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Abstract: Neuroinflammation is an inflammatory response of the nervous tissue mediated by the
production of cytokines, chemokines, and reactive oxygen species. Recent studies have shown that
an upregulation of immunoproteasome is highly associated with various diseases and its inhibition
attenuates neuroinflammation. In this context, the development of non-covalent immunoproteasome-
selective inhibitors could represent a promising strategy for treating inflammatory diseases. Novel
amide derivatives, KJ3 and KJ9, inhibit the β5 subunit of immunoproteasome and were used to
evaluate their possible anti-inflammatory effects in an in vitro model of TNF-α induced neuroinflam-
mation. Differentiated SH-SY5Y and microglial cells were challenged with 10 ng/mL TNF-α for 24 h
and treated with KJ3 (1 µM) and KJ9 (1 µM) for 24 h. The amide derivatives showed a significant
reduction of oxidative stress and the inflammatory cascade triggered by TNF-α reducing p-ERK
expression in treated cells. Moreover, the key action of these compounds on the immunoproteasome
was further confirmed by halting the IkB-α phosphorylation and the consequent inhibition of NF-kB.
As downstream targets, IL-1β and IL-6 expression resulted also blunted by either KJ3 and KJ9. These
preliminary results suggest that the effects of these two compounds during neuroinflammatory
response relies on the reduced expression of pro-inflammatory targets.
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1. Introduction

Neuroinflammation is an inflammatory response of the nervous tissue mediated by
the production of cytokines, chemokines, and reactive oxygen species. Recent studies
have shown that an upregulation of immunoproteasome is highly associated with various
diseases and its inhibition attenuates neuroinflammation. The immunoproteasome (iP) is a
specialized, pro-inflammatory cytokine-, and oxidative stress-induced subtype of the consti-
tutive proteasome and plays a key role in both immuno and non-immuno responses due to
its three immunosubunits. In detail, in presence of inflammatory stimuli, such as IFN-γ and
TNF-α, or oxidative stress, the proteolytic β-subunits of 20S core constitutive proteasome,
i.e., β1c, β2c, and β5c, are substituted by immunosubunits β1i (LMP2/proteasome subunit
beta 9, PSMB9), β2i (multicatalytic endopeptidase complex-like 1, MECL-1) and β5i (LMP7).
As a consequence of this subunit replacement, the iP characterized by enhanced proteolytic
activities compared to the constitutive proteasome was formed [1,2].

The iP is mainly involved in the MHC-I antigen process, mediating the production of
inflammatory cytokines in several animal model [3,4], and regulating protein homeostasis
preventing the accumulation of the oxidatively-damaged and ubiquitylated proteins [5]. iP
is also involved in a wide number of inflammatory diseases, such as inflammatory bowel
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disease, autoimmune disease, rheumatoid arthritis, systemic lupus erythematosus, and
neuroinflammation [6]. In particular, different works demonstrated that iP is expressed in
neurons, glia, astrocytes, and endothelial cells of the central nervous system (CNS), and
it is markedly upregulated by pro-inflammatory stimuli, such as LPS, IFN-γ, and TNF-
α [7–10]. In particular, under inflammatory or stress conditions of the nervous system, the
accumulation of misfolded proteins causes the production of danger-associated molecular
pattern molecules (DAMPs) which stimulate NF-kB activation and the upregulation of iP
binding Toll-like receptor 9 (TLR-9) [11,12].

In this context, neuroinflammation would trigger proteotoxicity and the persistent
upregulation of iP, which in turn should be a key promoter of neuroinflammation [13].
In this context, immunoproteasome inhibition could represent a hopeful strategy for the
management of several human diseases including inflammatory disease. In recent years,
several β5i and/or β1i immunoproteasome-selective inhibitors have been developed; in
particular, Ettari et al. [14]. identified several amide derivatives, which are able to inhibit
the chymotrypsin-like activities of iP and, due to the non-covalent inhibition, reduce side
effects associated with the irreversible inhibition. Among these, KJ3 and KJ9 (Figure 1) are
characterized by the presence of a pyridone scaffold at the P3 site which acts as bioisostere
of a leucine residue, at the P2 site they bear a homophenyl alanine (KJ3) or a phenyl alanine
residue (KJ9), while the amide function spanning into the P1 region is N-phenyl ethyl (KJ3)
or N-benzyl substituted (KJ9).
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Figure 1. Structure of amide derivatives KJ3 and KJ9.

KJ9 and KJ3 were already examined for their capability to inhibit each catalytic subunit
of c20S and i20S. The results of this investigation showed that KJ9 inhibited both the β5c
and the β5i subunits with Ki values of 3.02 and 7.77 µM, while KJ3 inhibited the sole
β5i subunit with a Ki value of 3.85 µM [14]. In particular, unlike the covalent inhibitors,
these designed analogues don’t own an electrophilic moiety and could act as noncovalent
immunoproteasome inhibitors also reducing the side effects due to the irreversible inhibi-
tion [15]. Therefore, the goal of this work was to investigate the effects of amide derivatives,
KJ3 and KJ9, in an in vitro model TNF-α induced neuroinflammation in differentiated
SH-SY5Y and HMC3 cells.

2. Results
2.1. Proteasome and Immunoproteasome Inhibition Assays

The synthesis of amides KJ3 and KJ9 was achieved in agreement with our previously
reported procedure [14].

Herein, in the present study, we tested the two amides against the constitutive and
immuno-subunits, on which they were proven to be active, to calculate the relative IC50
values, and based on these data to further evaluate KJ3 and KJ9 at the cellular level.

We measured the rate of hydrolysis of the appropriate fluorogenic substrate, i.e., Suc-
Leu-Leu-Val-Tyr-AMC for both β5i and β5c. MG-132 (Z-Leu-Leu-Leu-al), a reversible
inhibitor of both proteasome and immunoproteasome, was used as a positive control.

Tian continuous assays were conducted using seven different concentrations, ranging
from those that minimally inhibited to those that fully inhibited the immunoproteasome or
the proteasome subunits to determine the IC50 values.
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Between the two tested compounds, amide KJ9 inhibited both the chymotrypsin-
like activities of proteasome and immunoproteasome with an IC50 of 6.90 ± 0.18 µM for
β5c and 16.52 ± 0.35 for β5i, respectively. On the contrary, KJ3 inhibited the sole β5i of
immunoproteasome with an IC50 value of 7.61 ± 0.76.

2.2. Cytotoxicity Effects of Amide Derivates, KJ3 and KJ9, in Neurons and Microglia Cells

Cytotoxic effects of KJ3 and KJ9 were evaluated in differentiated SH-SY5Y and HMC3
cells using MTT assay. In particular, cells were plated in a 96-well plate at a density of
1 × 105 cells/well and treated with TNF-α, KJ3, or KJ9 for 24 h. TNF-α stimulation reduced
cell viability at all tested doses in SH-SY5Y cells (Figure 2A), instead in the HMC3 cell
line, the challenge with TNF-α caused a reduction of viability starting from the dose of
10 ng/mL (Figure 3A). KJ3 affected cell viability starting from 10 µM while KJ9 started from
20 µM in differentiated SH-SY5Y (Figure 2B,C) and in the HMC3 cell line (Figure 3B,C).
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Figure 2. Cytotoxicity assay evaluated by MTT in the differentiated SH-SY5Y cell line stimulated
with TNF-α (10 ng/mL) (A) for 24 h and then treated with KJ3 (1 µM) (B) or KJ9 (1 µM) (C) for 24 h.
The data are expressed as means ± SD; * p < 0.05 vs. Ctrl.
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Figure 3. Cytotoxicity assay evaluated by MTT in HMC3 cell line stimulated with TNF-α (10 ng/mL)
(A) for 24 h and then treated with KJ3 (1 µM) (B) or KJ9 (1 µM) (C) for 24 h. The data are expressed as
means ± SDs; * p < 0.05 vs. Ctrl.
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2.3. KJ3 and KJ9 Decrease the Inflammatory Targets

The protein level of the p-NF-kb and p-IkB-α were investigated to determine if the
two tested compounds were able to reduce TNF-α induced neuroinflammation in both
cell lines. In particular, the TNF-α stimulus induced a significant upregulation of these
targets compared to the control cells in differentiated SH-SY5Y (Figure 4) and in HMC3 cells
(Figure 5). Instead, when cells were treated with KJ3 or KJ9 protein expression of p-NF-kB
and p-IkB-α was markedly reduced compared to stimulated cells (Figures 4 and 5).
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Figure 4. The graphs show NFkb protein level evaluated by ELISA assay (E,F) and Western blot
(A,B) and p-IkBα protein expression evaluated by Western blot (C,D) in differentiated SH-SY5Y cells
treated with KJ3 (1 µM) or KJ9 (1 µM) for 24 h following TNF-α (10 ng/mL) stimulation. The data are
expressed as means ± SDs. * p < 0.05 vs. CTRL; # p < 0.05 vs. TNF-α.
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Figure 5. The graphs show NFkb protein level evaluated by ELISA assay (E,F) and Western blot (A,B)
and p-IkBα protein expression evaluated by Western blot (C,D) in HMC3 cell line treated with KJ3
(1 µM) or KJ9 (1 µM) for 24 h following TNF-α (10 ng/mL) stimulation. The data are expressed as
means ± SDs. * p < 0.05 vs. CTRL; # p < 0.05 vs. TNF-α.

Neuroinflammation induced with TNF-α was demonstrated also by the significant
increase in p-ERK, involved in the inflammatory pathway in neuron and microglial cells.
In addition, in this context, KJ3 and KJ9 markedly reduced p-ERK protein levels (Figure 6).
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Figure 6. The graphs represent p-ERK protein level assessed by Western blot analysis in differentiated
SH-SY5Y (A,B) and HMC3 (C,D) cells treated with KJ3 (1 µM) or KJ9 (1 µM) for 24 h following TNF-α
(10 ng/mL) challenge. The data are expressed as means ± SDs. * p < 0.05 vs. CTRL; # p < 0.05 vs.
TNF-α.

TNF-α challenge and the consequent NF-kB activation also produced a marked in-
crease in IL-1β and IL-6 RNA levels compared with untreated cells in both cell lines; on the
contrary, the level of these pro-inflammatory cytokines was significantly reduced by the
amide derivatives compared to the stimulated cells with TNF-α in differentiated SH-SY5Y
and HMC3 cells (Figure 7).
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Figure 7. mRNA level of IL-1β and IL-6 evaluated by qPCR in analysis in differentiated SH-SY5Y
(A,B,E,F) and HMC3 (C,D,G,H) cells treated with KJ3 (1 µM) or KJ9 (1 µM) for 24 h following TNF-α
(10 ng/mL) challenge. The data are expressed as means ± SDs. * p < 0.05 vs. CTRL; # p < 0.05 vs.
TNF-α.

2.4. KJ3 and KJ9 Amide Derivatives Modulate the Ubiquitin Levels in Differentiated SH-SY5Y and
HMC3 Stimulated with TNF-α

The protein expression of ubiquitin, involved in proteasomal degradation of protein,
was evaluated by immunofluorescence staining: no fluorescent pattern was detected in
control cells of differentiated SH-SY5Y (Figure 8A1–A3) and HMC3 cells (Figure 9A1–A3);
instead, the cytoplasmic localization of ubiquitin was observed in TNF-α challenged cells
(Figures 8B1–B3 and 9B1–B3) in both cell lines. The treatment with KJ3 or KJ9 caused a
strong reduction in the ubiquitin fluorescence pattern compared to the stimulated cells in
both neuronal (Figure 8C1–C3,D1–D3) and microglial cell lines (Figure 9C1–C3,D1–D3).
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fluorescence) in differentiated SH-SY5Y cells (A1–A3) treated with KJ3 (C1–C3) or KJ9 (D1–D3) for
24 h following TNF-α (B1–B3) stimulation.
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Figure 9. Compound panel of immunofluorescence reactions using an anti-ubiquitin antibody (green
fluorescence) in HMC3 cell line (A1–A3) treated with KJ3 (C1–C3) or KJ9 (D1–D3) for 24 h following
TNF-α (B1–B3) stimulation.

2.5. KJ3 and KJ9 Show Anti-Oxidant Properties

Intracellular ROS accumulation was significantly increased when cells were stimulated
with 10 ng/mL TNF-α compared to untreated cells in differentiated SH-SY5Y (Figure 10B)
and HMC3 cells (Figure 11B). KJ3 (Figures 10C and 11C) and KJ9 (Figures 10D and 11D)
markedly decreased ROS levels compared to cells stimulated with TNF-α in both cell lines.
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Figure 10. Intracellular ROS accumulation evaluated by a CM-H2DCFDA fluorescent probe in differ-
entiated SH-SY5Y cells (A) stimulated with TNF-α (B) and then treated with KJ3 (C) or KJ9 (D) for
24 h. Panel E shows the number of fluorescent cells. All images were captured at 10×magnification.
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3. Discussion

Neuroinflammation is a complex inflammation-like process that plays a key role in
the central nervous system (CNS) and it is used by cells of CNS to eradicate pathogens
halting the infection, and remove cell debris and misfolded proteins. Overactivated neu-
roinflammation causes the activation of neuronal cells, such as microglia cells, neurons,
and astrocytes, and it is mediated by the release of pro-inflammatory cytokines, such as
IL-1β, IL-6, and TNFα, chemokines, reactive oxygen species (ROS), and secondary mes-
sengers [16]. The activation of CNS cells during neuroinflammation is caused by several
inflammatory stimuli which promote the induction of numerous pathways such as NF-
κB and ERK1/2 signaling [17]. In particular, the release of pro-inflammatory cytokines
stimulates the MEK/ERK signaling pathway inducing an overproduction and release of
TNFα causing the activation of microglia cells [18]. Moreover, Mir et al. demonstrated that
IFN-γ and TNF-α play a key role in the induction of oxidative stress, excitotoxicity, and
motoneuron death in rat spinal cord embryonic explants [19].

The constitutive ubiquitin-proteasome system (UPS) regulates protein homeostasis and
is involved in several key processes, such as cell proliferation, cell death, inflammation, and
modulation of stressful conditions [20]. High concentrations of pro-inflammatory cytokines
(IFN-γ or TNF-α) or oxidative stress caused the development of immunoproteasome (iP)
complex in which the active constitutive proteasome subunits, β1c, β2c, and β5c were
replaced by β1i, β2i, and β5i. Several pieces of evidence demonstrated that the iP is
involved in different inflammatory disorders and regulates ERK1/1, the NF-κB signaling
pathway, and pro-inflammatory cytokine production [21–25].

Therefore, the use of immunoproteasome inhibitors, able to regulate the activity and
the expression of iP, could represent a powerful approach for the control of many cell
functions and for the management of several inflammatory diseases.

In this work, we evaluated the properties of two new amide derivatives, KJ3 and KJ9,
which act as inhibitors of immunoproteasome, in an in vitro model of neuroinflammation
provoked by TNF-α stimulation. In accordance with previous papers and also in our
experimental model, TNF-α is able to stimulate neuroinflammation and excitotoxicity
in neuronal and microglial cells [21–24]; indeed, ROS levels and the expression of the
inflammatory targets were significantly increased.

KJ9 was proven to inhibit the chymotrypsin-like activities of β5c and β5i, whereas
KJ3 inhibited only the β5i of the immunoproteasome. These data are very important,
because it was demonstrated that immunosubunit β5i can control cytokine production
through the NF-kB signaling pathway [26,27]. In accordance with this hypothesis, we tested
the possible anti-inflammatory effects of these two new amides analogs in neuronal and
microglia cells stimulated with TNF-α. Our results demonstrated that KJ3 and KJ9 were
able to reduce the expression of p-ERK, IKBα, and NF-kB; moreover, these compounds
also caused a significant decrease in IL-1β and IL-6 protein levels, downstream genes of
NF-kB, suggesting that KJ3 and KJ9 can reduce neuroinflammation through the modulation
of the NF-kB signaling pathway. Thus, these data are in agreement with previous works
that demonstrated that other immunoproteasome inhibitors, such as ONX-0914, a peptide
epoxyketone-based irreversible β5i-selective immunoproteasome inhibitor, and a dual
covalent β5i/β2i selective inhibitor, KZR-616, induce an anti-inflammatory response in an
in vivo model of rheumatoid arthritis and inhibit the production of inflammatory cytokines,
respectively [28–31].

Several studies demonstrated that diseases characterized by an increase in TNF-
α, such as inflammatory disorders, show an increased ubiquitin expression [32–35]; in
particular, TNF-α stimulates the ubiquitin-activating enzyme (E1 protein) that stimulates
ubiquitin expression. Activated ubiquitin was transferred to a ubiquitin carrier protein
(E2), which interacts with a ubiquitin ligase (E3) and transfers the ubiquitin to the protein
substrate [36]. In accordance with these works, in our experimental protocol, TNF-α
produced a marked increase in the ubiquitin protein levels in both used cell lines. Moreover,
our results showed that in KJ3 and KJ9 treated cells the expression of ubiquitin protein
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was reduced compared to TNF-α challenged cells; these results are in agreement with
Basler et al. that suggested that the ubiquitin did not accumulate in LMP7-deficient cells,
probably because constitutive proteasome cope with the immunoproteasome to degrade
ubiquitin proteins [37]. Furthermore, it was demonstrated that β5 subunit inhibition
does not influence protein degradation and proteotoxicity in multiple myeloma cells [38]
whereas Kisselev and Oberdorf suggested that only the inhibition of both β5 and β1 or
β2 affects protein degradation and proteotoxic stress [39,40]. To test the involvement of
β5i in the degradation of cytosolic and mitochondrial-oxidized protein we evaluated the
accumulation of intracellular ROS in differentiated SH-SY5Y and HMC3 cell lines. In
agreement with the results obtained for the ubiquitin expression, KJ3 and KJ9 treated cells
did not show an accumulation of intracellular ROS confirming the hypothesis that β5
subunit is not involved in proteotoxic stress.

In conclusion, the present study provides evidence that both KJ3 and KJ9, non-covalent
β5i inhibitors, own anti-inflammatory activities, since they reduce pro-inflammatory cy-
tokines and regulate the NF-kB signaling pathway, without affecting the ability of immuno-
proteasome to degrade ubiquitin protein and control proteotoxicity. Moreover, unlike other
immunoproteasome inhibitors, these new amide derivatives do not show the drawbacks
and side effects due to the non-covalent inhibition.

Considering these results, immunoproteasome inhibitors could represent promising
candidates for preclinical and clinical investigations for several human diseases, such as
neurodegenerative disease, autoimmune diseases, and inflammatory diseases.

4. Material and Methods
4.1. In Vitro 20S Immunoproteasome/Proteasome Inhibition Assays

Human 20S proteasome (isolated from human erythrocytes) and human 20S immuno-
proteasome (isolated from human spleen) were purchased from Enzo Life Science Supplier
(Executive Blvd, Farmingdale, NY, USA). The two distinct proteolytic activities of protea-
some and immunoproteasome were measured by monitoring the hydrolysis of the peptidyl
7-amino-4-methyl-coumarin substrate Suc-Leu-Leu-Val-Tyr-AMC (Bachem, Bubendorf,
Switzerland) for both β5c and β5i activities.

Inhibitor solutions were prepared from stocks in DMSO. Each independent assay was
performed in duplicate in 96-well plates with a total volume of 200 µL. In more detail, we
used 5, 10, 20, 40, 60, 80, and 100 µM for both KJ3 and KJ9. An equivalent amount of DMSO
was used as a negative control, while MG-132 was used as a positive control.

IC50 values± SD and were calculated by fitting the progress curves to the 4-parameter
IC50 equation by Grafit software (Version 5.0; Erithacus Software Limited, East Grinstead,
West Sussex, UK), with y [∆F/min] as the substrate hydrolysis rate, ymax as the maximum
value of the dose−response curve, measured at an inhibitor concentration of [I] = 0 µM,
ymin as the minimum value, obtained at high inhibitor concentrations, and s as the Hill
coefficient.

Fluorescence of the product AMC of the substrate hydrolyses was measured using
an Infinite 200 PRO microplate reader (Tecan, Männedorf, Switzerland) at 30 ◦C with a
380 nm excitation filter and a 460 nm emission filter.

4.2. Assaying the Chymotrypsin-Like Activity of β5i Subunit of 20S Immunoproteasome and β5c
Subunit of 20S Proteasome

Human 20S immunoproteasome or human 20S proteasome was incubated at 30 ◦C at a
final concentration of 0.004 mg/mL with test compound present at variable concentrations.
The reaction buffer consisted of 50 mMTris HCl, pH 7.4, 10 mM NaCl, 25 mM KCl, 1 mM
MgCl2, 0.03% SDS, and 5% DMSO. Product release from substrate hydrolysis (50 µM) was
monitored continuously over a period of 10 min.
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4.3. Cell Cultures

Human neuroblastoma cell line (SH-SY5Y) and human microglial cells (HMC3) were
obtained by ATCC (ATCC Manassas, Manassas, VA, USA). Differentiated SH-SY5Y were
cultured with formulated Eagle’s minimum essential medium and F12 medium (EMEM/F12)
in a 1:1 mixture; HMC3 cells were cultured with EMEM (Sigma-Aldrich, St. Louis, MO, USA).
Then 1% of penicillin/streptomycin antibiotic (Sigma-Aldrich, St. Louis, MO, USA) and 10%
fetal bovine serum (FBS) (ATCC Manassas, Manassas, VA, USA) were added to both culture
media and cells were incubated at 37 ◦C with a percentage of 5% CO2. The culture’s medium
was substituted every two days.

4.4. Cell Treatments

SH-SY5Y neuroblast-like cells were plated in a 6-well plate at a density of
1 × 105 cells/well and incubated at 37 ◦C with a percentage of 5% CO2 overnight. The
day after, cells were differentiated in neurons-like cells. It has been demonstrated that the
brain-derived neurotrophic factor (BDNF) can further increase the established effects of
retinoic acid (RA) on neuronal differentiation, making it the most widely acknowledged
procedure for differentiation. In particular, 10 µM of retinoic acid (RA) was added to each
well for five days changing the medium every two days. On day 6, RA was removed, cells
were washed three times with sterile phosphate-buffered saline (PBS), and brain-derived
neurotrophic factor (BDNF) at the concentration of 50 ng/mL was added for additional
five days.

Differentiated SH-SY5Y cells and HMC3 cells were challenged with tumor necrosis
factor (TNF-α) at the dose of 10 ng/mL to induce an inflammatory phenotype for 24 h.
TNF-α dose was titrated against the effects on IL1-β expression (Figure S1).

The day after, cells were treated with KJ3 (1 µM) and KJ 9 (1 µM) for an additional 24 h
to evaluate their anti-inflammatory effects. At the end of the treatment period, differentiated
SH-SY5Y cells and HMC3 cells were collected and used for further molecular analyses.

4.5. MTT Assay

Cell viability was evaluated by the MTT assay (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphen
yltetrazolium Bromide) to investigate TNF-α, KJ3 and KJ9 cytotoxicity. In detail, both cell
lines were seeded at a density of 1 × 105 cells/well in a 96-well plate; upon reaching
confluence, cells were treated with TNF-α (5, 10, 20, and 30 ng/mL), and the amide
derivates, KJ3 and KJ9, at different doses (1, 10, 20, 40, 80, and 100 µM) for 24 h. Then
5 mg/mL of tetrazolium dye MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (Sigma Aldrich, St. Louis, MO, USA) was thawed in sterile PBS and 20 µL
was added into each well five hours before the end of the treatment. Twenty-four hours
after starting treatment, formazan crystals were thawed using 200 µL dimethyl sulfoxide
(DMSO). Cytotoxicity was quantified using a VICTOR Multilabel Plate Reader (Perkin
Elmer; Waltham, MA, USA) at λ 540 and 620 nm. Data are expressed as the percentage of
cell viability compared to control cells.

4.6. Intracellular ROS Production

To investigate the antioxidant effects of KJ3 and KJ9, intracellular ROS production was
assessed employing an 5-(and-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate
(CM-H2DCFDA) probe in differentiated SH-SY5Y and HMC3 cells stimulated with TNF-α
and treated for 24 h and treated with KJ3 or KJ9. Fluorescein diacetate (FDA) is a cell-
permeant esterase substrate that can be used as a viability probe able to measure both
enzymatic activities, indispensable to activate its fluorescence, and cell-membrane integrity,
necessary for the retention of their fluorescent product within the cells. This AM ester is
hydrolyzed by intracellular esterase to produce fluorescein. The increase in fluorescence
due to the oxidation of this probe can be detected with a fluorescence microscope, using
excitation sources and filters appropriate for fluorescein (FITC). At the end of the treatment
period, cells were incubated with 5 µL of CM-H2DCFDA probe (Thermo Fisher, Carlsbad,
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CA, USA) for 1 h at 37 ◦C with a percentage of 5% CO2. After three washing with sterile
PBS, cells were observed with a fluorescent microscope and the fluorescent intensity was
quantified using ImageJ 1.53e software for Windows (Softonic, Barcelona, Spain) [41].

4.7. Real-Time PCR Assay

At the end of the treatment period, differentiated SH-SY5Y and HMC3 cells were
scraped employed TRIzol RNA Isolation Reagents (Thermo Fisher Scientific, Waltham, MA,
USA), total RNA was extracted from and quantified by UV-Vis microvolume spectropho-
tometer (NanoDrop Lite, Thermo Fisher, Waltham, MA, USA). A Superscript IV Master
Mix (Invitrogen, Carlsbad, CA, USA) was used to reverse transcribe the total RNA (1 µg)
in cDNA. The obtained cDNA (1 µL) was added to the BrightGreen qPCR Master Mix
(ABM, Richmond, Canada) to assess the mRNA level of IL-1 β and IL-6. qPCR reaction was
monitored by using the QuantStudio 6 Flex Real-Time PCR System (Applied Biosystems,
CA, USA), the GAPDH gene was used as the housekeeping gene, and the amplified PCR
products were calculated by measuring the calculated cycle thresholds (CT) of target genes
and GAPDH mRNA. After normalization, the mean value of the normal control target
levels was chosen as the calibrator and the results were expressed according to the 2−∆∆Ct

method, as a fold change relative to normal controls [42–45].

4.8. Enzyme-Linked Immunosorbent Assay (ELISA)

Following the 24 h of treatment, cells were collected from each well and NFKB pro-
tein level was measured from cell lysate employed enzyme-linked immunosorbent assay
(ELISA) kits (Abcam, Cambridge, UK), in accordance with the guidelines given by the
producer [45]. In detail, standards, the sample and the antibody cocktail were added into
appropriate wells. After incubation, wells were washed with wash buffer PT (350 µL) with
a multi-channel pipette and 100 µL of TMB substrate was added to each well. The plate was
then incubated for 15 min in the dark on a plate shaker set to 400 rpm. After that, 100 µL
of stop as wwere added into each well, the plate was shaken on a plate shaker for 1 min
to mixm and the OD was measured at 450 nm using a microplate reader (PerkinElmer,
Waltham, MA, USA).

All the samples were assessed in duplicate, and the obtained data were interpolated
with the appropriate standard curves. Means of the duplicated samples were used to assess
NFKB level and express in pg/mL.

4.9. Western Blot

At the end of the treatment period, differentiated SH-SY5Y and HMC3 cells were
scraped using RIPA buffer (25 mM Tris/HCl, pH 7.4; 1.0 mM EGTA; 1.0 mM EDTA)
with NP40 (1%), phenyl methylsulfonyl fluoride (PMSF, 0.5%), aprotinin, leupeptin and
pepstatin (10 µg/mL each) and centrifuged at 15,000 rpm for 15 min at 4 ◦C to obtain
the supernatant from each sample. The Bio-Rad protein assay kit (BioRad, Hercules, CA,
USA) was used to measure the total protein content in each supernatant. Then 30 µg of
proteins were loaded and resolved by electrophoresis in a 10% sodium dodecyl sulfate (SDS)
polyacrylamide gel and transferred onto a PVDF membranes (Amersham, Little Chalfont,
UK) using a specific Transfer Buffer at 100 V for 1 h. Following three washing with TBS
0.1% Tween buffer, membranes were blocked with 5% non-fat dry milk in TBS 0.1% for 1 h
at room temperature (RT). After washing, the membranes were incubated with specific
primary antibodies for p-ERK, IkB-α, and p-NFkB diluted in TBS-0.1% Tween overnight.
The day after, the membranes were washed three times with TBS-0.15% Tween buffer
and a secondary goat anti-rabbit antibody (GeneTex, Irvine, CA, USA) conjugated with
peroxidases was used for 1h at RT to bind and detect the target proteins. Following
three washes with TBS-0.15% Tween buffer, membranes were analyzed by the enhanced
chemiluminescence system (LumiGlo reserve; Seracare, Milford, MA, USA) and the protein
signal were quantified by a scanning densitometry system (C-DiGit, Li-cor, Lincoln, NE,
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USA). Results were expressed as relative integrated intensity using β-actin (Cell Signaling,
Danvers, MA, USA) as a control for the equal loading of samples [46–50].

4.10. Immunofluorescence

Neuronal and microglial cells were cultured at a density of 2.5 × 104 cell/well in
8-well chamber slides and treated with KJ3 and KJ9 for 24 h following TNF-α stimulation.
At the end of the treatment period, cells were fixed with 4% of paraformaldehyde (PFA)
in 0.2 M phosphate buffer (pH 7.4) for 10 min at RT; then, cells were rinsed 3 times for
10 min with sterile phosphate-buffered saline (PBS). Cells were preincubated with 0.3%
triton X-100 in PBS for 10 min to permeabilize the membranes and with 1% bovine serum
albumin (BSA) in PBS, for 1 h at RT, in order to block nonspecific binding sites. Cells were
then incubated with a rabbit polyclonal anti-ubiquitin antibody (1:250 dilution) (Abcam,
Cambridge, UK) overnight at 4 ◦C. The day after, cells were washed with PBS and a FITC-
conjugated IgG anti-rabbit antibody was added (GeneTex, Irvine, CA, USA) for 1 h at RT
in order to detect the primary antibody. Nuclei were stained with DAPI diluted to 1:1000
in PBS (Thermo Fisher Scientific, Carlsbad, CA, USA) for 10 min RT. Finally, cells were
washed in PBS, the coverslips were mounted on slides, and cells were monitored using a
fluorescent microscope. Digital images were cropped, and figure montages were prepared
using Adobe Photoshop 7.0 (Adobe System, Palo Alto, CA, USA) [51].

4.11. Statistical Analysis

All data are expressed as mean ± standard deviation (SD). The testified values are the
results of at least three experiments. All assays were performed in duplicate to guarantee
reproducibility. The differences between the groups were evaluated by one-way ANOVA
with a Tukey’s post-test. A p-value less than 0.05 was considered significant. Graphs were
prepared using GraphPad Prism Version 8.0 for macOS (GraphPad Software Inc., La Jolla,
CA, USA.
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