the dynamic-stiffness matrix, but a modal superposition
method is required in order to decouple the governing equations of the
locally-resonant Timoshenko beam.

1.4.1 Orthogonality conditions

The first step is to derive the pertinent orthogonality conditions for the
complex modes of Eq. (1.4). Consider in particular Eq. (1.4) for the nth

mode

LVn + ω2
nMVn +R(x, ωn) = 0 (1.50)

Multiplying Eq. (1.50) for Vm and integrating over the length of the beam

L∫
0

VT
mLVn dx + ω2

n

L∫
0

VT
mMVn dx−

Nr

∑
h=1

Vm(xh)κeq(ωn)Vn(xh) = 0 (1.51)

Repeating the same procedure by considering Eq. (1.4) for the mth mode,
multiplying for Vn and taking advantage of the self-adjointess of the mass
and stiffness operator lead to

L∫
0

VT
mLVn dx +ω2

m

L∫
0

VT
mMVn dx−

Nr

∑
h=1

Vm(xh)κeq(ωm)Vn(xh) = 0 (1.52)

The difference between Eq. (1.51) and Eq. (1.52) gives

(ω2
n−ω2

m)

L∫
0

VT
mMVn dx+

Nr

∑
h=1

Vm(xh)κeq(ωm)− κeq(ωn)Vn(xh) = 0 (1.53)
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After simple algebraic manipulations Eq. (1.53) yields the first orthogonal-
ity condition

ωn(ωn +ωm)

L∫
0

VT
mMVn dx+ωn

Nr

∑
h=1

Vm(xh)κeq(ωm)− κeq(ωn)Vm(xh)

ωn −ωm
= 0

(1.54)

Now, the difference between Eq. (1.51) multiplied by ωm and Eq. (1.52)

First orthogonality con-
dition

multiplied by ωn provides the second orthogonality condition

L∫
0

VT
mLVn dx = ωmωn

L∫
0

VT
mMVn dx +

Nr

∑
h=1

Vm(xh)O(ωn, ωm)Vn(xh)

(1.55)

being O(ωn, ωm) defined as

O(ωn, ωm) =
ωnκeq(ωm)−ωmκeq(ωn)

ωn −ωm
(1.56)

It is noticed that the orthogonality conditions Eqs. (1.54)-(1.55) do not in-

Second orthogonality
condition

volve any of the degrees of freedom of the resonators and form the basis for
the modal decoupling of the governing equation in Eq. (1.1) of the locally-
resonant beam in Figure 1.1.

1.4.2 Complex modal analysis

Consider the locally-resonant beam in Figure 1.1 under an impulsive load,
i.e. a load of the form p(x, t) = P(x)δ(t)

L v(x, t)−M v̈(x, t) +R(x, t) + P(x)δ(t) = 0 (1.57)

Using the modal superposition principle, the generalized displacements v
can be expanded in terms of eigenfunctions

v(x, t) =
∞

∑
n=1

gn(t)Vn(x) (1.58)

Substituting Eq. (1.58) in Eq. (1.57), premultiplying for the eigenvector Vm

and integrating over the beam domain yield

gn

L∫
0

VT
mLVn dx− g̈n

L∫
0

VT
mMVn dx− gn

Nr

∑
h=1

Vm(xh)κeq(ωn)Vn(xh)+χm = 0
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(1.59)

being

χm =

L∫
0

VT
mP(x)δ(t)dx (1.60)

In view of the impulsive nature of the load, the modal coordinate gn(t) is
such that gn(t) = gneiωnt and gn(t) = g∗ne−iωnt, being gn and g∗n complex
conjugate pairs. As a consequence g̈n(t) = −ω2

ngn(t) and Eq. (1.59) can be
further written as

g̈n

ω2
n

 L∫
0

VT
mLVn dx + ω2

n

L∫
0

VT
mMVn dx−

Nr

∑
h=1

Vm(xh)κeq(ωn)Vn(xh)

 = χmδ(t)

(1.61)

Substituting the second orthogonality condition Eq. (1.55) in Eq. (1.61) gives

g̈n

ω2
n

ωn(ωn + ωm)

L∫
0

VT
mMVn dx + ωn

Nr

∑
h=1

Vm(xh)κeq(ωm)− κeq(ωn)Vn(xh)

ωn −ωm

 = χmδ(t)

(1.62)

Based on the first orthogonality condition Eq. (1.54), it is recognized that
the term within parenthesis in Eq. (1.62) is equal to zero for ωn 6= ωm.
On the other hand, for ωn = ωm, Eq. (1.62) becomes the following set of
uncoupled differential equations

Πn g̈n = χnδ(t) (1.63)

where

Πn = 2
L∫

0

VT
nMVn dx + ω−2

n

Nr

∑
h=1

µ(ωn)V2
n (xh) (1.64)

being µ(ωn) defined as

µ(ωn) = lim
ωm→ωn

ωn

(
κeq(ωm)− κeq(ωn)

ωn −ωm

)
= −ωn

dκeq

dω

∣∣∣∣
ω=ωn

(1.65)

Now, the impulse response function vector h(x, t) can be represented byImpulse response
function
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modal superposition

h(x, t) =
∞

∑
n=1

gn(t)Yn(x) (1.66)

where gn(t) = gneiωnt is a time-dependent complex function, ωn and Yn(x)
are respectively the eigenvalue and eigenfunction vector associated with
the nth mode. Integrating (1.63) over the time yields ġn and taking into
account that ġn = iωngn, the coefficients gn are found

gn =
χn

iωnΠn
(1.67)

Since gn in Eq. (1.66) may be gn = gneiωnt or gn = g∗ne−iωnt, the modal IRF
vector of the nth mode assumes the following form [58]:

hn(x, t) = γn(x)|ωn|wn(t) + ψn(x)ẇn(t) (1.68)

where:

γn(x) = ξnψn(x)−
√

1− ξ2
nυn(x) (1.69)

ψn(x) = 2 Re[gnYn(x)] υn(x) = 2 Im[gnYn(x)] (1.70)

wn(t) =
1

ωDn
e−ξn |ωn |t sin(ωDnt); ωDn = |ωn|

√
1− ξ2

n (1.71)

being ξn = Im(ωn)/|ωn| the modal damping ratio. Based again on ref. [58],

the corresponding vector Hn =
[

Hv,n Hφ,n Hm,n Hs,n

]T
of modal FRFs Frequency response

functionis

Hn(x, ω) = γn(x)|ωn|Hn(ω) + ψn(x)iωn Hn(ω) (1.72)

Hn(ω) =
1

|ωn|2 −ω2 + i2ζn|ωn|ωn
(1.73)

The beam IRF and FRF can be computed by truncating Eqs. (1.68)-(1.72) up
to M modes

h(x, t) ≈
M

∑
n=1

hn(x, t) (1.74)

H(x, ω) ≈
M

∑
n=1

Hn(x, ω) (1.75)

Eq. (1.74) and Eq. (1.75) hold for any number of resonators along the beam.
Every modal contribution (1.68) and (1.72) is exact and readily obtainable in
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analytical form once the eigenvalues are calculated. For practical purposes,
a sufficient number of modes M shall be retained in Eq. (1.74) and Eq. (1.75)
to obtain approximate yet accurate expressions of IRF and FRF. The IRF and
FRF in every resonator follow from Eq. (1.74) and Eq.(1.75), provided that
Yn is replaced with Uh,n, i.e. the vector of eigenfunctions associated with
the nth mode for the response in the hth resonator; Uh,n can be obtained
from the deflection Vn(xh) of the application point.

Finally, it is shown that the modal frequency response function Eq. (1.75)
can be used to calculate the transmittance of the beam, i.e. the frequency
response function of the beam for a harmonic displacement at one of its
ends. In the frequency domain a relative deflection Vg between adjacentModal trasmittance
sections at any abscissa x = x0 can be modelled as

dV
dx

=
S

GA
−Φ + Vgδ(x− x0) (1.76)

The corresponding equations of motion are

GA

[
d

2
V

dx2 +
dΦ
dx
−Vgδ(1)(x− x0)

]
+ ρAω2V +

Nr

∑
h=1

Rhδ(x− xh) = 0

(1.77)

EI
d

2
Φ

dx2 − GA

[
dV
dx

+ Φ−Vgδ(x− x0)

]
+ ρIω2Φ = 0 (1.78)

Consequently, the calculation of the transmittance by Eq. (1.75) involves
considering the following term in Eq. (1.60)

χm = GAVg

 L∫
0

Vm(x)δ(1)(x− x0) + Φm(x)δ(x− x0) dx


= GAVg

[
Φm(x0)−

dVm(x0)

dx

] (1.79)

1.5 Wave propagation in a locally-resonant beam

The dispersion properties of an infinite locally-resonant beam gives an im-
portant insight for the characterization of the attenuation properties of a
finite-length locally-resonant beam. The evaluation of the dispersion curves
of a periodic medium can be performed by means of several techniques in-
volving the Bloch’s theorem. Here, the standard transfer matrix approach
involving the dynamic-stiffness of the resonators is illustrated.
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nth celln-1th cell n+1th cell

a Figure 1.4: High-
lighted nth unit cell
of a locally-resonant
beam and adjacent
cells.

The locally-resonant beam depicted in Figure 1.4 is divided in unit cells.
The equilibrium equation in the frequency-domain of the nth cell is given
by

LV + ω2MV = 0 (1.80)

The continuity condition between the response variables at the connection
point between the (n− 1)th and nth cells reads with the natural boundary
condition on the shear force

V[n](0)
Φ[n](0)

S[n](0)− κeq(ω)V[n](0)
M[n](0)

 =


V[n−1](a)
Φ[n−1](a)
S[n−1](a)
M[n−1](a)

 (1.81)

Making use of the closed-form solution Eq. (1.16) of Eq. (1.80), Eq. (1.81)
leads to the following identity [50]:

Kcn = Hcn−1 (1.82)

where K and H are given as

K =


α1 α2 α3 α4

1 1 1 1
1 + λ1α1 + F1 1 + λ2α2 + F2 1 + λ3α3 + F3 1 + λ4α4 + F4

λ1 λ2 λ3 λ4


(1.83)

H =


α1eλ1a α2eλ2a α3eλ3a α4eλ4a

eλ1a eλ2a eλ3a eλ4a

(1 + λ1α1)eλ1a (1 + λ2α2)eλ2a (1 + λ3α3)eλ3a (1 + λ4α4)eλ4a

λ1eλ1a λ2eλ2a λ3eλ3a λ4eλ4a


(1.84)
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being Fi = −κeq(ω)αi/GA for i = 1, 2, 3, 4. Consequently, Eq. (1.82) yields

cn = T(ω)cn−1 = K−1Hcn−1 (1.85)

Making use of the Bloch’s theorem, cn = eiqacn−1 is substituted in Eq. (1.85)
and the following standard generalized eigenvalue problem is obtained [50]

[T(ω)− γI]cn−1 = 0 (1.86)

being γ = eiqa. The dispersion curves q = q(ω) can be constructed by
solving Eq. (1.86) for any frequency ω.
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1.6 Numerical application

In order to verify the solution methods developed hitherto, a numerical
application is considered in this Section. Since the Timoshenko beam is a
suitable model for locally-resonant sandwich beams as shown in ref. [24],

L = Na

a

Figure 1.5: Cantilever
locally-resonant sand-
wich beam hosting
1-DOF or 2-DOF
resonators.

consider the cantilever locally-resonant sandwich beam in Figure 1.5. Based
on ref. [24] the equivalent single-layer Timoshenko beam model:
EI = 611 N/m−2; GA = 1.12× 104 N; ρA = 0.1248 kgm−1;
ρI = 1.69× 10−5 kg m; a = 0.01 m is the mutual distance between the res-
onators, N = 30 is the number of the resonators, L = 0.30 m is the total
length of the beam.

Two cases are considered: (a) 1-DOF resonators with parameters k1 =

7415.74 Nm−1, c1 = 0.05 Nsm−1, m1 = 0.001 17 kg; (b) 2-DOF resonators
with parameters k1 = k2 = 13 361.97 Nm−1; c1 = 0.05 Nsm−1;
c2 = 0.113 Nsm−1; m1 = 0.0047 kg; m2 = 0.019 kg. The solution methods
proposed in Sections 1.3-1.4 are applied to both cases. The modal expan-
sions (1.74)-(1.75) for IRF and FRF require calculating the derivative (1.65)
depending on the frequency-dependent stiffness (1.10) pertinent to the 1-
DOF and 2-DOF resonators and available in the following forms:

1-DOF

µ(ωk) =
m1ω2

k
(
−2c2

1ω2
k − ic1m1ω3

k + 4ic1k1ωk + 2k2
1
)(

k1 + ic1ωk + m1ω2
k
)

2
(1.87)
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2-DOF

µ(ωk) =
ω2

k (c1∆1ω2
k + 2c1Γ2k1ωk + Γ1k2

1)

(γ1k1 + ωk (γ2ωk + ic1γ1)) 2 (1.88)

being

Γ1 = 4ik2ωk (c2 (m1 + m2) + im1m2ωk) + ω2
k (−ic2m2 (4m1 + m2)ωk

−2c2
2 (m1 + m2) + 2m1m2

2ω2
k

)
+ 2k2

2 (m1 + m2) (1.89)

Γ2 = −4k2ωk (c2 (m1 + m2) + im1m2ωk) + ω2
k (c2m2 (4m1 + m2)ωk

−2ic2
2 (m1 + m2) + 2im1m2

2ω2
k

)
+ 2ik2

2 (m1 + m2) (1.90)

∆1 = c1Γ3 − iωk

(
ic2 (m1 + m2)ωk + k2 (m1 + m2)−m1m2ω2

k

)
(1.91)

Γ3 = 4k2ωk (m1m2ωk − ic2 (m1 + m2)) + ω2
k (ic2m2 (4m1 + m2)ωk

+2c2
2 (m1 + m2)− 2m1m2

2ω2
k

)
− 2k2

2 (m1 + m2) (1.92)

γ1 = k2 + ωk (−m2ωk + ic2) (1.93)

γ2 = −k2 (m1 + m2) + ωk (m1m2ωk − ic2 (m1 + m2)) (1.94)

1.6.1 1-DOF resonators

For a first insight into the dynamics of the sandwich beam with 1-DOF res-
onators, the band gaps of the infinite beam with no damping are calculated
using a standard transfer matrix approach as shown in Section 1.5. As ex-
pected given the fact that every resonator has one DOF, Figure 1.6 shows
one band gap, where no real wave vectors are found. The band gap spans
the frequency range 565-788 Hz.

Next, attention is focused on the cantilever beam and damping is consid-
ered within the resonators. The contour-integral algorithm in Section 1.3.2
is applied to calculate the first 131 complex eigenvalues, reported in Table
1.1. Several eigenvalues are close to each other, as a result of local reso-
nance; remarkably, the algorithm proves capable of capturing also those
differing by a few digits. Figure 1.7 shows the transmittance of the can-
tilever beam, as calculated using the exact frequency response (1.48) and
the corresponding modal representation (1.75) including M = 131 modes,
where the coefficients χk are given by Eq. (1.79); additionally, the individual
modal contributions (1.72) are reported for k = 1, 2, ..., 31, while the remain-
ing ones up to M = 131 are omitted for clarity. The two solutions (1.38) and
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Mode Eigenvalue

1 967.680± 0.062i
2 2498.070± 4.094i
3 3177.911± 13.012i
4 3367.718± 16.915i
5 3445.411± 18.664i
6 3483.342± 19.543i
7 3505.011± 20.051i
8 3518.398± 20.368i
9 3527.317± 20.579i

10 3533.517± 20.727i
11 3538.019± 20.834i
12 3541.376± 20.914i
13 3543.950± 20.975i
14 3545.959± 21.023i
15 3547.558± 21.061i
16 3548.845± 21.092i
17 3549.894± 21.117i
18 3550.757± 21.138i
19 3551.472± 21.155i
20 3552.068± 21.169i
21 3552.565± 21.181i
22 3552.981± 21.191i
23 3553.329± 21.200i
24 3553.617± 21.206i
25 3553.854± 21.212i
26 3554.046± 21.217i
27 3554.198± 21.220i
28 3554.312± 21.223i
29 3554.439± 21.226i
30 3554.392± 21.225i
31 5094.551± 41.909i
32 6076.198± 37.949i
33 8561.842± 28.981i

Mode Eigenvalue

34 11411.589± 25.056i
35 14453.851± 23.306i
36 17504.898± 22.413i
37 20607.405± 21.905i
38 23699.402± 21.572i
39 26817.633± 21.357i
40 29920.903± 21.175i
41 33041.580± 21.038i
42 36133.097± 20.791i
43 39207.301± 20.081i
44 41615.636± 8.516i
45 42883.789± 14.665i
46 45683.115± 20.384i
47 48777.480± 20.690i
48 51886.117± 20.764i
49 55012.532± 20.766i
50 58136.869± 20.764i
51 61268.083± 20.751i
52 64397.026± 20.740i
53 67530.045± 20.726i
54 70661.089± 20.712i
55 73795.070± 20.696i
56 76927.227± 20.678i
57 80061.793± 20.656i
58 83194.469± 20.624i
59 86329.326± 20.574i
60 89461.808± 20.463i
61 92595.944± 19.948i
62 95728.273± 21.431i
63 98858.127± 20.857i
64 101922.582± 18.719i
65 102800.655± 2.539i
66 105167.218± 20.683i

Mode Eigenvalue

67 108291.328± 20.777i
68 111421.313± 20.780i
69 114556.083± 20.768i
70 117690.008± 20.761i
71 120825.715± 20.752i
72 123960.628± 20.746i
73 127096.642± 20.739i
74 130231.990± 20.734i
75 133368.169± 20.729i
76 136503.753± 20.725i
77 139640.041± 20.720i
78 142775.746± 20.716i
79 145912.108± 20.712i
80 149047.825± 20.708i
81 152184.207± 20.704i
82 155319.733± 20.699i
83 158455.939± 20.693i
84 161590.364± 20.682i
85 164723.935± 20.643i
86 167628.273± 6.541i
87 167974.147± 14.280i
88 171010.497± 20.629i
89 174144.441± 20.647i
90 177279.215± 20.644i
91 180415.506± 20.618i
92 183551.381± 20.559i
93 186687.811± 20.267i
94 189824.457± 21.142i
95 192960.973± 20.849i
96 196097.302± 20.791i
97 199233.997± 20.766i
98 202370.416± 20.749i
99 205507.151± 20.740i

Mode Eigenvalue

100 208643.605± 20.733i
101 211780.361± 20.728i
102 214916.799± 20.723i
103 218053.552± 20.719i
104 221189.870± 20.715i
105 224326.517± 20.712i
106 227462.225± 20.704i
107 230597.380± 20.682i
108 233424.810± 2.526i
109 233780.308± 18.256i
110 236878.026± 20.686i
111 240013.600± 20.697i
112 243149.515± 20.699i
113 246286.213± 20.698i
114 249422.685± 20.696i
115 252559.510± 20.694i
116 255696.136± 20.692i
117 258833.001± 20.689i
118 261969.694± 20.685i
119 265106.580± 20.680i
120 268243.305± 20.674i
121 271380.204± 20.664i
122 274516.940± 20.647i
123 277653.845± 20.609i
124 280790.559± 20.420i
125 283927.477± 20.983i
126 287064.115± 20.794i
127 290200.948± 20.755i
128 293337.228± 20.735i
129 296473.209± 20.713i
130 299408.258± 3.362i
131 299651.794± 17.409i

Table 1.1: Complex
eigenvalues of the can-
tilever locally-resonant
sandwich beam in
Figure 1.5 with 1-DOF
resonators.
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Figure 1.6: Band gaps
of the infinite sand-
wich beam in Fig-
ure 1.5 with 1-DOF
resonators.
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Figure 1.7: Transmit-
tance of the cantilever
locally-resonant sand-
wich beam in Figure 2

with 1-DOF resonators:
exact response (1.38)
(black continuous line);
total modal response
(1.75) for M = 131
(black dots); single
modal responses (1.72)
(gray dashed lines)
for k = 1, ..., 31; exact
response without res-
onators (red continuous
line).
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(1.75) are in perfect agreement, substantiating the correctness of the two ap-
proaches proposed in this paper. The transmittance within the band gap
is well lower than the transmittance over the remaining frequency domain,
meaning that the wave attenuation properties of the infinite beam (see Fig-
ure 1.6) hold also for the finite beam. A further interesting observation is
that the peaks of all individual modal contributions occur either below or
above the band gap, i.e. there are no resonance modes within the band gap.
For completeness, Figure 1.7 reports the transmittance of the beam without
resonators, which exhibits a peak within the band gap well larger than the
transmittance of the beam with resonators. Now, the interest is to calculate
the FRF of the cantilever beam acted upon by a unit harmonic force applied
at the free end. Figure 1.8a illustrates the FRF for the tip deflection over the
frequency range 0-930 Hz, as computed using the exact solution (1.38) and
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Figure 1.8: FRF for tip
deflection of cantilever
locally-resonant beam
in Figure 2 with 1-DOF
resonators, under a unit
harmonic force applied
at the free end: exact
response (1.38) (black
continuous line); total
modal response (1.75)
with M = 131 (black
dots); single modal
responses (1.72) (gray
dashed lines); exact
response without res-
onators (red continuous
line); modal responses
(1.72) are reported
for k = 1, ..., 20 and
k = 30, 31, 32 (Fig. 1.8a)
and k = 1, 2, 31, 32
(Fig. 1.8b).the modal representation (1.75) for M = 131; again, the individual modal

contributions (1.72) are reported for k = 1, 2, ..., 20 and k = 30, 31, 32. The
two solutions are in perfect agreement; for the frequency range considered
in Figure 1.8, M = 131 modes are sufficient to provide a very accurate
modal representation (1.75) of the exact solution (1.38).

Figure 1.8a shows also the FRF of the beam without resonators, showing
that is generally larger than the FRF of the beam with resonators within the
whole band gap, except for a limited frequency range 759-788 Hz, i.e. at
the right end of the band gap. The inspection of the modal contributions
suggests that this is essentially attributable to the contributions of modes
1− 2− 31− 32, as highlighted in Figure 1.8b. For a further insight into this
issue, the time response is investigated. Specifically, the closed analytical
expression (1.74) for the IRF is used to calculate the tip deflection of the
beam acted upon by a unit cosine force with frequency 780 Hz, applied at
the free end. Figure 1.9a shows no significant changes in the response if
more than M = 50 modes are included in Eq. (1.74) for the IRF. Further,
consistently with the FRF in Figure 1.8, Figure 1.9b shows that the most
significant contributions to the response are associated with the 1st, 2nd,
31th, 32th modes; indeed, due mainly to these contributions, the response
of the beam with resonators attains almost the same order of magnitude
of the response of the beam without resonators, as shown in Figure 1.9c.
Notice that the insight gained into the modal contributions is a crucial
information for design purposes because, e.g., once mass and stiffness of
the resonators are calibrated, the damping coefficients might be selected so
as to minimize the most significant modal contributions, i.e., in this case,
those associated with 1st, 2nd, 31th, 32th modes.
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(c)Figure 1.9: Tip de-
flection of the cantilever
locally-resonant beam in
Figure 1.5 with 1-DOF
resonators, under a unit
cosine force with fre-
quency 780 Hz: (a) total
response for increasing
number of modes M
in Eq. (1.74); (b) single
modal response for
most significant modes;
(c) total response for
M = 131 in Eq. (1.74)
(black continuous line)
and response of the
beam without res-
onators (red continuous
line) for M = 131.

This substantiates the interest in the proposed modal representation of
the response, in both frequency and time domain.

1.6.2 2-DOF resonators

Now, consider the sandwich beam with 2-DOF resonators. The band gaps
of the infinite beam without damping, calculated by the transfer matrix
approach, are reported in Figure 1.10. As expected, there are two band
gaps, over the frequency ranges 130-374 Hz and 553-849 Hz. For the finite
beam with damping, the first 161 complex eigenvalues calculated by the
contour-integral algorithm in Section 1.3.2 are reported in Table 1.2. Again,
the algorithm proves capable of capturing several eigenvalues close to each
other, some differing even by a few digits, as a result of local resonance.

For a further insight, transmittance and FRF for the tip deflection un-
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Figure 1.10: Band
gaps of the infinite
sandwich beam in
Figure 1.5 with 2-
DOF resonators.
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Figure 1.11: Transmit-
tance of the cantilever
locally-resonant sand-
wich beam in Figure 2

with 2-DOF resonators:
exact response (1.38)
(black continuous line);
total modal response
(1.75) for M = 161

(black dots); single
modal responses (1.72)
(gray dashed lines) for
k = 1, ..., 10, k = 40, ..., 50
and k = 60, ..., 70; exact
response without res-
onators (red continuous
line).

der a unit harmonic force at the free end are reported in Figure 1.11 and
Figure 1.12, respectively. Again, the exact solution (1.48) and the modal ex-
pansion (1.75) are in perfect agreement, proving the correctness of the two
approaches. In this case, the modal expansion (1.75) represents very accu-
rately both the transmittance and the FRF with M = 161 over the frequency
domain 0-890 Hz (see Figure 1.12a and zoomed view in Figure 1.12c). Fur-
ther comments mirror those made for the beam with 1-DOF resonators, i.e.:
the transmittance within the band gaps is a few orders of magnitude lower
than the transmittance over the remaining frequency domain, meaning that
the wave attenuation properties of the infinite beam hold also for the finite
beam; there are no resonance modes within the two band gaps.

The FRF of the beam with resonators is generally lower than the corre-
sponding one without resonators within the two band gaps, except for a
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limited frequency range at the vicinity of the right end of the second band
gap. Figure 1.12b shows that the most significant contributions to the FRF
at the right end of the second bandgap are associated with modes 31-32-
63-64. This result is confirmed by the time analysis of the tip deflection
under a unit cosine force applied at the free end, with frequency 940 Hz,
reported in Figure 1.13. Indeed, the response built using Eq. (1.74) for the
IRF attains the same order of magnitude of the response of the beam with-
out resonators due mainly to the contributions of these modes; on the other
hand, no significant changes in the time response are noticed if more than
M = 70 modes are included.

Figure 1.12: FRF
for tip deflection of
cantilever sandwich
beam in Figure 1.5
with 2-DOF res-
onators, under a
unit harmonic force
applied at the free
end: exact response
(1.38) (black con-
tinuous line); total
modal response
(1.75) for M = 161
(black dots); single
modal responses
(1.72) (gray dashed
lines); exact response
without resonators
(red continuous line);
modal responses
(1.72) are reported
for k = 1, ..., 52
and k = 60, ..., 64
(Fig. 1.12a) and
k = 31, 32, 63, 64
(Fig. 1.12b); a
zoomed view is
included (Fig. 1.12c).
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Mode Eigenvalue

1 286.280± 0.027i
2 620.619± 0.632i
3 736.251± 1.280i
4 771.551± 1.552i
5 787.217± 1.686i
6 795.224± 1.757i
7 799.919± 1.800i
8 802.868± 1.827i
9 804.854± 1.846i

10 806.244± 1.859i
11 807.260± 1.868i
12 808.020± 1.876i
13 808.604± 1.881i
14 809.062± 1.886i
15 809.426± 1.889i
16 809.720± 1.892i
17 809.960± 1.894i
18 810.158± 1.896i
19 810.322± 1.898i
20 810.458± 1.899i
21 810.572± 1.900i
22 810.668± 1.901i
23 810.747± 1.902i
24 810.814± 1.902i
25 810.868± 1.903i
26 810.912± 1.903i
27 810.947± 1.904i
28 810.973± 1.904i
29 810.992± 1.904i
30 811.003± 1.904i
31 2466.989± 23.532i
32 2920.847± 27.657i
33 3233.359± 33.001i
34 3345.749± 35.461i
35 3397.235± 36.666i
36 3423.788± 37.305i
37 3439.413± 37.685i
38 3449.241± 37.926i
39 3455.865± 38.089i
40 3460.505± 38.204i
41 3463.895± 38.287i

Mode Eigenvalue

42 3466.432± 38.350i
43 3468.384± 38.399i
44 3469.911± 38.437i
45 3471.128± 38.467i
46 3472.110± 38.491i
47 3472.912± 38.511i
48 3473.571± 38.528i
49 3474.118± 38.541i
50 3474.574± 38.553i
51 3474.956± 38.562i
52 3475.274± 38.570i
53 3475.541± 38.577i
54 3475.762± 38.582i
55 3475.944± 38.587i
56 3476.393± 38.598i
57 3476.357± 38.597i
58 3476.295± 38.595i
59 3476.207± 38.593i
60 3476.091± 38.590i
61 30083.321± 41.607i
62 33188.621± 41.451i
63 5537.644± 58.228i
64 6647.837± 53.665i
65 9073.851± 47.573i
66 11819.176± 44.797i
67 14783.101± 43.456i
68 17779.491± 42.718i
69 20842.056± 42.297i
70 23904.008± 41.994i
71 26998.851± 41.805i
72 36266.575± 41.032i
73 39326.373± 39.566i
74 41661.862± 15.667i
75 42965.366± 30.348i
76 45787.637± 40.462i
77 48876.968± 41.055i
78 51980.110± 41.218i
79 55101.302± 41.241i
80 58220.947± 41.251i
81 61347.886± 41.238i
82 64472.968± 41.223i

Mode Eigenvalue

83 67602.459± 41.199i
84 70730.285± 41.172i
85 73861.305± 41.136i
86 76990.732± 41.089i
87 80122.759± 41.024i
88 83253.055± 40.924i
89 86385.636± 40.751i
90 89515.805± 40.352i
91 92646.501± 38.420i
92 95781.756± 44.114i
93 98908.259± 42.056i
94 101966.090± 37.151i
95 102806.610± 5.535i
96 105213.896± 41.472i
97 108336.858± 41.610i
98 111465.571± 41.591i
99 114599.106± 41.550i
100 117731.872± 41.522i
101 120866.478± 41.495i
102 124000.350± 41.475i
103 127135.375± 41.456i
104 130269.785± 41.442i
105 133405.068± 41.427i
106 136539.800± 41.415i
107 139675.274± 41.402i
108 142810.201± 41.392i
109 145945.818± 41.380i
110 149080.823± 41.369i
111 152216.521± 41.357i
112 155351.390± 41.344i
113 158486.963± 41.328i
114 161620.773± 41.300i
115 164753.712± 41.215i
116 167637.727± 11.615i
117 167994.170± 29.950i
118 171039.168± 41.172i
119 174172.626± 41.192i
120 177306.906± 41.164i
121 180442.694± 41.071i
122 183578.055± 40.860i
123 186713.794± 39.818i

Mode Eigenvalue

124 189850.729± 42.944i
125 192986.582± 41.899i
126 196122.458± 41.691i
127 199258.737± 41.600i
128 202394.761± 41.545i
129 205531.118± 41.513i
130 208667.207± 41.488i
131 211803.611± 41.470i
132 214939.706± 41.454i
133 218076.128± 41.442i
134 221212.123± 41.430i
135 224348.457± 41.419i
136 227483.857± 41.401i
137 230618.697± 41.353i
138 233427.574± 4.545i
139 233798.678± 37.005i
140 236898.785± 41.357i
141 240034.101± 41.377i
142 243169.755± 41.377i
143 246306.196± 41.372i
144 249442.418± 41.366i
145 252578.998± 41.358i
146 255715.386± 41.350i
147 258852.019± 41.339i
148 261988.485± 41.327i
149 265125.149± 41.310i
150 268261.659± 41.287i
151 271398.349± 41.253i
152 274534.881± 41.192i
153 277671.594± 41.054i
154 280808.160± 40.369i
155 283944.735± 42.413i
156 287081.233± 41.728i
157 290217.891± 41.589i
158 293353.991± 41.522i
159 296489.787± 41.462i
160 299411.374± 5.958i
161 299665.134± 35.609i

Table 1.2: Complex
eigenvalues of the can-
tilever locally-resonant
sandwich beam in
Figure 1.5 with 2-DOF
resonators
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(c)Figure 1.13: Tip de-
flection of the cantilever
locally-resonant beam
in Figure 1.5 for 2-DOF
resonators, under a unit
cosine force with fre-
quency 830 Hz: (a) total
response for increasing
number of modes M
in Eq. (1.74); (b) single
modal response for
most significant modes;
(c) total response for
M = 161 in Eq. (1.74)
(black continuous line)
and response of the
beam without res-
onators (red continuous
line) for M = 161.
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1.7 Conclusions

In this chapter, a novel computational framework for computing the dy-
namic response of locally-resonant metamaterial beams, i.e. beams coupled
with multi-DOF mass-spring-dashpot subsystems, has been presented. In
particular, the following key contributions have been produced:

1. A novel closed form expression for the dynamic-stiffness matrix of a
locally-resonant metamaterial beam in the frequency domain for an ar-
bitrary number of resonators and degrees of freedom within each res-
onator. Since the solutions are derived from the closed form solution
of the beam governing equation, thus the dynamic response in the fre-
quency domain can be computed without introducing any approxima-
tion.

2. The countour-integral method is applied for the first time to solve the
complex nonlinear eigenvalue problem arising from the equations of mo-
tion for free vibrations. The problem is notoriously challenging to solve
because locally-resonant metamaterials beam exhibit several eigenvalues
close to each other, as a result of local resonance.

3. Analytical expressions for computing the dynamic response of the local-
ly-resonant metamaterial beam in the time domain based on the dynamic-
stiffness method and on the modal analysis are derived.

The numerical applications confirms the accuracy and the efficiency of the
proposed approach. Furthermore, since it is based on analytical solutions of
the governing equations, the proposed framework is particularly useful for
benchmarking purposes. Further studies may extend the proposed frame-
work for computing the dynamic response of arbitrary periodic structures,
like planar hierarchical lattice structures.





2Locally-resonant metamaterial plates

The goal of this chapter is to formulate a spectral dynamic-stiffness model for locally-
resonant metamaterial plates. The spectral dynamic-stiffness method and the exact
dynamic condensation of the dynamic-stiffness matrices governing the equilibrium of
the resonators provide a framework for the calculation of the natural frequencies and
the corresponding undamped modes. The derivation of the orthogonality conditions
for the modes of the reduced-order model leads to closed analytical solution of the
modal response under arbitrary loads, both in time and frequency domains.

2.1 Introduction

The dynamics of locally-resonant metamaterial plates such as the one re-
ported in Fig. 2.1 is generally performed by means of FE codes, where the
degrees of freedom within the resonators are necessarily taken into account.
Here, a spectral dynamic-stiffness model based on the dynamic-stiffness
method and the exact-dynamic condensation not involving the degrees of
freedom within the resonator is proposed. For generality, the proposed
model is presented for an assembly of np plates coupled by arrays of res-
onators. Every resonator exerts transverse forces on two consecutive plates
by being activated by the deflections of its attachment points

2.2 Reduced-order model

As basis for deriving the reduced-order model of the system in Figure 2.2,
the equations governing its free vibrations are considered. First, assume
that the vector collecting the deflection in every plate depends harmoni-

cally on time, i.e. w(x, t) = W(x)eiωt, where W(x) =
[
W(1) . . . W(np)

]T

collects the frequency-dependent deflections in every plate, ω is the fre- Free-vibration prob-
lemquency and x = (x, y). The equilibrium equations in the frequency domain



48 Reduced-order model

Figure 2.1: Locally-
resonant metama-
terial plates: (a)
single plate with
1-DOF mass-spring
resonators [89]; (b)
single plate with
2-DOF mass-spring
resonators [56]; (c)
two plates coupled
by different types
of 1-DOF mass-
spring resonators
[63]; (d) two plates
coupled by 1-DOF
mass-spring-truss
resonators [81].
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can be written in the following general form:

LW(x)−ω2MW(x)−R(x) = 0 (2.1)

In Eq. (2.1), L is the stiffness operator, M is the mass operator, R is the
operator associated with the reaction forces of the resonators, given as:

L =


D1∇1 . . . 0

...
. . .

...
0 . . . Dnp∇np

 ∇k =
∂̄4

∂x4 + 2
∂̄4

∂x2∂y2 +
∂̄4

∂y4 (2.2)
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Figure 2.2: System
under study: (a) as-
sembly of plates cou-
pled by arrays of res-
onators; (b) multi-
DOF resonators.

M =


ρ1h1 . . . 0

...
. . .

...
0 . . . ρnp hnp

 (2.3)

R(x) =
Nr

∑
h=1

Rhδ(x− xh) (2.4)

where Dk = Ekh3
k/12(1− ν2

k ) is the flexural stiffness of the kth plate, Ek the
Young modulus, νk the Poisson coefficient, hk the thickness and ρk the mass
volume density; Nr is the number of resonators connecting two consecutive
plates, Rh = Rh(ω) is a frequency-dependent vector including the reaction
forces that the (np − 1) resonators aligned along a vertical line at x = xh

exerts on the plates, δ(x − xh) is the bi-dimensional Dirac’s delta; finally,
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the bar in Eq. (2.2) means generalized derivative, which is considered as R
in Eq. (2.4) involves Dirac’s deltas.

Figure 2.3: Res-
onators of the system
in Figure 2.2: (a)
Resonators at x = xh;
(b) Forces and dis-
placements of the
resonator at x = xh,
between the kth and
gth plates.
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The reduced-order model hinges on the fact that the vector Rh in Eq. (2.4)
can be obtained by an exact dynamic condensation of the DOFs within the
resonators. Consider the equation of motion in the frequency domain of the
resonator coupling the kth and gth plates at x = xh (as shown see Figure 2.3):

[
K(k,g)

ee K(k,g)
em

K(k,g)
me K(k,g)

mm

] [
U(k,g)

e

U(k,g)
m

]
=

[
F(k,g)′

e

0

]
(2.5)

where F(k,g)′
e =

[
F(k,g)′

1e F(k,g)′
2e

]T
is the force exerted by the plates on the

resonator, U(k,g)
m is the vector collecting the DOFs of the masses within the

resonator, U(k,g)
e = W(k,g)(xh) =

[
W(k)(xh) W(g)(xh)

]T
is the vector of the

kth and gth plate deflections at the attachment points of the resonator. Being

F(k,g)
e = −F(k,g)′

e , Eq. (2.5) yields:

F(k,g)
e = −κ

(k,g)
eq (ω)W(k,g)(xh) = −[K

(k,g)
ee −K(k,g)

em (K(k,g)
mm )−1K(k,g)

me ]W(k,g)(xh)

(2.6)
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The matrix κ
(k,g)
eq (ω) in Eq. (2.6) assumes the following form:

κ
(k,g)
eq (ω) = K(k,g)

ee −K(k,g)
em (K(k,g)

mm )−1K(k,g)
me =

[
κ
(k,g)
11 (ω) κ

(k,g)
12 (ω)

κ
(k,g)
21 (ω) κ

(k,g)
22 (ω)

]
(2.7)

Based on Eq. (2.6) and Eq. (2.7), vector Rh in Eq. (2.4) can be written as Reactions exerted by
the resonators

Rh = −κeq(ω)W(xh) (2.8)

where W(xh) =
[
W1(xh) . . . Wnp(xh)

]T
is the vector collecting the de-

flections of the attachment points of the (np − 1) resonators aligned along
the vertical line at x = xh and κeq(ω) is a frequency-dependent symmetric
stiffness matrix given as

κeq(ω) = PTκ̃eq(ω)P (2.9)

being κ̃eq

κ̃eq(ω) =


κ
(1,2)
eq . . . 0
...

. . .
...

0 . . . κ
(np−1,nP)
eq

 (2.10)

and P the matrix relating W(xh) to the vector Ue =
[
U(1,2)T

e . . . U
(np−1,np)T

e

]T
,

i.e.

Ue = PW(xh) (2.11)

P =


1 0 0 . . . 0
0 v 0 . . . 0
...

. . . . . . . . .
...

0 . . . 0 v 0
0 . . . 0 0 1

 (2.12)

with v =
[
1 1

]T
. To demonstrate Eqs. (2.8)-(2.9), it is noticed that

Rh = PTFe = −PTF′e (2.13)

where Fe = −F′e =
[
F(1,2)′ T

e . . . F
(np−1,np)′ T

e

]T
, being F′e the vector col-

lecting the forces exerted by the plates on the resonators aligned along the
vertical line at x = xh,

F′e = κ̃eq(ω)Ue (2.14)
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with κ̃eq given by Eq. (2.10) and Eq. (2.11) respectively.
The proposed reduced-order dynamic-stiffness model hinges on Eq. (2.8),

as it expresses the reaction forces of the resonators in terms of the deflec-
tions of the attachment points on the plates, without involving any of the
DOFs within the resonators. Consequently, the model-order reduction does
not require any approximation, because the dynamic condensation of the
DOFs within the resonators in Eq. (2.6) is exact.

2.3 Reduced-order global dynamic-stiffness matrix

The formulation of a reduced-order global dynamic-stiffness matrix for the
system in Figure 2.2, which depends only on generalized coordinates de-
scribing the dynamics of the plates, is derived by using the model-order
reduction introduced in Section 2.2.

2.3.1 Implementation

The space distribution of the resonators determines the subvision of the
plates in parallel strips as depicted in Figure 2.4. For the jth strip on the kth

plate, see Figure 2.5, be

f (k,j)
1 (y)

f (k,j)
2 (y)

f (k,j)
3 (x)

f (k,j)
4 (x)

f (k,j)
5 (y)

f (k,j)
6 (y)

f (k,j)
7 (x)

f (k,j)
8 (x)



=



V(k,j)
x (a, y)

M(k,j)
x (a, y)

V(k,j)
y (x, b)

M(k,j)
y (x, b)

−V(k,j)
x (−a, y)

−M(k,j)
x (−a, y)

−V(k,j)
y (x,−b)

−M(k,j)
y (x,−b)



;



d(k,j)
1 (y)

d(k,j)
2 (y)

d(k,j)
3 (x)

d(k,j)
4 (x)

d(k,j)
5 (y)

d(k,j)
6 (y)

d(k,j)
7 (x)

d(k,j)
8 (x)



=



W(k,j)(a, y)

Φ(k,j)
x (a, y)

W(k,j)(x, b)

Φ(k,j)
y (x, b)

W(k,j)(−a, y)

Φ(k,j)
x (−a, y)

W(k,j)(x,−b)

Φ(k,j)
y (x,−b)



(2.15)

the vectors collecting (generalized) forces and displacements, i.e. Kirchhoff
shear forces and bending moment per unit length, deflection and rotation
along the four edges of the strip, being Φ(k,j)

x (x, y) = −∂W(k,j)/∂x and
Φ(k,j)

y (x, y) = −∂W(k,j)/∂y. It is noticed that every force/displacement in
Eq. (2.15) is a single-variable function over the respective interval [−a, a]
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Figure 2.4: Parallel-
strip subdivision of
the plates of the sys-
tem in Figure 2.2, ac-
cording to the space
distribution of the
resonators.

or [−b, b] and can be represented by the following modified Fourier series
representation [48]

q(ξ) =
∞

∑
s=0

l∈{0,1}

Q(l)
s
Tl(γlsξ)√

ζlsL
(2.16)

Q(l)
s =

L∫
−L

q(ξ)
Tl(γlsξ)√

ζlsL
dξ (2.17)
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Figure 2.5: General-
ized displacement (a)
and forces (b) for a
plate strip.

Tl(γlsξ) =


cos

( sπ

L
ξ
)

l = 0

sin
[(

s +
1
2

)
π

L
ξ

]
l = 1

ξ∈[−L,L]

s∈N
(2.18)

ζls =

{
2 l = 0 and s = 0

1 l = 1 or s > 1
(2.19)

where L indicates either a or b. Rpresenting all the components in Eq. (2.15)
by Eq. (2.16) and using the governing equations provide the following ma-
trix relation:

f(k,j) = D(k,j)(ω)d(k,j) (2.20)

where D(k,j)(ω) is the dynamic-stiffness matrix of the jth bare strip of the
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kth plate, i.e. [48]

f(k,j)
1

f(k,j)
2

f(k,j)
3

f(k,j)
4

f(k,j)
5

f(k,j)
6

f(k,j)
7

f(k,j)
8



=



K(k,j)
11 K(k,j)

12 K(k,j)
13 K(k,j)

14 K(k,j)
15 K(k,j)

16 K(k,j)
17 K(k,j)

18

K(k,j)
21 K(k,j)

22 K(k,j)
23 K(k,j)

24 K(k,j)
25 K(k,j)

26 K(k,j)
27 K(k,j)

28

K(k,j)
31 K(k,j)

32 K(k,j)
33 K(k,j)

34 K(k,j)
35 K(k,j)

36 K(k,j)
37 K(k,j)

38

K(k,j)
41 K(k,j)

42 K(k,j)
43 K(k,j)

44 K(k,j)
45 K(k,j)

46 K(k,j)
47 K(k,j)

48

K(k,j)
51 K(k,j)

52 K(k,j)
53 K(k,j)

54 K(k,j)
55 K(k,j)

56 K(k,j)
57 K(k,j)

58

K(k,j)
61 K(k,j)

62 K(k,j)
63 K(k,j)

64 K(k,j)
65 K(k,j)

66 K(k,j)
67 K(k,j)

68

K(k,j)
71 K(k,j)

72 K(k,j)
73 K(k,j)

74 K(k,j)
75 K(k,j)

76 K(k,j)
77 K(k,j)

78

K(k,j)
81 K(k,j)

82 K(k,j)
83 K(k,j)

84 K(k,j)
85 K(k,j)

86 K(k,j)
87 K(k,j)

88





d(k,j)
1

d(k,j)
2

d(k,j)
3

d(k,j)
4

d(k,j)
5

d(k,j)
6

d(k,j)
7

d(k,j)
8


(2.21)

All entries of the matrix D(k,j)(ω) in Eq. (2.21) are available in a concise
analytical form, as demonstrated in ref. [48]. Further, in Eq. (2.21) d(k,j)

i

and f(k,j)
i denote the sub-vectors collecting the coefficients of the modified

Fourier series representations used for the displacements and forces along
the strip (see Figure 2.5)

d(k,j)
i =

[
d(0,k,j)

i0 d(0,k,j)
i1 d(0,k,j)

i2 ... d(1,k,j)
i0 d(1,k,j)

i1 d(1,k,j)
i2 ...

]T

f(k,j)
i =

[
f (0,k,j)
i0 f (0,k,j)

i1 f (0,k,j)
i2 ... f (1,k,j)

i0 f (1,k,j)
i1 f (1,k,j)

i2 ...
]T

(2.22)

where the superscripts (0, k, j) and (1, k, j) indicate the coefficients associ-
ated with cosine terms (l = 0) and sine terms (l = 1) in the modified
Fourier series representations (2.16) for the jth strip of the kth plate.

The dynamic-stiffness matrix D(k)(ω) of the kth plate is built by assem-
bling the dynamic-stiffness matrices D(k,j)(ω) of the strips, as in a standard
FE assembly procedure. Consequently, the size of the dynamic-stiffness
matrix of the plate depends on the number of generalized coordinates rep-
resenting the response variables along the external edges and the internal
lines, as shown in the following figure:

Having built the dynamic-stiffness matrix for every plate separately, the
next step is constructing the global dynamic-stiffness matrix for the whole
system in Figure 2.4, that is for the system of plates coupled by the arrays
of resonators. For any two consecutive plates coupled by an array of res-
onators, this task is performed as schematically illustrated in Figure 2.7,
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Figure 2.6: Assembly
procedure of the
dynamic-stiffness
matrix of the system
in Figure 2.2.

where symbol “ ” denotes the dynamic-stiffness matrix in the follow-
ing equation, which is associated with every line of resonators shown in
Figure 2.4:

[
r(k)1

r(g)
2

]
=

[
K11 K12

K21 K22

] [
u(k)

1

u(g)
2

]
(2.23)

Symbols u(k)
1 and u(g)

2 denote specific subvectors d(k,j)
i and d(g,j)

i in Eq. (2.21),

namely: u(k)
1 = d(k,j)

1 and u(g)
2 = d(g,j)

1 or u(k)
1 = d(k,j)

3 and u(g)
2 = d(g,j)

3 if the
line of resonators coincide with the edge e1 or the edge e3 respectively, for
the jth strip of kth and gth plates. Matrices K11, K12, K21, K22 in Eq. (2.23)
can be partitioned as follows, on the basis of Eq. (2.22):

K11 =

[
K00

11 K01
11

K10
11 K11

11

]
; K12 =

[
K00

12 K01
12

K10
12 K11

12

]

K21 =

[
K00

21 K01
21

K10
21 K11

21

]
; K22 =

[
K00

22 K01
22

K10
22 K11

22

] (2.24)
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Figure 2.7: Assem-
bly procedure for the
dynamic-stiffness matri-
ces of two consecutive
plates of the system in
Figure 2.2 coupled by an
array of resonators; sym-

bol “ ” denote the
dynamic-stiffness matrix
(2.23) associated with a
line of resonators.

with each submatrix given by:

(Ktl
11)vs = −κ

(k,g)
11 (ω)

ne

∑
h=1

Tt(γtvξh)√
ζtvL

Tl(γlsξh)√
ζlsL

(2.25)

(Ktl
12)vs = −κ

(k,g)
12 (ω)

ne

∑
h=1

Tt(γtvξh)√
ζtvL

Tl(γlsξh)√
ζlsL

(2.26)

(Ktl
21)vs = −κ

(k,g)
21 (ω)

ne

∑
h=1

Tt(γtvξh)√
ζtvL

Tl(γlsξh)√
ζlsL

(2.27)

(Ktl
22)vs = −κ

(k,g)
22 (ω)

ne

∑
h=1

Tt(γtvξh)√
ζtvL

Tl(γlsξh)√
ζlsL

(2.28)

where t, l ∈ {0, 1}, L is the length of the edges of the strips mutually-
connected by the resonators, ne is the number of resonators along each of
the connected edges, ξh is the coordinate of the attachment point of the hth
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resonator over the edge of the kth and gth plates.

2.3.2 Free vibrations analysis

The reduced-order global dynamic-stiffness matrix hereinafter as D̃ (with
tilde denoting “reduced order”) derived using the formulation proposed
in Section 2.3 can be used to calculate the natural frequencies of the free-
vibration problem governing the system in Figure 2.2 by the well-known
Wittrick-Williams algorithm [83–86], which captures all the natural fre-
quencies including multiple ones, to any desired degree of accuracy. The
implementation of the Wittrick-Williams algorithm involves calculating the
number of natural frequencies below a given trial frequency J, using the
formula

J(ω) = J0s + J0r + s[D̃(ω)] (2.29)

where J0s and J0r are the numbers of “clamped-clamped” natural frequen-
cies below ω of the bare strips (J0s) and the resonators (J0r). In this case,
the term “clamped-clamped” denotes the natural frequencies of the inter-
nal modes within every strip and every resonator, when the generalized
coordinates along the edges of the strips (i.e., the coordinates used to for-
mulate the reduced-order global dynamic-stiffness matrix) are set equal to
zero. Specifically, J0s can be obtained by closed analytical expressions in
ref. [48] while J0r can be evaluated as [66]

J0r(ω) =
Nr(np−1)

∑
h=1

Ni

∑
i=1

min
{

1,
⌊

ω

ωhi

⌋}
(2.30)

where Nr is the number of resonators connecting two consecutive plates, np

is the number of plates, Ni is the number of DOFs within every resonator
and ωhi is the ith natural frequency of the hth resonator.

For every calculated natural frequency, the associated deflection eigen-
functions in all the plates is derived as non-trivial solution of the eigenvalue
problem involving the reduced-order global dynamic-stiffness matrix D̃, as
computed for that natural frequency. The corresponding modal rotations,
bending moments, shear forces and twisting moment can be obtained us-
ing the plate equations. Furthermore, the modal displacements and in-
ternal forces within every resonator can be obtained from the equation of
motion (2.5) of the resonator, being U(k,g)

e = W(k,g)(xh) the vector of modal
deflections of the attachment points on the plates. As a consequence, the
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modal response within all the resonators can be fully described, remarkably
so since the natural frequencies and modes are obtained by the reduced-
order global dynamic-stiffness matrix that does not involve any of the DOFs
within the resonators.

2.4 Modal response of the reduced-order dynamic-stiffness model

The natural frequencies and modes calculated from the reduced-order global
dynamic-stiffness matrix D̃ formulated in Section 2.3, allows to compute
the modal response under arbitrary loading of the system in Figure 2.2, in
both time and frequency domains, once suitable orthogonality conditions
for the modes of the reduced-order model are found as shown in the next
Section.

2.4.1 Orthogonality conditions

The stiffness operator L in Eq. (2.2) and the mass operatorM in Eq. (2.3)
are both self-adjoint [55], i.e.

∫
A

WT
nLWm dA =

∫
A

WT
mLWn dA (2.31)

∫
A

WT
nMWm dA =

∫
A

WT
mMWn dA (2.32)

being A the domain of the plates, Wn and Wm the vector of the nth and mth

deflection eigenfunctions in all the plates, fulfilling homogeneous BCs.
Making use of Eqs. (2.31)–(2.32), Eq. Eq. (2.1) for (Wm, ωm) and (Wn, ωn)

reads

LWm(x)−ω2
mMWm(x) +

Nr

∑
h=1

κeq(ωm)Wm(xh)δ(x− xh) = 0 (2.33)

LWn(x)−ω2
nMWn(x) +

Nr

∑
h=1

κeq(ωn)Wn(xh)δ(x− xh) = 0 (2.34)

Multiplying Eq. (2.33) by Wn and Eq. (2.34) by Wm, integrating the two
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equations over A and considering the BCs yield:∫
A

WT
nLWm dA−ω2

m

∫
A

WT
nMWm dA +

Nr

∑
h=1

WT
n(xh)κeq(ωm)Wm(xh) = 0

(2.35)∫
A

WT
mLWn dA−ω2

n

∫
A

WT
mMWn dA +

Nr

∑
h=1

WT
m(xh)κeq(ωn)Wn(xh) = 0

(2.36)

Using self-adjointness of L and M , see Eq. (2.31) and Eq. (2.32), as well
the symmetry of matrix κeq(ω) in Eq. (2.9), the difference between Eq. (2.35)
and Eq. (2.36) provides the first orthogonality condition:

ωn(ωn + ωm)
∫
A

WT
mMWn dA + ωn

Nr

∑
h=1

Wm(xh)
T(κeq(ωn)− κeq(ωm))Wn(xh)

ωm −ωn
= 0

(2.37)

Further, upon multiplying Eq. (2.35) by ωn and Eq. (2.36) by ωm, the dif-
ference of the two equations leads to the second orthogonality condition:

∫
A

WT
mLWn dA = −

Nr

∑
h=1

Wm(xh)
T(ωmκeq(ωn)−ωnκeq(ωm))Wn(xh)

ωm −ωn
−ωnωm

∫
A

WT
mMWn dA

(2.38)

The orthogonality conditions (2.37) and (2.38) involve the modes of the
plates only and do not involve any DOF within the resonators. Eq. (2.1),
Eq. (2.37) and Eq. (2.38) are the basis to formulate the proposed reduced-
order model approach to calculate the modal response.

2.4.2 Modal response

In order to derive the modal response, consider the governing equation of
the system in Figure 2.2 under an impulsive load, given as

Lw(x, t) +M ẅ(x, t)−R(x, t) = f(x)δ(t) (2.39)

where f(x) is a space-dependent loading function, with arbitrary location
on any of the plates in Figure 2.2, w is the vector collecting the time-
dependent deflections in the plates and

R(x, t) =
Nr

∑
h=1

rhδ(x− xh) (2.40)
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being rh = rh(t) a time-dependent vector including the reaction forces that
the (np − 1) resonators aligned along a vertical line at x = xh exerts on the
plates.

Using modal superposition, the deflection w can be represented as

w(x, t) =
∞

∑
n=1

Wn(x)gn(t) (2.41)

where Wn is the vector collecting the nth deflection eigenfunctions in all the
plates. Further, in view of the impulsive nature of the load, gn(t) = gneiωnt

and gn(t) = g∗ne−iωnt, being gn and g∗n complex conjugate pairs.
First, assume that gn(t) = gneiωnt. Replacing Eq. (2.41) for w(x, t) in

Eq. (2.39) and taking into account that g̈n = −ω2
ngn(t), Eq. (2.39) takes the

form

∞

∑
n=1

(
−g̈n

ω2
n

){
LWn +

Nr

∑
h=1

κeq(ωn)Wn(xh)δ(x− xh)−ω2
nMWn(x)

}
= f(x)δ(t)

(2.42)

Multiply Eq. (2.42) by Wm and integrate over A to obtain

∞

∑
n=1

(
−g̈n

ω2
n

)
∫
A

WT
mLWn dA +

Nr

∑
h=1

WT
m(xh)κeq(ωn)Wn(xh)−ω2

n

∫
A

WT
mMWn dA

 = χmδ(t)

(2.43)

where χm is the projection of the space-dependent loading function f on
Wm

χm =
∫
A

WT
mf dA (2.44)

Making use of the orthogonality condition (2.38), Eq. (2.43) leads to

∞

∑
n=1

g̈n

ω2
n

(ωnωm + ω2
n)
∫
A

WT
mMWn dA + ωn

Nr

∑
h=1

Wm(xh)
T(κeq(ωn)− κeq(ωm))Wn(xh)

ωm −ωn

 = χmδ(t)

(2.45)

The first orthogonality condition (2.37) ensures that the expression within
parenthesis in Eq. (2.45) is equal to zero for ωm 6= ωn. On the other hand,
for ωm = ωn the following decoupled system of equations is obtained:

Πn g̈n = χnδ(t) (2.46)
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where Πn is

Πn =
Nr

∑
h=1

ω−2
n WT

n(xh)µ(ωn)Wn(xh) + 2
∫
A

WT
nMWn dA (2.47)

where the symbol µ(ωn) in Eq. (2.47) denotes a resonator-dependent term
calculated by the following limit

µ(ωn) = lim
ωm→ωn

ωn

(
κeq(ωn)− κeq(ωm)

ωm −ωn

)
= −ωn

dκeq

dω

∣∣∣∣
ω=ωn

(2.48)

The dynamic-stiffness κeq(ω) in Eq. (2.8) is differentiable for typical res-
onators involved in locally-resonant metamaterial plates, as mass-spring
chains, mass-spring-truss resonators with lateral masses or elastic bars with
distributed mass. Indeed, the frequency-dependent stiffness matrix in-
volves polynomial and/or transcendental functions of the frequency.

As shown in Sec. 1.4, Eq. (2.46) is the basis to derive the complex co-
efficients in Eq. (2.41), which are given by Eq. (1.67). Furthermore, once
the vector Yn collecting the nth eigenfunctions of all response variables,
i.e. deflection, rotation, bending moment, shear forces and twisting mo-
ment in all the plates as derived from the Kirchhoff-Love plate equations,
as well as displacements and forces within the resonators (see at the end
of Section 2.3.2 for the calculation of the eigenfunctions from the reduced-
order global dynamic-stiffness matrix) is known, Eq. (1.68) and Eq. (1.72)
can be used to compute the modal response to arbitrary loads obtaining
Eqs. (1.74)-(1.75).

Eq. (1.74) and Eq. (1.75) apply for arbitrary dynamic loads. Recognize
that time dependence and frequency dependence of the load are accounted
for in f (t) and f̂ (ω), while space dependence is included in Eq. (2.44)
for χn, which is involved in the impulse and frequency response functions
(1.68)-(1.72). Analytical expressions for Eq. (1.74) are obviously available for
time-dependent harmonic loads or other typical time-dependent loading
functions in dynamics.

2.5 Numerical applications

Consider the system in Figure 2.8, consisting of two 1× 1 m square plates
mutually connected by 1-DOF resonators. Both plates are simply supported
along the two parallel edges in the x-direction. The parameters of the plates
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and the resonators are: E = 77.6 GPa, ρ = 2730 kg/m3, mr = 0.25 kg,
kr = 1× 105 N/m. The mutual distance between the plates is 20 cm [60]. It
assumed that the lines of resonators are at distance 0.05 m from the edges
of the plate. The total number of resonators is Nr(np − 1) = 100.

x

y

z

1m 1m

kr

mr

kr

Figure 2.8: Locally-
resonant metamate-
rial plate consisting
of two simply-
supported plates
connected by 1-DOF
resonators

The proposed dynamic-stiffness approach is implemented in Matlab [54],
dividing every plate in 11 strips. The modified Fourier series representa-
tions (2.16) for the response variables within every strip are truncated to
the first N = 12 terms, totalling 1104 = 12× (2N + 2N ) + 2× 11× 2N
generalized coordinates for every plate, since there are: 12 edges of the
strips in the y-direction, 2× 11 edges of the strips in the x-direction, 2N
coefficients for deflection and 2N coefficients for rotation along every edge,
assuming N terms associated with cosine terms (l = 0) and N terms as-
sociated with sine terms (l = 1) (see Eq. (2.22)). As a result, the size of the
reduced-order global dynamic-stiffness matrix D̃ is 2208× 2208. The res-
onator DOFs are eliminated by the exact dynamic condensation described
in Section 2.3. Specifically, the matrix κeq(ω) in Eq. (2.7) is given by

κ
(k,g)
eq (ω) =

[
kr + θ θ

θ kr + θ

]
(2.49)

being θ = −k2
r /(2kr − mrω2), which leads to the following expression for

the matrix µ(k,g)(ωn) in Eq. (2.48)

µ(k,g)(ωn) =
2mrk2

r
(2kr −mrω2

n)
2

[
1 1
1 1

]
(2.50)

For comparison, the system is implemented in Abaqus, using S4R5 4-node
thin shell elements and considering 3 flexural DOFs for every node. Con-
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sidering 2550 FEs and 2652 nodes for every plate, 100 nodes for the res-
onators, the size of the global stiffness and mass matrices is 15808× 15808,
taking into account BCs along the simply supported edges. Specifically, a
lumped formulation is adopted for the mass matrix.

Firstly, the natural frequencies are calculated from the reduced-order
global dynamic-stiffness matrix D̃ via the Wittrick-Williams algorithm and
compared to the corresponding ones obtained by the FE method in Abaqus.
Table 2.1 reports 20 of the calculated natural frequencies, showing an excel-
lent agreement with relative errors up to 0.39% at most.

Table 2.1: First 20
natural frequencies of
system in Figure 2.8,
calculated by pro-
posed reduced-order
dynamic-stiffness
model (DSM) and
FE model in Abaqus
(FEM).

Mode FEM (·10Hz) DSM (·10Hz)

1 2.0581 2.0581

2 3.3773 3.3905

3 7.4499 7.4705

4 7.8683 7.8621

5 9.0742 9.0835

6 9.9398 9.9394

7 10.4218 10.4274

8 11.7512 11.7709

9 12.1368 12.1468

10 12.7126 12.6976

11 12.9761 12.9682

12 13.3415 13.3511

13 13.4040 13.4276

14 13.4977 13.5032

15 13.6688 13.6712

16 13.8081 13.8023

17 13.8506 13.8466

18 13.8526 13.8553

19 13.8873 13.8914

20 13.9549 13.9568

The proposed reduced-order global dynamic-stiffness matrix is capable
of capturing the natural frequencies of the system with remarkable accu-
racy and a very limited size of the model, as compared to the size of a
standard FE one.

Furthermore, in Figure 2.9 two modes calculated by the proposed dynamic-
stiffness approach are depicted. The corresponding eigenmodes within the
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resonators can be also obtained, using the equation of motion (2.5) where
U(k,g)

e = W(k,g)(xh) is the vector collecting the deflections of the plates at
the attachment points on the plates.

Figure 2.9: Mode
shapes of the sys-
tem in Figure 2.8,
calculated by the pro-
posed reduced-order
dynamic-stiffness
model: (a) top plate,
first mode (left
column) and second
mode (right column);
(b) bottom plate, first
mode (left column)
and second mode
(right column).

The time and frequency responses can be calculated by means of Eq. (1.74)
and Eq. (1.75). In particular, Eq. (1.74) and Eq. (1.75) are applied calcu-
lating NM = 200 natural modes from the proposed reduced-order global
dynamic-stiffness matrix and assuming, for all modes, an indicative modal
damping ratio = 0.005. For comparison, time and frequency responses
are calculated also by the corresponding FE modal expansions in Abaqus.
For a first insight, consider a harmonic concentrated force Feiωt, F = 1 N,
applied at x f = (0.05, 0.45) in the bottom plate.
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Figure 2.10 shows the deflection frequency response at x f = (0.05,−0.45)
in the bottom plate, as given by Eq. (1.75) and the FE method. The agree-
ment between the two solutions is excellent through the whole frequency
domain, substantiating the accuracy of the proposed dynamic-stiffness ap-
proach.

Figure 2.10: Am-
plitude of the deflec-
tion frequency response
function (FRF) at x =
(0.05,−0.45) in the bot-
tom plate for concen-
trated harmonic 1eiωt

load applied at x f =
(0.05, 0.45) in the bot-
tom plate, calculated by
proposed reduced-order
dynamic-stiffness model
(black continuous line)
and FE model in Abaqus
(black squares).
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Further, Figures 2.11-2.13 show the frequency response (1.75) evaluated
over the whole top and bottom plates, for three forcing frequencies of the
harmonic concentrated force, ω = 101 Hz, 142.1 Hz, 241.8 Hz. Again, a very
satisfactory agreement is found between Eq. (1.75) and the corresponding
FE solution. For completeness, Figures 2.11-2.13 illustrate also the displace-
ment frequency response of the resonators along the line at x = 0.05, in-
cluding the deflection frequency response of the plates. Specifically, the re-
sponse of the resonators is obtained by Eq. (1.75), using Eq. (2.5) to calculate
the modal displacements within every resonator in terms of the deflection
of its attachment points on the plates. Eq. (1.75) and the FE solution coin-
cide at all points of the plates and within the resonators as well, confirming
the accuracy of the proposed dynamic-stiffness approach.

Lastly, he accuracy of Eq. (1.74) to calculate the response in the time
domain is assessed. To this purpose, a sine concentrated force F sin(ωt),



Locally-resonant metamaterial plates 67

for F = 1 N and ω = 80 Hz, is considered to be again applied at x f =

(0.05, 0.45) in the bottom plate. Figures 2.14-2.15 represent the time re-
sponse as obtained by Eq. (1.74) and the FE method, at x = (0.05,−0.45) in
the bottom plate during the time interval [0, 1] s (Figure 2.14) and over the
whole system at t = 1 s (Figure 2.15). In both cases, Eq. (1.74) and the FE
solution can be hardly distinguished, confirming the validity of Eq. (1.74).
For a final insight, Figure 2.16 illustrates the response within the line of the
resonators along the line at x = 0.05, at t = 1 s, including the deflection of
the plates. Again, Eq. (1.74) and the FE method provide the same results,
confirming the accuracy of the proposed dynamic-stiffness approach.

Now, a final remark is that no significant differences are found in the
results reported throughout this Section, by increasing the number of gen-
eralized coordinates (> 2208) and the number of FE elements (> 5100) here
selected. Therefore, the relevant conclusion is that the proposed reduced-
order dynamic-stiffness model provides very accurate results in terms of
natural frequencies, modes, frequency and time responses with a limited
number of generalized coordinates compared to the number of DOFs of a
corresponding standard FE model. On the other hand, Eq. (1.74)-(1.75) are
straightforward to implement and provide full insight into the response of
the plates and the resonators as well.
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Figure 2.11: Ampli-
tude of the frequency
response function
(FRF) for concentrated
harmonic load 1eiωt ,
ω = 101 Hz, applied at
x f = (0.05, 0.45) in the
bottom plate, calculated
by proposed reduced-
order dynamic-stiffness
model (DSM) and
FE model in Abaqus
(FEM): (a) Deflection
of top plate by DSM
(right column) and
FEM (left column); (b)
Deflection of bottom
plate by DSM (right
column) and FEM (left
column); (c) Deflection
of top/bottom plates
and displacements of
resonators at x = 0.05 by
DSM (black continuous
lines), FEM (black
squares).
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Figure 2.12: Ampli-
tude of the frequency
response function
(FRF) for concentrated
harmonic load 1eiωt ,
ω = 142.1 Hz, applied
at x f = (0.05, 0.45)
in the bottom plate,
calculated by pro-
posed reduced-order
dynamic-stiffness model
(DSM) and FE model
in Abaqus (FEM): (a)
Deflection of top plate
by DSM (right column)
and FEM (left column);
(b) Deflection of bottom
plate by DSM (right
column) and FEM (left
column); (c) Deflection
of top/bottom plates
and displacements of
resonators at x = 0.05 by
DSM (black continuous
lines), FEM (black
squares).
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Figure 2.13: Ampli-
tude of the frequency
response function
(FRF) for concentrated
harmonic load 1eiωt ,
ω = 241.8 Hz, applied
at x f = (0.05, 0.45)
in the bottom plate,
calculated by pro-
posed reduced-order
dynamic-stiffness model
(DSM) and FE model
in Abaqus (FEM): (a)
Deflection of top plate
by DSM (right column)
and FEM (left column);
(b) Deflection of bottom
plate by DSM (right
column) and FEM (left
column); (c) Deflection
of top/bottom plates
and displacements of
resonators at x = 0.05 by
DSM (black continuous
lines), FEM (black
squares).
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Figure 2.14:
Time deflection at
x = (0.05,−0.45)
in the bottom plate
for concentrated
sine load 1 sin(ωt),
ω = 80 Hz, applied at
x f = (0.05, 0.45) in the
bottom plate, calculated
by proposed reduced-
order dynamic-stiffness
model (blue continuous
line) and FE model in
Abaqus (black squares).
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Figure 2.15: Time de-
flection for concentrated
sine load 1 sin(ωt), ω =
80 Hz, applied at x f =
(0.05, 0.45) in the bot-
tom plate, calculated at
t = 1 s by proposed
reduced-order dynamic-
stiffness model (DSM)
and FE model in Abaqus
(FEM): (a) Deflection of
top plate by DSM (right
column) and FEM (left
column); (b) Deflection
of bottom plate by DSM
(right column) and FEM
(left column).
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Figure 2.16: Time de-
flection of top/bottom
plates and displace-
ments of resonators
at line x = 0.05
for concentrated
sine load 1 sin(ωt),
ω = 80 Hz, applied
at x f = (0.05, 0.45)
in the bottom plate,
calculated at t = 1 s by
proposed reduced-order
dynamic-stiffness model
(black continuous line)
and FE model in Abaqus
(black squares).
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2.6 Conclusions

A new dynamic-stiffness model for evaluating the dynamic response of
locally-resonant metamaterial plates has been presented in this chapter.
Within the proposed framework, assemblies of plates coupled by peri-
odic arrays of resonators are modelled with a reduced-order dynamic-
stiffness model obtained by performing an exact dynamic condensation
of the degrees of freedom within the resonators, which yields a frequency-
dependent dynamic stiffness relating the reaction forces of the resonators
to the deflections of their attachment points on the plates. The dynamic-
stiffness matrix of the model-order reduction model is derived employing
the spectral dynamic-stiffness method and it serves as basis to calculate
the natural frequencies and the undamped modes by a modification of the
Wittrick-Williams algorithm. Secondly, the orthogonality conditions for the
modes of the plates only has been derived, leading to analytical expres-
sions for the modal response under arbitrary load in time and frequency
domains, under the assumption of classical damping. The numerical ap-
plications substantiate the accuracy and computational effectiveness of the
proposed framework by comparison with the finite element results com-
puted in Abaqus.

The proposed approach presents itself as an effective framework for
modelling locally-resonant metamaterial plates of emerging interest in en-
gineering, to which several studies have been devoted addressing in par-
ticular a two-plate system with an internal array of resonators such as the
1-DOF mass-spring resonators in ref. [60], 1-DOF mass-spring resonators
consisting of mass-spring subsystems in parallel with springs in ref. [63] or
the mass-spring-truss assemblies in ref. [81].



3Wave propagation in nonlocal Rayleigh

lattices

In this chapter the wave propagation in nonlocal Rayleigh lattices is addressed. Upon
building the exact dynamic-stiffness matrix of a nonlocal beam element, the band
structure of the lattice is calculated by means of the Bloch’s theorem. Furthemore, a
finite-element formulation, derived by introducing an ad-hoc procedure for construct-
ing a set of shape functions satisfying the static governing equations of each lattice
member, is introduced.

3.1 Wave propagation in nonlocal lattices

The study of the propagation of free elastic waves in nonlocal lattices is
performed by applying the Bloch’s theorem to the frequency-domain equi-
librium equations of the reference unit cell. In Figure 3.1, the reference

(a) (b)

Figure 3.1: Periodic
planar beam lattices:
(a) triangular lattice,
(b) Kagome lattice.

unit cell of two periodic planar beam lattices is highlighted in red and the
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corresponding Brillouin zone and irreducible Brillouin zones are reported
on top. In particular the basis vectors of the direct and reciprocal lattices,
respectively denoted with {e1, e2} and {e∗1 , e∗2}, are reported in Table 3.1
[62].

Table 3.1: Basis vec-
tors of the triangular
and Kagome lattices.
l denotes the length
of each lattice mem-
ber.

Topology Direct lattice Reciprocal lattice
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The size effects is captured by modelling every lattice member within the
unit cell with the stress-driven nonlocal elasticity theory [64, 65] here for-
mulated in conjunction with the Rayleigh beam theory. As basis for apply-
ing the Bloch’s theorem, the governing equations of the unit cells are rep-
resented in terms of dynamic-stiffness matrix. For this purpose, consider
the axial and bending equilibrium equations of a lattice member in the fre-
quency domain, along with the associated constitutive boundary conditions
(BCs) [20, 64, 65]:

−EA · L2
c

(
u(4) − 1

L2
c

u(2)
)
+ ρAω2u = 0 (3.1)

η(1)(0) =
1
Lc

η(0), η(1)(l) = − 1
Lc

η(1)(l) (3.2a,b)

−EI · L2
c

(
v(6) − 1

L2
c

v(4)
)
− ρIω2v(2) + ρAω2u = 0 (3.3)

χ(1)(0) =
1
Lc

η(0), χ(1)(l) = − 1
Lc

η(1)(l) (3.4a,b)
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where the superscript k denotes the kth derivative with respect to the spatial
coordinate x, ω is the frequency, u is the axial displacement and v the
deflection in the local reference system of the member, η the axial strain
and χ the curvature; l is the length of the member, E the Young’s modulus,
A the area of the cross section, I the moment of inertia, ρ the mass per
unit volume. Further, Lc is the internal length of the stress-driven model,
governing nonlocal effects.

Eq. (3.1) and Eq. (3.3) are obtained from the classical equilibrium equa-
tions of the Rayleigh beam

N(1) + ρAω2u = 0 (3.5)

M(2) − ρIω2v(2) + ρAω2v = 0 (3.6)

where the following expressions, derived from the stress-driven nonlocal
elasticity theory [64, 65], are used for the axial force N and the bending
moment M:

N = −EA · L2
c

(
η2 − 1

L2
c

η

)
(3.7)

M = −EI · L2
c

(
χ2 − 1

L2
c

χ

)
(3.8)

begin η = u(1), χ = −v(2), θ = −v(1) the rotation.
The dynamic-stiffness matrix of the unit cell is written by making use of

Eq. (3.1) through Eq. (3.4). Here, two different approaches are used:

1) The exact dynamic-stiffness approach is based on modelling every lat-
tice member by a unique two-node beam element, using the exact solu-
tions of Eq. (3.1) through Eq. (3.4). In this case, the frequency-domain
equilibrium equations of the unit cell in the global reference system take
the form

D(ω)q = 0 (3.9)

where D(ω) is the exact dynamic-stiffness matrix of the cell and q is the
vector collecting displacements of the member-to-member nodes only.

2) The finite-element dynamic-stiffness approach, every lattice member is
divided into a number n of two-node beam elements and pertinent stiff-
ness and mass matrices are formulated. In this case, the frequency-
domain equilibrium equations of the unit cell in the global reference
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system are

(K−ω2M)q = 0 (3.10)

where K and M are the stiffness and mass matrices of the unit cell,
while q is the vector collecting displacements of all nodes within the
cell; unlike the dynamic-stiffness approach, in this case q includes not
only the displacements of the member-to-member nodes but also those
of the nodes along the lattice members.

Based on the Bloch’s theorem Bloch’s theorem [62], the following trans-
formation enforces the Bloch’s periodic boundary conditions on the degrees
of freedom involved in Eqs. (3.9)-(3.10):

q = Tq̃ =



I 0 0 0
Iek1 0 0 0

0 I 0 0
0 Iek2 0 0
0 0 I 0
0 0 Iek1 0
0 0 Iek2 0
0 0 Iek1+k2 0
0 0 0 I


; q̃ =


ql

qb

qlb

qi

 (3.11)

where k1 = k̃ · e1 = δ1 + iε1 and k2 = k̃ · e2 = δ2 + iε2 are the components
of the wave vector k̃ along the basis vectors e1 and e2 of the direct lattice, q̃
collects the nodal displacements in the so-called Bloch reduced coordinates.
Eqs. (3.30)-(3.10) refer to the general form of unit cell in Fig. 3.2, which
encompasses the unit cells of the lattices in Fig. 3.1 where the subscripts
l, r, b, t are related to the nodes shared with the neighbouring cells, the
double subscripts are referred to the corner nodes and the subscript i to
the (internal) nodes within the cell. Substituting Eq. (3.11) for q in either
Eq. (3.9) or Eq. (3.10) and pre-multiplying the resulting equations with the
Hermitian transpose TH, the following eigenvalue problems are formulated
in the reduced coordinates [62]:

D̃(ω, k1, k2)q̃ = 0 (3.12)(
K̃(k1, k2)−ω2M̃(k1, k2)

)
q̃ = 0 (3.13)

being D̃(ω, k1, k2) = THDT, K̃(k1, k2) = THKT, M̃(k1, k2) = THMT.
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qlt qt qrt

ql qr

qlb qb qrb
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Figure 3.2: Degrees
of freedom of a unit
cell for a generic two-
dimensional periodic
structure, as taken
from ref. [62].

Focusing on wave motion without attenuation, for which k1 and k2 are
purely imaginary of the form k1 = iε1 and k2 = iε2, the frequency of wave
propagation ω is obtained as solution of the eigenvalue problems (3.12) and
(3.13). As customary, ω is calculated for (ε1, ε2) along the edges of the first
Brillouin zone.

3.2 Exact dynamic-stiffness approach

Consider the generic member of the lattice in Fig. 3.3 subjected to harmonic
forces/moments at the ends. In the proposed exact dynamic-stiffness ap-
proach the lattice member is treated as a unique two-node beam element
and its two ends, i.e. its nodes, have 3 degrees of freedom each, 2 transla-
tions and 1 rotation.

u1, H1

θ1, W1

v1, V1

u2, H2
θ2, W2

v2, V2

l

Figure 3.3: Dynam-
ic-stiffness approach:
Stress-driven nonlocal
lattice member modelled
by a unique two-node
beam element.

For generality, the dynamic-stiffness matrix of the lattice member is
sought in terms of dimensionless frequencies [4, 8, 17, 18]. As a conse-
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quence, Eq. (3.1) through Eq. (3.6) governing the steady-state responses
under harmonic forces/moments at the ends are:

(La + ω2
aI)[u] = 0, La = −λ2 d4

dξ4 +
d2

dξ2 , ξ ∈ [0, 1] (3.14)

dη

dξ

∣∣∣∣
ξ=0

=
1
λ

η(0),
dη

dξ

∣∣∣∣
ξ=1

= − 1
λ

η(1) (3.15a,b)

(Lb +ω2
ρM+ω4

bI)[u] = 0, Lb = λ2 d6

dξ6 −
d4

dξ4 , M = − d2

dξ2 , ξ ∈ [0, 1]

(3.16)

dχ

dξ

∣∣∣∣
ξ=0

=
1
λ

χ(0),
dχ

dξ

∣∣∣∣
ξ=1

= − 1
λ

χ(1) (3.17a,b)

where dk/dξk denotes the kth derivative with respect to the dimensionless
spatial coordinate ξ, ξ = x/l being x the spatial coordinate, ωa = [ρA(ωl)2

/EA]1/2, ωb = [ρA(ωl2)2/EI]1/4, ωρ = [ρ(ωl)2/E]1/2, I is the identity
map; further, λ = Lc/l is the dimensionless internal length governing non-
local effects.

It is noticed that the solutions of Eq. (3.14) and Eq. (3.16), which fulfil
the constitutive BCs (3.15) and (3.17), can be cast in the form

u(ξ) =
2

∑
k=1

ca,k fk(ξ) (3.18)

v(ξ) =
4

∑
k=1

cb,kgk(ξ) (3.19)

where ca,k for k = 1, 2 and cb,k for k = 1, ..., 4 are integration constants
depending on the classical static/kinematic BCs, while fk(ξ) = fk(ξ, ωa)

and gk(ξ) = gk(ξ, ωb, ωρ) are closed analytical functions depending on the
lattice member parameters and the frequency. Making use of Eq. (3.18) and
Eq. (3.19), the whole set of response variables is readily available in the
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following analytical forms:

u = u(ξ, ca) (3.20)

N = −EA · λ2

l

(
d3u(ξ)

dξ3 − 1
λ2

du(ξ)
dξ

)
= N(ξ, ca) (3.21)

v = v(ξ, cb) (3.22)

θ = −1
l

dv
dξ

= θ(ξ, cb) (3.23)

M =
EI · λ2

l2

(
d4v(ξ)

dξ4 − 1
λ2

d2v(ξ)
dξ2

)
= M(ξ, cb) (3.24)

T =
EI · λ2

l3

(
d5v(ξ)

dξ5 − 1
λ2

d3v(ξ)
dξ3

)
− ρIω2

l
dv(ξ)

dξ
= T(ξ, cb) (3.25)

being ca =
[
ca,1 ca,2

]T
and cb =

[
cb,1 cb,2 cb,3 cb,4

]T
. Eq. (3.20) through

Eq. (3.25) are the basis to derive the dynamic-stiffness matrix of the lattice
member. Indeed, being

de =
[
u1 u2 v1 θ1 v2 θ2

]T
=
[
u(0) u(1) v(0) θ(0) v(1) θ(1)

]T

(3.26)

pe =
[

H1 H2 V1 W1 V2 W2

]T
=
[
−N(0) N(1) −T(0) −M(0) T(1) M(1)

]T

(3.27)

the vectors of nodal displacements and forces, computing Eq. (3.20) through
Eq. (3.25) at ξ = 0 and ξ = 1 yields

de = Aec (3.28)

pe = Bec (3.29)

where c =
[
ca cb

]T
. Next, using Eq. (3.28) to calculate c = A−1

e de and
substituting for c in Eq. (3.29) leads to

pe = BeA−1
e de = Dede (3.30)

where

De(ω) =

[
De,a(ωa(ω)) 0

0 De,b(ωb(ω), ωρ(ω))

]
(3.31)

being De,a and De,b the block matrices associated with axial and bending
responses, respectively. The matrix De in Eq. (3.31) is the dynamic-stiffness
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matrix of the two-node lattice member in Fig. 3.3, as modelled according to
the stress-driven nonlocal elasticity theory in conjunction with the Rayleigh
beam theory. It is noteworthy that the matrix De is available in a closed an-
alytical form, as the inverse matrix A−1

e in Eq. (3.30) can be obtained sym-
bolically from the inverses of the two separate block matrices associated
with axial and bending responses [27]. Furthermore, the matrix De is ex-
act, because is based on the exact solutions of the stress-driven differential
equations of motion (3.14) and (3.16) along with the constitutive Bcs (3.15)
and (3.17). Indeed, no approximations are made in building the solutions
(3.18) and (3.19).

The dynamic-stiffness matrix of the unit cell D(ω) in Eq. (3.9) is finally
obtained by a finite-element-like assembling procedure of the dynamic-
stiffness matrices of every member of the unit cell in the global reference
system. The size of D(ω) is equal to (3×Mn)× (3×Mn), where Mn is the
number of member-to-member nodes within the unit cell. On construct-
ing D(ω) in Eq. (3.9), the wave dispersion analysis is carried out solving
the eigenvalue problem (3.12) for the frequency ω corresponding to wave
vectors along the edges of the first Brillouin zone. The eigenvalue prob-
lem is nonlinear in ω and is solved, here, by the so-called contour-integral
algorithm illustrated in Section 1.3.2.

3.3 Finite-element approach

Consider the generic member of the lattice in Fig. 3.4 and assume it is
divided in an arbitrary number n of two-node beam elements. Each node
has 3 degrees of freedom, 2 translations and 1 rotation. Here, to build the
stiffness matrix and the mass matrix of the lattice member the principle of
virtual work is used.

Figure 3.4: Fini-
te-element approach:
Stress-driven nonlocal
lattice member mod-
elled by n two-node
beam elements.

u1, H1

θ1, W1

v1, V1

un+1, Hn+1θn+1, Wn+1

vn+1, Vn+1

l

θk, Wk

uk, Hk

vk, Vk
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Given the numbering of nodal displacements reported in Fig. 3.4, be

ue =
[
ue,a ue,b

]T
(3.32)

ue,a =
[
u1 u2 . . . un+1

]T
(3.33)

ue,b =
[
v1 θ1 v2 θ2 . . . vn+1 θn+1

]T
(3.34)

fe =
[
fe,a fe,b

]T
(3.35)

fe,a =
[

H1 H2 . . . Hn+1

]T
(3.36)

fe,b =
[
V1 W1 V2 W2 . . . Vn+1 Wn+1

]T
(3.37)

the vectors of nodal displacements and forces. As assumed in Section 3.2,
the lattice member are subjected to harmonic forces/moments at the ends,
i.e. H2 = H3 = · · · = Hn = 0, V2 = V3 = · · · = Vn = 0 and W2 = W3 =

· · · = Wn = 0.
The identities of external and internal works for the axial and bending

problems separately read

l
1∫

0

(
−λ2 d3u

dξ3 +
du
dξ

)
δη dξ −ω2

a l
1∫

0

uδu dξ = f̂T
e,aδue,a (3.38)

l
1∫

0

(
λ2 d4v

dξ4 −
d2v
dξ2

)
δχ dξ −ω4

b l
1∫

0

vδv dξ −ω2
ρl

1∫
0

dv
dξ

δθ dξ = f̂T
e,bδue,b

(3.39)

where δue,a and δue,b are virtual nodal displacements, δη and δχ the cor-
responding virtual axial strain and curvature, f̂e,a = (l3/EA)fe,a and f̂e,b =

(l4/EI)fe,b. For the axial displacement u and the bending deflection v, the
following expressions are adopted

u(ξ) = Ψe,a(ξ)ue,a (3.40)

v(ξ) = Ψe,b(ξ)ue,b (3.41)

where Ψe,a and Ψe,b are matrices of shape functions given as

Ψe,a(ξ) = diag(ψ1, ψ2, . . . , ψn+1) (3.42)

Ψe,b(ξ) = diag(β1, β2, . . . , β2n+1, β2n+2) (3.43)
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Replacing Eq. (3.40) for u, Eq. (3.41) for v and enforcing the identities (3.38)
and (3.39) for any virtual nodal displacements provide the following equa-
tions

(K̂e,a −ω2
aM̂e,a) = f̂e,a (3.44)

(K̂e,b −ω2
ρM̂e,ρ −ω4

bM̂e,b) = f̂e,b (3.45)

where

(K̂e,a)ij = l
1∫

0

(
−λ2 dψi

dξ

d3ψj

dξ3 +
dψi
dξ

dψj

dξ

)
dξ (3.46)

(M̂e,a)ij = l
1∫

0

ψiψj dξ (3.47)

(K̂e,b)ij = l
1∫

0

(
−λ2 d2βi

dξ2

d4β j

dξ4 +
d2βi
dξ2

d2β j

dξ2

)
dξ (3.48)

(M̂e,b)ij = l
1∫

0

βiβ j dξ (3.49)

(M̂e,ρ)ij = l
1∫

0

dβi
dξ

dβ j

dξ
dξ (3.50)

The shape functions ψi’s and βi’s involved in Eq. (3.46) through Eq. (3.50)
are built making use of the exact solution of the static equilibrium equations
of the beam.

For the axial problem, the ith shape function ψi in Eq. (3.42) for Ψe,a is the
axial displacement corresponding to the axial nodal displacement ui = 1
at node i, zero displacements at all the other nodes k 6= i and fulfilling the
BCs (3.15). The shape function ψi is calculated starting from the following
expression:

ψi(ξ) = g[i]a,1 + g[i]a,2ξ + g[i]a,3λ2eξ/λ + g[i]a,4λ2e−ξ/λ +
n

∑
j=2
Ga(ξ, ξ j)H[i]

j (3.51)

where g[i]a,k for k = 1, ..., 4 are integration constants, H[i]
j nodal axial forces

ensuring equilibrium at the nodes and Ga(ξ, y) is given as:

Ga(ξ, y) =
[

y− ξ +
λ

2

(
e(ξ−y)/λ − e−(ξ−y)/λ

)]
H(ξ − y) (3.52)



Wave propagation in nonlocal Rayleigh lattices 85

where H(ξ − y) is the unit step function. Notably, Ga in Eq. (3.52) is the
particular integral of the following differential equation for static equilib-
rium under a unit axial force at ξ = y, as obtained by applying direct and
inverse Laplace Transforms [69]:

La[Ga(ξ, y)] + δ(ξ − y) = 0 (3.53)

where symbol δ(ξ − y) denotes a Dirac’s delta at ξ = y; further the first
four terms in Eq. (3.51) are the solution of the homogeneous differential
equation associated to Eq. (3.53). To define ψi in Eq. (3.51), the integration
constant g[i]a,k and the nodal forces H[i]

j are computed enforcing the following
conditions: (a) ui = 1 at the node i and zero displacements at all the other
nodes; (b) the constitutive BCs (3.15). These conditions correspond to the
following set of algebraic equations respectively

Ωag[i]a + Gah[i] = u[i]
a (3.54)

and

Ωaλg[i]a + Gaλh[i] = 0 (3.55)

where g[i]
a =

[
g[i]a,1 g[i]a,2 g[i]a,3 g[i]a,4

]T
, h[i] =

[
H[i]

2 H[i]
3 . . . H[i]

n

]T
and u[i]

a is the

vector with all components equal to zero except for the ith one, which is
equal to 1.

The matrices Ωa and Ωaλ in Eqs. (3.54)-(3.55) are defined as

Ωa =



ωa(0)T

ωa(ξ2)
T

...

ωa(ξn)T

ωa(1)T


; Ωaλ =

ωa,2(0)T − 1
λ ωa,1(0)T

ωa,2(1)T + 1
λ ωa,1(1)T

 (3.56)

being the functions ωa, ωa,1, ωa,2 in Eq. (3.56) defined as

ωa(ξ) =
[
1 ξ λ2eξ/λ λ2e−ξ/λ

]T

ωa,1(ξ) =
dωa(ξ)

dξ
=
[
0 1 λeξ/λ −λe−ξ/λ

]T

ωa,2(ξ) =
d2ωa(ξ)

dξ2 =
[
0 0 eξ/λ e−ξ/λ

]T

(3.57)
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Further, the matrices Ga and Gaλ in Eq. (3.54)-(3.55) are given as

(Ga)ij = Ga(ξi, ξ j) i = 1, ..., n + 1; j = 2, ..., n

Gaλ =

γa,1(0)− 1
λ γa,1(0)

γa,1(1) +
1
λ γa,1(1)

 (3.58)

being

γa,1(ξ) =

[
∂Ga(ξ,y)

∂ξ

∣∣∣
y=ξ2

. . . ∂Ga(ξ,y)
∂ξ

∣∣∣
y=ξn

]
γa,2(ξ) =

[
∂Ga(ξ,y)

∂ξ

∣∣∣
y=ξ2

. . . ∂Ga(ξ,y)
∂ξ

∣∣∣
y=ξn

] (3.59)

Combining Eq. (3.54) and Eq. (3.55) the following linear system is obtained

[
Ωa Ga

Ωaλ Gaλ

] [
g[i]

a

h[i]

]
=

[
u[i]

a

0

]
(3.60)

whose solution g[i]
a and h[i] fully define the shape function ψi in Eq. (3.51).

For the bending problem, a similar approach holds. The ith shape func-
tion βi in Eq. (3.43) for Ψe,b is the deflection corresponding to a unit nodal
displacement at node m (unit deflection if i = 2m − 1 or unit rotation if
i = 2m), zero displacements at all the other nodes and fulfilling the consti-
tutive BCs (3.17). It can be evaluated as

βi(ξ) = g[i]b,1 + g[i]b,2ξ + g[i]b,3ξ2 + g[i]b,4ξ3 + g[i]b,5λ4eξ/λ + g[i]a,6λ4e−ξ/λ

+
n

∑
j=2
GV

b (ξ, ξ j)V
[i]
j +

n

∑
j=2
GW

b (ξ, ξ j)W
[i]
j

(3.61)

where g[i]b,k for k = 1, ..., 6 are integration constants, V[i]
j and W [i]

j are respec-
tively the nodal forces and moments ensuring equilibrium at the nodes,
GV

b (ξ, y) and GW
b (ξ, y) are given as:

GV
b (ξ, y) =

(
λ2(ξ − y) +

1
6
(ξ − y)3 +

λ3

2
e−

ξ−y
λ − λ3

2
e

ξ−y
λ

)
H(ξ − y)

(3.62)

GW
b (ξ, y) =

(
λ2 +

1
2
(ξ − y)2 − λ2

2
e−

ξ−y
λ − λ2

2
e

ξ−y
λ

)
H(ξ − y) (3.63)
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GV
b and GW

b in Eqs. (3.62)-(3.63) are the particular integrals of the following
differential equations for static equilibrium under a unit transverse force
and a unit moment at ξ = y, as obtained by applying direct and inverse
Laplace transform [69].

Lb[GV
b (ξ, y)] + δ(ξ − y) = 0 (3.64)

Lb[GW
b (ξ, y)] + δ(1)(ξ − y) = 0 (3.65)

where symbol δ(1)(ξ− y) denotes the formal first derivative of Dirac’s delta
at ξ = y; further the first six terms in Eq. (3.61) represent the solution of
the homogeneous differential equation associated to Eq. (3.64) or Eq. (3.65).
To define βi in Eq. (3.61), the integration constants g[i]b,k, the nodal forces

V[i]
j and nodal moments W [i]

j are computed by following set of algebraic
equations respectively

Ωbg[i]b + GV
b v[i] + GW

b w[i] = v[i]
b (3.66)

Ωb,1g[i]b + GV
b,1v[i] + GW

b,1w[i] = θ
[i]
b (3.67)

and

Ωbλgb + GV
bλv[i] + GW

bλw[i] = 0 (3.68)

where g[i]
b =

[
g[i]b,1 g[i]b,2 g[i]b,3 g[i]b,4 g[i]b,5 g[i]6,4

]T
, v[i] =

[
V[i]

2 V[i]
3 . . . V[i]

n

]T
, w[i] =[

W [i]
2 W [i]

3 . . . W [i]
n
]T; if the ith shape function βi corresponds to a unit

deflection at node m such that i = 2m − 1, vector θ
([i])
b = 0 and v[i]

b has
zero components except for the mth one, which is equal to 1; conversely, if
the ith shape function βi corresponds to a unit rotation at node m such that
i = 2m, vector v[i] = 0 and θ

[i]
b has zero components except for the mth one,

which is equal to 1.
Matrices Ωb, ΩV

bλ and ΩW
bλ in Eq. (3.66) through Eq. (3.68) are defined as

Ωb =



ωb(0)T

ωb(ξ2)
T

...

ωb(ξn)T

ωb(1)T


; Ωb,1 =



ωb,1(0)T

ωb,1(ξ2)
T

...

ωb,1(ξn)T

ωb,1(1)T


; Ωbλ =

ωb,3(0)T − 1
λ ωb,2(0)T

ωb,3(1)T + 1
λ ωb,2(1)T


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(3.69)

being the functions ωb,ωb,1, ωb,2, ωb,3 in Eq. (3.69) defined as follows

ωb(ξ) =
[
1 ξ ξ2 ξ3 λ4eξ/λ λ4e−ξ/λ

]T

ωb,1(ξ) =
dωb(ξ)

dξ
= −1

l

[
0 1 2ξ 3ξ2 λ3eξ/λ −λ3e−ξ/λ

]T

ωb,2(ξ) =
d2ωb(ξ)

dξ2 =
[
0 0 2 6ξ λ2eξ/λ λ2e−ξ/λ

]T

ωb,3(ξ) =
d3ωb(ξ)

dξ3 =
[
0 0 0 6 λeξ/λ −λe−ξ/λ

]T

(3.70)

Matrices GV
b , GW

b , GV
bλ and GW

bλ in Eq. (3.66) through Eq. (3.68) are given as

(GV
b )ij = GV

b (ξi, ξ j) (GW
b )ij = GW

b (ξi, ξ j)
i = 1, ..., n + 1
j = 2, ..., n

(GV
b,1)ij = − 1

l
∂GV

b (ξ,y)
∂ξ

∣∣∣∣ξ=ξi
y=ξ j

(GW
b,1)ij = − 1

l
∂GW

b (ξ,y)
∂ξ

∣∣∣∣ξ=ξi
y=ξ j

GV
bλ =

γV
b,3(0)−

1
λ γV

b,2(0)

γV
b,3(1) +

1
λ γV

b,2(1)

 GW
bλ =

γW
b,3(0)−

1
λ γW

b,2(0)

γW
b,3(1) +

1
λ γW

b,2(1)


(3.71)

being

γS
b,1(ξ) = −

1
l

[
∂GS

b (ξ,y)
∂ξ

∣∣∣∣
y=ξ2

. . . ∂GS
b (ξ,y)
∂ξ

∣∣∣∣
y=ξn

]
γS

b (ξ) =

[
∂2GS

b (ξ,y)
∂ξ2

∣∣∣∣
y=ξ2

. . . ∂2GS
b (ξ,y)
∂ξ2

∣∣∣∣
y=ξn

]
γS

b (ξ) =

[
∂3GS

b (ξ,y)
∂ξ3

∣∣∣∣
y=ξ2

. . . ∂3GS
b (ξ,y)
∂ξ3

∣∣∣∣
y=ξn

] (3.72)

with S = V, W. Combining Eq. (3.66) through Eq. (3.68) the following linear
system is obtained

Ωb GV
b GW

b

Ωb,1 GV
b,1 GW

b,1

Ωbλ GV
bλ GW

bλ




g[i]
b

v[i]

w[i]

 =


u[i]

v

u[i]
θ

0

 (3.73)



Wave propagation in nonlocal Rayleigh lattices 89

whose solutions g[i]
b , v[i] and w[i] fully define the shape function βi in

Eq. (3.61).
Using Eq. (3.51) and Eq. (3.61) to evaluate the entries (K̂e,a)ij, (M̂e,a)ij,

(K̂e,b)ij, (M̂e,b)ij, the following equation can be written for the lattice mem-
ber

(Ke −ω2Me)ue = fe (3.74)

where

Ke =

[
Ke,a 0

0 Ke,b

]
(3.75)

Me =

[
Me,a 0

0 Me,b + Me,ρ

]
(3.76)

being Ke,a = (EA/l3)K̂e,a, Ke,b = (EI/l4)K̂e,b, Me,a = (ρAl)M̂e,a, Me,b =

(ρAl)M̂e,b, Me,ρ = (ρI/l)M̂e,ρ Matrix Ke in Eq. (3.75) is the stiffness matrix
and matrix Me in Eq. (3.76) is the mass matrix of the lattice member, as
modelled according to the stress-driven nonlocal elasticity theory in con-
junction with the Rayleigh beam theory. The size is 3(n + 1) × 3(n + 1),
being n the number of finite elements used to discretize the lattice member.
In view of Eq. (3.46) through Eq. (3.50), Me is a consistent mass matrix,
built based on the shape functions involved in the stiffness matrix.

The stiffness and mass matrices of the unit cell in the global reference
system, K and M in Eq. (3.10), can be built by the performing standard
finite-element assembling procedure making use of Eq. (3.75) and Eq. (3.76)
for every lattice member. The band structure is computed byt solving the
corresponding eigenvalue problem (3.13). Since the eigenvalue problem is
linear in the frequency for each given wave vector along the edges of the
first Brillouin zone. Standard solvers for linear eigenvalue problems can be
used in this case, as for instance the QZ eigensolver of Matlab [54].

Finally, it is noticed that the stress-driven differential equations derive Nonlocal interac-
tionsfrom a constitutive integral equation where the strain at a given point de-

pends on the stress at different points within a certain nonlocal neighbour-
hood [64]. Consequently, the stiffness matrix Ke of the member accounts for
nonlocal interactions among points which may fall within the same finite
element or belong to different finite elements of the mesh. These nonlocal
interactions are duly accounted for in proposed stiffness matrix Ke, because
Ke is derived using the solutions of the stress-driven differential equations
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(3.53)-(3.64)-(3.65) defined over the whole domain of the lattice member.
Likewise, the dynamic-stiffness model, where the nonlocal constitutive in-
teractions among points within the lattice member are necessarily taken
into account being the dynamic-stiffness matrix built based on the exact
solution of Eq. (3.14) through Eq. (3.17).

3.4 Numerical examples

To validate the dynamic-stiffness approach described in Section 3.2 and
the finite-element approach introduced in Section 3.3, the wave dispersion
analysis of stress-driven nonlocal beam of two lattices is carried out. In par-
ticular, considering the unit cell of the lattices, every lattice member is mod-
elled exactly by a unique two-node element in the dynamic-stiffness ap-
proach; on the other hand the same lattices are modelled approximately by
an increasingly refined mesh of two-node elements in the finite-element ap-
proach. Both the approaches are implemented in-house using Matlab [54].
The codes run on a HP Zbook 15v G5 Workstation (Intel i5-9300H 2.40GHz
CPU with 8 GB of memory). The numerical validation has the further pur-
pose to check the convergence of the finite-element results to the dynamic-
stiffness ones and to assess how and to which extent the size effects affect
the wave dispersion properties of the lattice, as modelled by the stress-
driven nonlocal elasticity theory.

In agreement with existing studies in the literature [72], the follow-
ing parameters are assumed for the lattice members: E = 1.44 GPa, ρ =

1200 kg/m3; the cross section is rectangular, b = 20× 10−6 m is the width
and h = 20× 10−6 m is the thickness in the plane of the lattice, correspond-
ing to A = b × h = 4× 10−10 m2 and I = bh3/12 = 1.333× 10−20 m4 for
area and moment of inertia. In the wave dispersion analysis, the frequen-
cies are normalized to the first natural frequency of a hinged-hinged beam
of length l that is characteristic of the lattice and is equal to π2

√
EI/(ρAl4).

Consider the triangular lattice in Fig. 3.1a and the associated first Bril-
louin zone. Assume l = 2× 10−4 m for the length of the lattice members
and different internal lengths Lc = λl, with λ ∈ [0, 0.25].

For wave dispersion analysis, the nonlinear eigenvalue problem (3.12)
associated with the dynamic-stiffness approach is solved by an in-house
implementation of the contour-integral algorithm, selecting K = 5, L = 10
(with ε = 10−10) and N0 = 40 as parameters of the algorithm described in
Section 1.3.2.
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Fig. 3.5 shows the first eight dispersion branches for three internal lengths
Lc = λl, with λ = 0.10, 0.15, 0.20, as obtained by the dynamic-stiffness ap-
proach and the finite-element approach, the latter with n = 7 for every
lattice member within the cell. It is observed that the two approaches pro-
vide the same dispersion curves and that the finite-element results do not
change appreciably increasing the number of finite elements, i.e., consid-
ering n > 7 for every lattice member. It is also noticed that no significant
differences are encountered if the parameters of the contour-integral algo-
rithm for the nonlinear eigenvalue problem (3.12) are changed for better
accuracy.
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Figure 3.5: Disper-
sion curves along the
irreducible Brillouin
zone computed by the
dynamic-stiffness ap-
proach (continuous line)
and the finite-element
approach (dots) with
n = 7 finite elements,
for various internal
lengths Lc = λl and
l = 2× 10−4 m: (a) local
lattice, (b) λ = 0.10, (c)
λ = 0.15, (d) λ = 0.20.

In order to highlight the size effects predicted by the stress-driven non-
local model, Fig. 3.5 includes for comparison the first eight dispersion
branches for the Rayleigh local lattice. It is apparent that both the local
lattice and the stress-driven nonlocal lattice exhibit band gaps, i.e. stop
bands where the elastic waves do not propagate. However, while the lo-
cal lattice exhibits two band gaps, the stress-driven nonlocal lattice features



92 Numerical examples

one band gap, which is opened between the sixth and seventh branches.
It shifts to higher frequencies and widens as the internal length increases.
Notably, a band gap between the sixth and the seventh branches was found
by Sepehri et al. [72] for a triangular lattice modelled by the modified cou-
ple stress theory.

For a further insight into the comparison between dynamic-stiffness and
finite-element results, the first and second dispersion branches in Fig. 3.5
are now reported in Fig. 3.6, as calculated by the dynamic-stiffness ap-
proach and the finite-element approach with increasingly refined meshes.
It is noticed that n = 7 finite elements provide satisfactory accuracy for
all the considered dispersion branches; moreover, finite-element results for
n > 7 coincide with those for n = 7 and are omitted for clarity.

Having discussed the convergence of the finite-element results to the
dynamic-stiffness ones, now a few remarks are in order on the respective
advantages of the two approaches. On one hand, the dynamic-stiffness
approach is an exact approach, while the finite-element approach is an
approximate approach, which attains the same accuracy of the dynamic-
stiffness approach as the number of finite elements increases. That is, the
size of the finite-element formulation is inevitably larger than the size of the
dynamic-stiffness formulation. On the other hand, it is noteworthy that the
eigenvalue problem (3.12) associated with the dynamic-stiffness approach
is a nonlinear problem solved by an in-house implementation of the contour
integral algorithm, while the eigenvalue problem (3.13) associated with the
finite-element approach is linear and can be solved by standard and effi-
cient eigensolvers available in most common numerical packages as, in this
case, the QZ eigensolver of Matlab [54].

At this stage, it is interesting to compare the dispersion curves in Fig-
ure 3.5 with the corresponding ones obtained by using the stress-driven
nonlocal model in conjunction with the Euler-Bernoulli theory, instead of
the Rayleigh theory. The Rayleigh theory is used for beam lattices in several
studies [21, 30, 31] as the rotational inertia of the beam cross section, which
is not accounted for in the Euler-Bernoulli theory, may affect the disper-
sion properties of the lattice, especially at high frequencies. This concept is
demonstrated in Figure 3.7, reporting the dispersion curves obtained by us-
ing the stress-driven nonlocal model in conjunction with the Rayleigh the-
ory and the Euler-Bernoulli theory, for two internal lengths Lc = λl, with
λ = 0.15, 0.20. Indeed, it is seen that the dispersion curves based on the
Euler-Bernoulli theory almost coincide with those based on the Rayleigh
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theory at low frequencies, while they differ for increasing frequency. In
both the dynamic-stiffness and finite-element approaches, the results for
the Euler-Bernoulli theory are readily obtained by setting to zero the ro-
tational inertia terms in Eq. (3.12) and Eq. (3.13) derived for the Rayleigh
theory.

Next, the focus is on the size effects predicted by the stress-driven non-
local model. Fig. 3.8 shows the dispersion curves of the stress-driven non-
local lattice for various internal lengths Lc = λl, with λ ∈ [0, 0.25], as
compared to the corresponding ones of the local lattice. It is apparent that
the stress-driven model induces stiffening size effects as indeed, for a given
wave vector, the elastic wave propagates at frequency larger than the cor-
responding frequency in the local model. In this respect, it is noteworthy
that stiffening size effects occur also in alternative nonlocal models, see for
instance the modified couple stress one [72] as the pertinent internal length
scale parameter increases (see l0 in Eq. (17-b) of ref. [72]). It is also appar-
ent in Fig. 3.8 that the stiffening size effects become more pronounced as
the internal length increases and are more evident in the high-frequency
dispersion branches.

Further, to get a deeper insight into the size effects predicted by the
stress-driven model, an interesting comparison can be made with the re-
sults obtained in ref. [72] for a triangular lattice modelled by the modified
couple stress theory and, specifically, with the results showing the varia-
tion of the response for a reducing size of the lattice members at constant
relative density of the lattice. The relative density, defined as ratio of the
density of the lattice material to the density of the solid [29, 62], is given by
2
√

3(h/l) for a triangular lattice, being l the length of the lattice member
and h its thickness in the plane of the lattice. Therefore, reducing the size
of the lattice members at constant relative density of the lattice means that
thickness h and length l of every lattice member are both reduced while
the ratio h/l and, consequently, the relative density 2

√
3(h/l) are held con-

stant. Figure 8 of ref. [72] shows that, for a given internal length scale
parameter, the modified couple stress theory predicts a stiffening response
for a reducing size of the lattice members at constant relative density of the
lattice; indeed, the dispersion curves shift to higher frequencies as the size
reduces and tend to the dispersion curves predicted by the classical Euler-
Bernoulli local theory as the size increases. Remarkably, here Figures 3.9-
3.10 demonstrate that, for given internal length Lc, the stress-driven model
predicts stiffening effects as well, with dispersion curves shifting to higher
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frequencies as the size reduces and tending to those predicted by the clas-
sical Rayleigh local theory as the size increases. Furthermore, it is seen that
the Rayleigh local theory predicts the same dispersion curves regardless of
the size of the lattice members, in agreement with the corresponding re-
sults pertaining to the classical Euler-Bernoulli local theory in Figure 8 of
ref. [72]. Notice that Figures 3.9-3.10 are built varying the thickness of the
lattice members in the plane of the lattice (and, consequently, the length
l) at a constant relative density of the lattice equal to 0.346, which is the
relative density considered for the results in Figure 3.5 through Figure 3.7;
h′ = 0.7h, h′ = h, h′ = 1.3h are selected, with h = 20× 10−6 m. It is note-
worthy that stiffening size effects are well documented in the literature, see
for instance the experimental results provided by Lam et al. [42] for can-
tilever beams subjected to a static tip load, for a reducing thickness and
constant ratio h/l.
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Figure 3.6: Disper-
sion curves along the
irreducible Brillouin
computed by the
finite-element approach
with increasing number
n of finite elements, first
branch (left column) and
second branch (right
column) for various
internal lengths Lc = λl
and l = 2× 10−4 m: (a)
λ = 0.10, (b) λ = 0.15,
(c) λ = 0.20.
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Figure 3.7: Disper-
sion curves along the
irreducible Brillouin
zone computed by
the dynamic-stiffness
approach (Rayleigh
theory (continuous line),
Euler-Bernoulli theory
(dashed line)) and the
finite-element approach
(Rayleigh theory (black
dots), Euler-Bernoulli
theory (gray dots)) with
n = 7 finite elements,
for various internal
lengths Lc = λl and
l = 2× 10−4 m: (a)
λ = 0.15, (b) λ = 0.20.
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Figure 3.8: Disper-
sion curves along the
irreducible Brillouin
zone computed by the
dynamic-stiffness ap-
proach (continuous line)
and the finite-element
approach (dots) with
n = 7 finite elements,
for various internal
lengths Lc = λl and
l = 2× 10−4 m: (a)
first branch, (b) second
branch, (c) seventh
branch, (d) eighth
branch.
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Figure 3.9: Disper-
sion curves along the
irreducible Brillouin
zone computed by the
dynamic-stiffness ap-
proach (continuous line)
and the finite-element
approach (dots) with
n = 7 finite elements,
for the same internal
length Lc = 2× 10−5 m
and various thicknesses
h′ , at constant relative
density of the lattice
= 0.346: (a) first branch,
(b) second branch, (c)
seventh branch, (d)
eighth branch.
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Figure 3.10: Disper-
sion curves along the
irreducible Brillouin
zone computed by the
dynamic-stiffness ap-
proach (continuous line)
and the finite-element
approach (dots) with
n = 7 finite elements,
for the same internal
length Lc = 4× 10−5 m
and various thicknesses
h′ , at constant relative
density of the lattice
= 0.346: (a) first branch,
(b) second branch, (c)
seventh branch, (d)
eighth branch.
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3.5 Conclusions

In this chapter, two ad-hoc computational approaches to analyse the wave
propagation in small-size planar beam lattices, modelled with the stress-
driven nonlocal elasticity theory, have been developed: 1) the exact dynam-
ic-stiffness approach relies on the closed form solutions of the governing
equation of the single lattice member, consequently each lattice member
is modelled by a unique two-node beam element, whose nodal displace-
ments and forces are exactly related by the exact dynamic-stiffness matrix,
as a consequence no further discretization is needed; 2) the finite-element
approach hinges on the discretization of the single beam member into a
mesh of two-node beam elements. The stiffness and mass matrices of
each element are derived from the principle of virtual work, making use
of appropriate shape functions based on the exact solution of the govern-
ing equations for static equilibrium.

For the first time, the stress-driven nonlocal elasticity theory has been
employed to investigate the dispersion properties of small-size planar beam
lattices. It has been found that the dispersion curves of the stress-driven
nonlocal beam lattice exhibit significant stiffening size effects, in complete
agreement with previous studies based on the modified couple stress the-
ory. The result here calculated by the proposed computational framework
may be relevant for designing small-size planar beam lattices for applica-
tions in NEMS/MEMS. Specifically, it is relevant to assess whether waves
produced by external shocks propagates or they may be filtered out by
band gaps within certain frequency ranges, as the band gaps found in the
numerical examples.



Summary and conclusions

This thesis addressed the formulation and development of novel analyti-
cally-based computational frameworks for investigating the dynamics and
wave propagation properties of an emerging class of structures, namely
metamaterial structures. The development of these computational frame-
works is motivated by the increasing number of studies that address meta-
material structures, in which standard numerical techniques based on the
finite element method are employed to investigate their dynamics and dis-
persion properties; indeed, the proposed computational frameworks are
conceived to serve as benchmarks for the finite element results.

Throughout the chapters of this thesis several novelties have introduced.
In particular, a new reduced-order dynamic-stiffness model of locally-res-
onant metamaterial beams has been derived building the exact dynamic-
stiffness matrix based on closed-form solutions of the governing equations
obtained by means of exact dynamic condensation of the degrees of free-
dom within the resonators, modelled as multi-degrees-of-freedom mass-
spring-dashpot, and making use of the theory of the generalized functions.
The dynamic-stiffness matrix serves as basis to exactly calculate the dy-
namic response for forced and free vibrations in the frequency domain.
To calculate the complex eigenvalues and modes, an accurate and effi-
cient contour-integral method has been employed here for this purpose for
the first time. Deriving suitable orthogonality conditions for the complex
modes of the metamaterial beams, the modal response for arbitrary loads
in time and frequency domains has been obtained.

Furthermore, a novel reduced-order dynamic stiffness model has been
formulated for investigating the dynamics of locally-resonant metamaterial
plates, that is assemblies of plates coupled by periodic arrays of resonators.
The derivation of the dynamic-stiffness matrix for these assemblies hinges
on the exact dynamic-condensation of the coupling arrays of resonators
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leading to a reduced-order dynamic stiffness model obtained by the ap-
plication of the spectral dynamic stiffness method. The dynamic-stiffness
matrix allows to compute the natural frequencies and undamped modes
by extending the Wittrick-Williams algorithm in such a way to make it ap-
plicable to the reduced-order model. The natural frequencies and the un-
damped modes together with appropriate orthogonality conditions derived
for the reduced-order model are the basis to compute the modal response
for arbitrary loads in time and frequency domain.

Moreover, the wave propagation in small-size metamaterial structures is
addressed employing the exact dynamic-stiffness method to compute the
dispersion proprieties of planar microlattices. Considering the unit cells as
ensembles of stress-drive nonlocal Rayleigh beams, the dispersion curves
are calculated by solving the exact nonlinear eigenproblem arising from the
application of the Bloch’s theorem to the governing equations of the unit
cell in the frequency domain. Furthermore, an ad-hoc computationally
efficient finite-element procedure has been developed by deriving suitable
shape functions from closed-form solutions of the governing equation for
static equilibrium.

The developments addressed in this thesis contributed to extend the
previous literature, since so far no study has directly addressed, within
the framework of the dynamic-stiffness method, the dynamics of locally-
resonant metamaterial structures.

The availability of the novel analytically-based computational methods
developed in this thesis may have a significant impact on the modelling of
metamaterial structures, due to the lack of efficient and exact reduced-order
models in the literature. In particular, the availability of closed-form solu-
tions significantly reduces the computational cost to the the free-vibration
response analysis, which has to be performed just once. Furthermore, the
proposed methods can also serve as benchmarks for the standard numeri-
cal techniques usually employed.



AList of Symbols - Chapter 1

αi coefficients in solution of homogeneous differential
equation

A coefficient matrix in equations of boundary condi-
tions for displacements

A cross-section area
a mutual distance between consecutive resonators
B coefficient matrix in equations of boundary condi-

tions for forces
B, C, D, F coefficients in particular integral for deflection
χn load-dependent coefficient defined in modal re-

sponse, nth mode
Cr damping matrix of the resonator
c vector of integration constants
c1, c2 resonator damping coefficients
∆1 2-DOF resonator-depending coefficient in modal re-

sponse
δ Dirac’s delta function
D dynamic stiffness matrix of the beam
D[uu],D[uk],D[ku],D[kk] submatrices of matrix D
Dr dynamic stiffness matrix of the resonator

D[vv]
r ,d[vu]

r ,d[uv]
r ,D[uu]

r submatrices of matrix Dr

ε tolerance in contour-integral algorithm
E elastic modulus
ΦJ , ΦΩ matrices of frequency response terms associated

with resonator reaction forces and solution of homo-
geneous differential equation, respectively

φ, Φ cross-section rotation in time and frequency do-
mains, respectively
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γn space-dependent function in modal impulse re-
sponse function, nth mode

γ0 center of integration circle in contour-integral algo-
rithm

γ1, γ2 coefficients in modal response for 2DOF resonators
Γ circle in contour-integral algorithm
Γ1, Γ2, Γ3 coefficients in modal response for 2DOF resonators
ĝn nth coefficient of modal coordinate
G shear modulus
gn nth modal coordinate
f vector of nodal forces of the beam
H Heaviside function
H vector of frequency response functions
Hn modal frequency response function vector, nth mode
ĤKL0 , Ĥ<

KL0
Hankel matrices in contour-integral algorithm

h vector of impulse response functions
hn vector of modal impulse response functions, nth

mode
Hn complex function in modal frequency response, nth

mode
I identity matrix
I cross-section moment of inertia
J vector of particular integrals of equations of motion

associated with Dirac’s deltas
JV , JΦ, JM, JS particular integral of uncoupled differential equation

associated with Dirac’s delta and its derivatives
JZ particular integral of uncoupled differential equa-

tion associated with Dirac’s delta and its derivatives,
JZ = JV for deflection and JZ = JΦ for rotation

κeq resonator frequency-dependent stiffness
Kr stiffness matrix of the resonator
K maximum moment degree in contour-integral algo-

rithm
k1, k2 resonator stiffness coefficients
L stiffness operator
L beam length
L0 number of source vectors collected in U and V in

contour-integral algorithm
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Λ vector of unknown resonator reaction forces
λi roots of characteristic polynomial from homoge-

neous differential equation
M mass operator
µn resonator-depending coefficient in modal response,

nth mode
Mk shifted and scaled moments in contour-integral al-

gorithm
Mr mass matrix of the resonator
m,M bending moment in time and frequency domains, re-

spectively
m1, m2 resonator masses
m̃ number of singular value components retained in

contour-integral algorithm
N number of finite elements along the beam
N0 number of points for trapezoidal rule integration in

contour-integral algorithm
Nr number of resonators
n0 size of dynamic stiffness matrix D
nr number of degrees of freedom within every res-

onator
O frequency-dependent terms in orthogonality condi-

tions
Ω matrix associated with solution of homogeneous dif-

ferential equation
ω frequency
ωn complex eigenvalue, nth mode
ωDn pseudo-undamped frequency, nth mode
Πn inertia and resonator-depending coefficient in modal

response, nth mode
ψn vector in modal impulse response function, nth mode
p vector of dynamic loads
p1, p2 coefficients in uncoupled differential equation
p3 function depending on load and resonator reaction

in uncoupled differential equation
pv,pφ transversal and rotational dynamic loads
q resonator-reaction depending coefficient
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R operator associated with the reactions of the res-
onators

ρ volumetric mass density
ρ0 radius of integration circle in contour-integral algo-

rithm
R matrix of particular integrals of equation of motion

associated with Dirac’s delta
rh,Rh hth resonator reaction force in time and frequency

domains, respectively
Σ1, Σ2, Σ3 coefficients in particular integral for deflection
σi ith singular value component
S1,S2 coefficients in particular integral for rotation
s,S shear-force in time and frequency domains, respec-

tively
θ angle parameter in contour-integral algorithm
U complex random source matrix in contour-integral

algorithm
Uh,n eigenvector of the hth resonators, nth mode
uh,Uh vector of displacements within hth resonator in time

and frequency domains, respectively
u vector of nodal displacements of the beam
u[k],u[u] subvectors of vector u
V complex random source matrix in contour-integral

algorithm
v vector of deflections and rotations.
v,V deflection in time and frequency domains, respec-

tively
Vg ground displacement for calculation of transmit-

tance
W matrix depending on solution of homogeneous dif-

ferential equation
wn time-dependent function in modal impulse response

function, nth mode
ξn modal damping ratio, nth mode
xh application point of hth resonator
Υ1, Υ2 constants
υn vector in modal impulse response function, nth mode
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y,Y vector of beam displacements in time and frequency
domains, respectively

Yn vector of eigenfunctions of the response variable, nth

mode
ζ j jth complex eigenvalue of linear pencil
Z symbol for deflection (Z = V) or rotation (Z = Φ)
Zom solution of homogeneous differential equation,

Zom = Vom for deflection or Zom = Φom for rotation
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a semibase of a plate strip
b semiheight of a plate strip
χn load-dependent coefficient defined in modal re-

sponse, nth mode
δ Dirac’s delta function
Dk flexural stiffness of the kth plate

d(k,j)
i ith generalized displacements of the jth strip on the

kth plate

d(k,j)
i vector collecting the coefficients of the modified

Fourier series representation of the ith generalized
displacements of the jth strip on the kth plate

D(k,j) dynamic stiffness matrix of the jth strip on the kth

plate
D̃ reduced-order global dynamic stiffness matrix
Ek Young modulus of the kth plate
F′e vector of the forces exerted by the plates on the res-

onators aligned along the vertical line at x = xh

Fe vector of the forces exerted by the resonators aligned
along the vertical line at x = xh on the plates

F(k,g)′
e force exerted by the kth and gth plates on the res-

onator

F(k,g)′
e force exerted by the resonator on the kth and gth

plates

f(k,j)
i vector collecting the coefficients of the modified

Fourier series representation of the ith generalized
forces of the jth strip on the kth plate

f k,j
s sth generalized forces of the jth strip on the kth plate

f time-dependent load function
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f̂ frequency-dependent load function
hk thickness of the kth plate
J number of natural frequencies below a given trial

frequency
J0 numbers of “clamped-clamped” natural frequencies

of the bare strips
J0r numbers of “clamped-clamped” natural frequencies

of the resonators
K11,K12,K21,K22 spectral dynamic stiffness matrix of the resonators

coupling two consecutive plates
κeq condensed dynamic stiffness matrix of the res-

onators aligned along a vertical line x = xh

κ
(k,g)
eq condensed dynamic stiffness matrix of the resonator

coupling the kth and gth plate
κ̃eq diagonal block matrix collecting all the condensed

dynamic stiffness matrices of the resonators cou-
pling the plates along a vertical line

Kk,g
ee ,Kk,g

em ,Kk,g
me ,Kk,g

mm submatrices of the dynamic stiffness matrix of the
resonator coupling the kth and gth plate

L stiffness operator
L semilength of a strip edge (either L = a or L = b)
M mass operator
µn resonator-depending vector in modal response, nth

mode
νk Poisson coefficient of the kth plate
Nr number of resonators connecting two consecutive

plates
Ni number of DOFs within each resonator
ne number of resonators along each connected edge of

two consecutive plates
np number of plates
ω frequency
ωhi ith natural frequency of the hth resonator
ωn nth natural frequency of the locally-resonant meta-

material plate assembly
Πn inertia and resonator-depending coefficient in modal

response, nth mode
P permutation matrix
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R operator associated with the reactions of the res-
onators

ρk volume mass density of the kth plate
rh,Rh hth resonator reaction force in time and frequency

domains, respectively
Tl modified Fourier basis function
Ue vector of the deflections of all the plates at the at-

tachment points of the resonators aligned along the
vertical line x = xh

U(k,g)
e vector collecting the deflections of the kth and gth

plates at the attachment points of the resonator at
x = xh

U(k,g)
m vector of the DOFs of the masses within the res-

onator coupling the kth and gth plates at x = xh

v constant vector
w,W vector collecting the deflections in all the plates in

time and frequency domains, respectively
Wn vector of the deflection eigenfunctions in all the

plates, nth mode
W(k) deflection of the kth plate

W(k,j),Φ(k,j)
x ,M(k,j)

x ,V(k,j)
x deflection, rotation, bending moment and Kirchhoff

shear force per unit of length along the four edge of
the jth strip on the kth plate

ξ coordinate along an edge of the plate strip
xh application point of the hth resonator
Yn vector of eigenfunctions of the response variable, nth

mode
ζls coefficient of the modified Fourier basis function
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Ae coefficient matrix in equations of boundary condi-
tions for end node displacements

A cross-section area
βi ith flexural shape function
Be coefficient matrix in equations of boundary condi-

tions for end node forces
b cross-section base
χ curvature
c vector of integration constants
ca, cb subvectors of c
ca,k,cb,k kth integration constant for axial and flexural re-

sponse, respectively
δ1,δ2 real part of the wave vector components
D exact dynamic-stiffness matrix of the unit cell
De exact dynamic-stiffness matrix a two-node member
De,a,De,b submatrices of exact dynamic-stiffness matrix a two-

node member associated with the axial and flexural
degrees of freedom, respectively

D̃ Bloch-transformed exact dynamic-stiffness matrix of
the unit cell

de vector of end nodal displacements of a two-node
member

η axial strain
ε1,ε2 imaginary part of the wave vector components
e1,e2 basis vectors of the direct lattice
e∗1 ,e∗2 basis vectors of the reciprocal lattice
E Young modulus
fe nodal force vector of a two-node member divided

into several two-node beam elements
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fe,a,fe,b subvectors of vector fe collecting axial and flexural
nodal forces, respectively

f̂e,a ,̂fe,b scaled vectors of fe,a,fe,b, respectively
Ga,Gb fundamental solution of the static equilibrium equa-

tion under unitary concentrated axial and flexural
force

gk, fk kth term of the exact solution of the axial and flexural
response, respectively

g[i]a,k,g[i]b,k kth integration constant for axial and flexural ith

shape function, respectively

g[i]
a ,g[i]

b vector of integration constants for axial and flexural
ith shape function, respectively

h[i] vector of nodal axial forces ensuring equilibrium at
the nodes for the ith shape function

h cross-section height
I identity operator
i,j basis vectors of the coordinate system
I cross-section moment of inertia
K stiffness matrix of the unit cell
Ke stiffness matrix of a two-node member divided into

several two-node beam elements
Ke,a,Ke,b submatrices of matrix Ke associated with axial and

flexural degrees of freedom
K̂e,a,K̂e,b scaled matrices of Ke,a and Ke,b, respectively
K̃ Bloch-transformed stiffness matrix of the unit cell
k̃ wave vector
k1,k2 wave vector components
La axial stiffness operator
Lb flexural stiffness operator
λ dimensionless internal length
L beam length
Lc internal length
l length of the member
M mass matrix of the unit cell
Me stiffness matrix of a two-node member divided into

several two-node beam elements
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Me,a,Me,b,Me,ρ submatrices of matrix Me associated with axial and
flexural degrees of freedom, and rotary inertia re-
spectively

M̂e,a,M̂e,b,M̂e,ρ scaled matrices of Me,a, Me,b and Mr,ρ, respectively
M̃ Bloch-transformed mass matrix of the unit cell
M bending moment
Mn number of member-to-member nodes
N axial force
n number of two-node beam elements into which a

member is divided
Ωa,Ωaλ coefficient matrices in equations enforcing the

boundary conditions satisfied by the axial shape
functions

Ωb,ΩV
bλ,ΩW

bλ coefficient matrices in equations enforcing the
boundary conditions satisfied by the flexural shape
functions

ωa,ωa,1,ωa,2 vector collecting the terms of the homogeneous axial
static equilibrium solution and their derivatives

ωb,ωb,1,ωb,2,ωb,3 vector collecting the terms of the homogeneous flex-
ural static equilibrium solution and their derivatives

ω frequency
ωa,ωb,ωρ frequency parameters
Ψe,a,Ψe,b diagonal matrices collecting axial and flexural shape

functions, respectively
ψi ith axial shape function
pe vector of end nodal forces of a two-node member
q vector of nodal displacements
ql ,qb,qlb,qi subvectors of q corresponding to displacements of

the the left, bottom, left-bottom, internal nodes of
the unit cell, respectively

q̃ vector of Bloch reduced coordinates
ρ volumetric mass density
θ cross-section rotation
T transformation matrix
T shear force
ue nodal displacement vector of a two-node member di-

vided into several two-node beam elements
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ue,a,ue,b subvectors of vector ue collecting axial and flexural
nodal displacements, respectively

u[i]
a vector with all components equal to zero except for

the ith one
u axial displacement
v[i] vector of nodal forces ensuring equilibrium at the

nodes for the ith shape function
v deflection
w[i] vector of nodal bending moments ensuring equilib-

rium at the nodes for the ith shape function
ξ dimensionless spatial coordinate
x spatial coordinate
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