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Introduction

From the earliest observations of deflection of comet tails by sunlight in the 17th century to
the sophisticated manipulation of microscopic entities using lasers in the 21st century, the
interplay between light and matter has ceaselessly captivated and challenged humanity. The
unique ability of light to interact with matter has illuminated pathways into the microworld,
driving innovations in numerous fields of science. This thesis aims to offer an in-depth
exploration of various aspects of optical forces, merging advanced computational tools
with experimental novelties, all bound together by the central theme of manipulating the
microscopic world using light.

In the initial chapter, we delve into the basics of optical trapping. Starting with its
foundational theories, we gradually transition into the practical aspects of setting up and
using optical tweezers. Additionally, I detail the wide-ranging applications of this tool,
highlighting their significant contributions to fields such as biology, environmental science,
and active matter.

In the succeeding chapter, we confront a challenge that has complicated optical forces
research: the computationally demanding nature of force calculations, which results in sig-
nificantly long computations. By weaving machine learning into the tapestry of conventional
approaches, we can achieve calculations that combine both speed and precision. This innova-
tion unlocks the doors to numerically probing complex systems, from ellipsoids in double
traps to red blood cells and the environmentally harmful microplastics. As we wade through
this chapter, it becomes evident that the confluence of optics (not only optical forces) and
artificial intelligence is not just a marriage of convenience but a symbiotic fusion, signaling
the dawn of an exciting chapter in this discipline.

In the third chapter, we maintain our focus on the microscale, but our subjects come
from the vast reaches of space. Here, the focus is on using optical tweezers as a precise tool
for examining cosmic dust. These tiny interstellar grains, spread throughout the cosmos,
are more than just specks that complicate our space observations; they carry information
about celestial evolution and processes. By probing and characterizing these particles, we
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underline the potential of optical tweezers in advancing our understanding of the universe
and its mysteries.

In the fourth chapter, I introduce a microengine with full orbital motion control. At its
heart is a Janus particle, intriguingly trapped not at the center of the beam, but at a precise
distance where thermal forces pushing outward balance with the optical forces pulling
inward. This equilibrium can be adjusted by varying the beam power. Adding another layer
of complexity, when the system is exposed to circularly polarized light, the particle starts to
rotate. Remarkably, this rotational motion can be halted or even reversed by simply shifting
to linearly polarized light or using circularly polarized light in the opposing direction. This
chapter unveils the vast potential of combining both optical and thermal effects.

In the concluding chapter, the emphasis is on how optical forces can move particles, not
just confine them, within the domain of active matter. Shape-asymmetric particles exhibit an
inherent ability to self-propel due to the momentum transfer via transverse optical forces.
This unique propulsion mechanism is further enhanced when we introduce a light-absorbing
coating, which instigates thermophoretic effects. These capped particles are propelled,
charting their course along intricate pathways. The pathways are shaped by the interplay
between deterministic optical forces and random Brownian motion, and are influenced by
variables such as particle size and the distribution of light. A numerical model that closely
aligns with our experimental findings offers further clarity. This chapter doesn’t merely
spotlight a novel application of optical forces; the implications of this study extend beyond
targeted applications, shedding light on broader phenomena such as bacterial motion and
animal migration, and enriching our understanding of determinants of motion across various
scientific domains.

Every chapter highlights the unique powers of optical forces, and together they provide
a detailed understanding of how we use light to work with and understand the tiny world
around us. As you navigate this thesis, I extend an invitation: marvel at the versatility of
light and envisage a future where its interplay with matter continues to unlock new scientific
and technological horizons.



Chapter 1

Principles of optical trapping

The interaction between light and matter has fascinated scientists for centuries. As far
back as 1619, Johannes Kepler observed the deflection of comet tails by the rays of the sun,
a groundbreaking recognition of light’s ability to exert a force on matter. With the advent
of lasers in 1970, it became possible to concentrate enough optical power to significantly
affect the motion of microscopic particles, leading to Arthur Ashkin’s invention of optical
tweezers. By employing a tightly focused laser beam, optical tweezers apply forces at the
micro scale and now contribute to fields like biology, physics, or environmental sciences.
In the image, comet Hale-Bopp had a notable blue ion tail and white dust tail due to the
solar wind and to the Sun’s light forces respectively. Credits: A. Dimai and D. Ghirardo, Col
Druscie Observatory, Associazione Astronomica Cortina.
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1.1 Theory of optical trapping

The radiation force exerted by light on matter stems from the conservation of electromagnetic
momentum during the scattering process. Historically, optical forces have been under-
stood within strong approximations based on limiting size regimes. The parameter used to
determine the range of validity of these approximations is the size parameter

ξ = kma =
2πnm

λ0
a , (1.1)

where km is the light wavenumber in the surrounding medium, a is the characteristic dimen-
sion of the particle (in the case of a sphere corresponds to its radius), λ0 is the wavelength
in vacuum, and nm is the refractive index of the surrounding medium. When kma ≫ 1, the
geometrical optics approximation [1, 2] is used to calculate the optical forces. In the opposite
case, when kma ≪ 1, the Rayleigh approximation can be applied [3]. This approximation
treats the particle as a dipole and assumes that the electromagnetic fields within the particle
are homogeneous. This imposes one further condition on the size parameter, i.e.,∣∣∣∣ np

nm

∣∣∣∣kma ≪ 1 (1.2)

where np is the refractive index of the particle. Finally, for intermediate size parameters, the
accurate calculation of optical forces necessitates a comprehensive consideration of the full
electromagnetic theory governing the light-matter interaction in the intermediate regime [4].

In optical trapping, the parameter that quantifies the robustness of the trap is the ’trap
stiffness.’ This parameter elucidates the restoring force exerted on an optically confined
particle when it displaces from the equilibrium position. Notably, the trap stiffness exhibits a
dependency on the size parameter of the trapped particle. Fig. 1.1 delineates this relationship,
presenting trap stiffness across three distinct regimes. An overview of the three distinct
regimes, including the full electromagnetic theory for the intermediate stage, is provided
in the following subsections. Furthermore, in the subsequent chapter, we will explore the
application of machine learning to address certain limitations of these approaches and further
refine optical force calculations.

1.1.1 Geometrical optics approximation

In the geometrical optics approximation, the optical field may be described as a collection of
N rays, each of which is associated with a fraction, Pi, of the incident power P = ∑i Pi. Each
ray carries a linear momentum nmPi/c through a fixed plane in unit time.
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Fig. 1.1 Transverse trap stiffness calculated for the different regimes. The solid line represents
the exact electromagnetic calculation while the dashed lines represent the Rayleigh (pink)
and Geometrical optics (orange) approximations.

To understand the forces that act on a trapped microscopic particle, we start with a
minimalistic model: the force due to a single ray ri hitting a dielectric sphere at an angle
of incidence θi (Fig. 1.2). When ri strikes the sphere, a small part of the power is diverted
into the reflected ray rr,0, while most of the power is carried by the transmitted ray rt,0.
This transmitted ray rt,0 crosses the sphere until it reaches the next surface, where again it
is largely transmitted outside the sphere into the ray rt,1, while a further small amount is
reflected inside the sphere into the ray rr,1. This process continues until all light has escaped
from the sphere. At each scattering event, the change in momentum of the ray causes a
reaction force on the center of mass of the particle. By considering these multiple reflection
and refraction events the optical force can be calculated directly [2] as:

Fray =
nmPi

c
r̂i −

nmPr

c
r̂r,0 −

+∞

∑
j=1

nmPt, j

c
r̂t, j , (1.3)

where r̂i, r̂r, j and r̂t, j are unit vectors representing the direction of the incident ray and the
jth reflected and transmitted rays, respectively, calculated using Fresnel’s reflection and
transmission coefficients. Generally, most of the momentum transferred from the ray to the
particle is due to only the first two scattering events, especially for small angle of incidence.

The force Fray in Eq. (1.3) has components only in the plane of incidence (Fig. 1.2)
and can be split in two perpendicular components. The component in the direction of the
incoming ray r̂i represents the scattering force, Fray,s, that pushes the particle in the direction
of the incoming ray (r̂i). The component perpendicular to the incoming ray is the gradient
force, Fray,g, that pulls the particle in a direction perpendicular to that of the incoming ray
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Fig. 1.2 Multiple scattering of a light ray impinging on a sphere in the incident plane. All
the reflected and transmitted rays, as well as the optical force acting on the sphere lie in the
plane of incidence.

(r̂⊥). Studying the dependence of the trapping efficiency of a ray on the angle of incidence,
it is observed that independently of the size of the sphere, the maximum trapping efficiencies
are obtained for large angles of incidence (≈ 80◦) [1].

Even though so far we have explained the situation for the one-ray case, to model an
optical trap we must not only consider a single incident ray but all the rays constituting a
highly-focused laser beam, that is a set of many rays that converge at a very large angle.
This means that the total force acting on the particle is a cumulative effect, derived from the
individual contributions of each ray that forms the beam. In a single-beam optical trap, these
focused rays generate a restoring force that is proportional to the particle’s displacement
from an equilibrium position. This equilibrium typically resides close to the beam waist,
resulting in an harmonic potential that seeks to keep the particle centered.

The study of more complex non-spherical geometries can also be tackled using a geo-
metrical optics approach, provided that all the characteristic dimensions of the object under
examination are substantially greater than the light wavelength. However, deviations from
sphericity introduces two major variations.

First, with non-spherical objects, a significant torque may be induced, leading to the
rotation of the object. This phenomenon is referred to as the windmill effect, drawing an
analogy to the motion of a windmill where the flow of momentum due to the electromagnetic
field serves as the "wind" [5]. The torque generated by a single ray can be computed by
contrasting the angular momentum associated with the incoming ray against that of the



1.1 Theory of optical trapping 7

outgoing rays. The overall torque exerted on the object is then derived from the vector sum
of the individual torques for each ray.

Second, in the case of a spherical particle, the radiation pressure from a plane wave (a
set of parallel rays) is uniformly directed along the propagation direction due to symmetry.
However, for particles with anisotropic shapes, this is not the case. The radiation pressure
introduces a transverse component, giving rise to what is known as the optical lift effect.
This means that non-spherical particles can move transversely with respect to the incident
light’s propagation direction, a phenomenon that distinguishes them from their spherical
counterparts [6–8].

1.1.2 Rayleigh approximation

The Rayleigh approximation is based on the assumption that a particle can be approximated
as a small dipole and that the fields are homogeneous inside the particle. An incident
electromagnetic field Ei induces an electric dipole moment p that, for sufficiently small fields,
can be expressed in terms of the particle polarizability as:

p = αp(ω)Ei , (1.4)

where αp is the complex polarizability of the particle relative to the surrounding medium
given by [9]

αp =
αCM

1− iαCMk3
m/(6πεm)

(1.5)

with αCM the static Clausius-Mossotti polarizability, i.e.,

αCM = 3V εm

(
εp − εm

εp +2εm

)
, (1.6)

εm and εp are the permittivities of the medium and particle, respectively, and V is the particle
volume. km is the light wavenumber of the surrounding medium. The complex polarisability
αp, which typically depends on the frequency of the electromagnetic field ω , has a real part,
α ′

p which represents the oscillation of the dipole in phase with the field, and an imaginary
part α ′′

p which represents its oscillation in phase quadrature. The polarizability in the dipole
regime is also linked to the cross-sections. In fact, the light-particle interaction can be
described in terms of extinction, σext, scattering, σscat, and absorption, σabs = σext −σscat

cross sections. For a small particle we can write the extinction and scattering cross-sections
as σext = kmIm{αp}/εm and σscat =

k4
m

6πε2
m
|αp|2 [10].
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Thus, we can consider the time-averaged optical force experienced by a small particle
when illuminated by a time-varying electromagnetic field [3, 11, 12]:

FDA =
1
2

Re

{
∑

i
αpEi∇E∗

i

}
. (1.7)

where Ei are the electric field components. Starting from this expression, one can explicitly
write the optical force in terms of extinction cross-section and particle’s polarizability [3, 11–
13]:

FDA =
1
4

α
′
p∇|Ei|2 +

nmσext

c
Si −

1
2

nmσextc∇× sd , (1.8)

where Si is the time-averaged Poynting vector of the incident electromagnetic field, and sd is
the time-averaged spin density [14, 12].

The first term in Eq. (1.8) represents the gradient force and is responsible for particle
confinement in optical tweezers. Particles with a positive α ′

p will be attracted towards the
high intensity region of the optical field while if α ′

p is negative, particles will be repelled.
As an example, for an incident laser beam with a typical Gaussian profile which propagates
along the z axis, the trap stiffness in the polarisation plane κρ and along the direction of
propagation κz related to the gradient force are [15]:

κρ = 2
α ′

p

cnm

I0

w2
0
, κz = 2

α ′
p

cnm

I0

z2
0
. (1.9)

where I0 is the maximum intensity at the center of the beam, w0 is the Gaussian beam waist,
and z0 is the beam Rayleigh range.

The second term in Eq. (1.8) corresponds to the scattering force, which is responsible
for the radiation pressure and directed along the propagation direction of the laser. The last
term in Eq. (1.8) is a spin-dependant force [13]. This term can be generated by polarisation
gradients in the electromagnetic field but for optical trapping it typically becomes insignificant
in comparison to the other terms. However, it plays a more significant role when trapping
with beams of higher order with inhomogeneous polarisation patterns such us cylindrical
vector beams [16] or superposition of Hermite-Gauss beams [17] and can be observed when
trapping particles in vacuum [18].

1.1.3 Electromagnetic theory

The intermediate regime is characterised by a dimension of the particle that is comparable
to the optical wavelength, that is by a size parameter close to 1. In this regime the dipole
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and geometrical optics approximations are no longer valid and a full modelling of the light-
particle interaction is required, see Fig 1.1 for a comparison among the different approaches
as a function of the particle size. In this regime, it is possible to derive Frad and Trad using the
conservation of linear and angular momentum. The time-averaged force and torque exerted
by monochromatic light on a particle are [19–21]:

Frad =
∫

S
TM · n̂dS , Trad =−

∫
S

(
TM × r

)
· n̂dS (1.10)

where the integration is carried out over a surface S surrounding the particle. The vector n̂ is
the outward unit vector normal to the S, r is the position vector, and TM is the time-averaged
Maxwell stress tensor that describes the mechanical interaction of light and matter [22]. The
general expression of T M in the Minkowski form [4] can be simplified when considering
harmonic fields at angular frequency ω in a homogeneous, linear, and non-dispersive medium.
In fact, writing the real physical fields, e.g.,E(r, t) =Re

{
E(r)e−iωt}, in terms of the complex

amplitudes, e.g., E = E(r), the averaged Maxwell stress tensor simplifies as [4]:

TM =
1
2

εmRe
[

Et ⊗E∗
t +

c2

n2
m

Bt ⊗B∗
t −

1
2

(
|Et|2 +

c2

n2
m
|Bt|2

)
I

]
, (1.11)

where ⊗ represents the dyadic (outer) product, I is the dydaic unit, and the fields Et = Ei+Es

and Bt = Bi +Bs are the total electric and magnetic fields resulting from the superposition of
the incident (Ei,Bi) and scattered (Es,Bs) fields.

Several techniques have been proposed for computing electromagnetic scattering by non
spherical particles and there is no single universal method that provides the best results in
all situations. Depending on the specific parameters, different techniques may prove to be
the most appropriate in terms of efficiency, accuracy and applicability [23]. Some of the
common methods for the modeling of optical trapping of irregular shaped particles in the
intermediate regime are discrete dipole approximation [24], finite-difference time-domain
[25] and T-matrix [26].

Discrete dipole approximation is a finite element method in which a particle is split
into a series of dipoles. Each of these dipoles interacts with the incident wave and with the
re-radiated waves by all the other dipoles. The finite-difference time-domain method instead,
is based on the numerical integration of the Maxwell equations in the time domain. The
fields are sampled at discrete times and positions and, therefore, do not assume a harmonic
time-dependence. Differently, the T-matrix method provides a compact formalism based
on the multipole expansion of the fields. The transformation properties under rotation
and translation of the T-matrix make possible to apply several simplifications in the force
calculations since the T-matrix needs to be computed only once for a given orientation of the
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scatterer, making this approach the fastest one. On the other hand, even though discrete dipole
approximation and the finite-difference time-domain method can be more computationally
demanding, they can be slightly more versatile as they can be applied to particles of any
shape and composition and to any light field configuration. All these methods have been
used successfully for modelling optical trapping [27–29].

1.2 Experimental setups

In its simplest form, an optical tweezers is created by focusing a laser beam to a small spot
using a high-numerical-aperture objective lens. This lens serves a dual purpose: concentrating
the trapping light and imaging the trapped object. Optical tweezers typically require only a
few milliwatts of optical power, minimizing the risk of damaging the sample.

Although the principle of optical trapping involves a relatively simple setup, researchers
have developed more complex experimental arrangements for novel and challenging experi-
ments. Examples include holographic optical tweezers, which use a spatial light modulator
(SLM) to create customized optical potentials; time-sharing optical tweezers that employ
an acousto-optic deflector (AOD) for fast beam manipulation and the creation of different
effective optical traps; Raman tweezers coupled with an interferometer to obtain chemical
information about the composition of the trapped sample, and interferometric optical tweez-
ers capable of generating large-scale optical potentials. Detailed instructions for building
advanced optical tweezers setups are available in [30, 4]. For the experiments presented
in this thesis, we utilized three different setups: Standard optical tweezers with a quadrant
photodiode (QPD), Raman Tweezers, and Speckle Tweezers, see Fig. 1.3.

In the following, we briefly review the main building blocks in an optical tweezers
systems.

Microscopes: When setting up an optical tweezers system, a convenient option is to use
a conventional commercial light microscope. These microscopes can be adapted with a
dichroic mirror placed before the objective lens, which deflects the trapping laser beam into
the lens while allowing the transmission of illumination light to a camera for sample imaging.
While commercial microscopes are user-friendly and optimized to minimize aberrations
in sample images, they offer limited customization possibilities and come with two main
limitations: Their optics are typically optimized for visible light, which could cause issues
when using infrared lasers, and the mechanical stability of commercial microscopes might
not meet the requirements for highly sensitive nanometer-scale experiments.
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Fig. 1.3 Schematic of different optical tweezers setups. The standard optical tweezers are
based on a highly focused beam and the position of the particle can be tracked with the
camera or with the quadrant photo diode (QPD). Raman tweezers couple a spectrometer to
the backscattered light in order to obtain chemical information from the trapped samples.
Speckle tweezers use a multimode (MM) fiber to generate a complex interference pattern
(speckle) that allows to trap particles at different positions. In the schematics, the light that
traps the particles comes from the laser while the light source (LS) is used for illumination.
In the inverted microscope setups (Standard and Raman tweezers) the light from the LS goes
through the condenser. The lenses (l), dichroic mirrors (DM) and multimode (MM) fiber
help us to shape and manipulate the laser beam while the quadrant photodiode (QPD), the
camera and the spectrometer allow us to obtain information from the trapped sample.

As an increasingly popular alternative, homemade microscopes can be constructed using
standard optomechanical components. Despite the challenges involved in their design and
construction, these custom microscopes offer several advantages. They provide straightfor-
ward access to all parts and can achieve exceptional mechanical stability through careful
material selection and design. Furthermore, homemade microscopes often prove more
cost-effective compared to their commercial counterparts.

Laser sources: The quality of the laser is a critical factor in achieving the tightly focused
spot necessary for optical trapping (the spot needs to be as close as possible to the diffraction
limit). Furthermore, good pointing stability is essential for maintaining a steady position of
the optical trap, while low power fluctuations are crucial for preserving a consistent strength
in the trap. These considerations extend to the choice of laser wavelength as well. For
those working with biological samples, care must be taken to select a wavelength that avoids



12 Principles of optical trapping

photodamage; this often leads researchers to prefer lasers within the first or second biological
windows. If working with metal particles, awareness of potential changes introduced by
plasmonic effects becomes vital. Balancing these factors ensures that the laser functionality
aligns with the requirements of the specific application, be it in biological or material contexts.

Particle tracking: Accurate particle tracking is essential for most measurements performed
with optical tweezers. There are two primary methods for measuring the particle position:
The first approach involves imaging the trapped particle using a CCD or CMOS camera,
while the second method utilizes detectors capable of measuring the spatial distribution of
intensity in the interference pattern formed between the light scattered by the trapped particle
and the unscattered laser light.

Since a typical optical tweezers setup comes already equipped with a digital camera,
the most straightforward way to measure the motion of a Brownian particle is by recording
a video of its position and then tracking it frame by frame. This widely used technique,
known as digital video microscopy [31, 32], finds widespread applications, particularly in
colloidal studies and systems with multiple particles. The applicability of the technique has
been further broadened with the integration of machine learning-based tools, which enhance
particle tracking capabilities [33]. However, this method has its limitations, particularly
in capturing rapid movements. The frame rate of the camera, which typically peaks at a
few thousand frames per second, constrains its ability to document high-speed phenomena,
underscoring the need for careful consideration in applications requiring the observation of
quick motions.

An alternative to digital video microscopy involves using the interference pattern resulting
from the interaction between the incoming and scattered fields [34]. By collecting this
pattern with a condenser and recording the signals using a quadrant photodiode (QPD) at the
condenser back-focal plane, it becomes possible to track the particle position based on the
changes in the intensity distribution of the interference pattern. While this approach is not as
straightforward as digital video microscopy and is limited to one particle, it comes with a
faster acquisition frequency which can be critical to capture the fast dynamics of the trapped
particle.

1.3 Calibration

Close to the equilibrium position, an optical tweezers system generates a three-dimensional
potential well that can be approximated by a harmonic potential. In this context, we will intro-
duce and examine three distinct methods—namely, Power spectrum analysis, Autocorrelation
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function analysis and FORMA—that can be employed to calibrate an optical trap utilizing
experimental data. For simplicity, in this chapter we will focus on spherical particles and in
situations where the friction coefficient γ is known. However, the presented methods can be
expanded to non spherical particles [35–37] and to situations where γ is unknown [38, 39].
It is important to note that while in digital video microscopy the conversion from pixels to
units of length can be straightforward upon a proper calibration, this is not necessarily the
case for QPD signals where we need to derive the calibration factor. In these examples we
solve the general case and we analyze measurements obtained with a QPD.

1.3.1 Power spectrum analysis

Power spectrum analysis is a commonly employed method for calibrating an optical trap,
particularly for spherical particles [40]. In the overdamped regime, the motion of a trapped
spherical particle can be described by the Langevin equations. If, for clarity, we consider
only the x direction, we have:

dx(t)
dt

+
kx

γ
x(t) =

√
2DWx(t) (1.12)

Fourier transforming Eq. 1.12 and calculating the square modulus of both sides we obtain
[4]:

P( f ) = 2|X̂( f )|2 = D
π2( f 2

c + f 2)
(1.13)

where the corner frequency is defined as:

fc =
kx

2πγ
(1.14)

Eq. 1.13 is the power spectral density (PSD) of the Brownian fluctuations of the trapped
particle. The fit with a Lorentzian curve provides both the corner frequency fc and the
diffusion coefficient Dexp. However, as the tracking signal is in Volt units, the experimentally
obtained power spectrum is in V2 · s units, so Dexp is related to the diffusion coefficient D in
length (m) units by the calibration factor

βx =

√
Dexp

D
(1.15)

which has V/m units. If the theoretical diffusion coefficient D is known, namely, if the
radius of the bead and the viscosity of the medium (and, thus, its temperature) are known, by
fitting the experimental power spectrum (which gives Dexp) the βx calibration factor can be
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calculated. Moreover, by using the corner frequency also the trap spring constant is obtained.
If this procedure is applied also to other directions (y and z), the full calibration of the trap is
obtained [4, 40], see Fig. 1.4 (a-c).

1.3.2 Autocorrelation function analysis

Autocorrelation function analysis is an alternative approach for the calibration of optical
tweezers. Besides, it has the advantage of being easily adaptable to the study of the complex
dynamics of non-spherical particles [35, 37, 41]. Given a quantity A which is a function of the
coordinates rN and momenta pN of N particles in a thermodynamic system, its autocorrelation
function is a measure of how much A at time (t + τ) depends on the value it had at time t,
that is

CAA(τ) = ⟨A(t)A(t + τ)⟩ (1.16)

In case of optical trapping, we are interested in the autocorrelation function (ACF) of
the particle position. In the following, we will restrict for simplicity to the x direction, but
similar results can be obtained for y and z direction. The particle position autocorrelation
function Cxx in the x direction is:

Cxx(τ) = ⟨x(t)x(t + τ)⟩ (1.17)

By using the overdamped Langevin equation, we find that

⟨x(t)x(t + τ)⟩=Cxx(0)e−ωxτ (1.18)

where ωx =
kx
γ

is the ACF relaxation frequency and Cxx(0) = ⟨x2(t)⟩ can be obtained by the
equipartition theorem [4], that is

1
2

kx⟨x2(t)⟩= 1
2

kBT (1.19)

obtaining a final expression for the autocorrelation function as

Cxx(τ) =
kBT
kx

e−ωxτ (1.20)

By fitting the ACF with a single exponential decay we calculate the trap spring constant
kx. Moreover, as the detector provides voltage signals Vx(t) = βxx(t), we have to calculate
the voltage/length conversion factor βx:
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CV
xx(τ) = β

2
x Cxx(τ) = β

2
x

kBT
kx

e−ωxτ (1.21)

and thus we obtain in V/m units:

βx =

√
CV

xx(0)kx

kBT
(1.22)

In the case of a spherical particle in 3D, all the formalism can be generalized to obtain the
trap spring constants ki and the corresponding conversion factors, provided that the drag
coefficient γ is known, see Fig. 1.4 (d-f). It is important to note that the two approaches
of the PSD and the ACF are equivalent, as the power spectral density of a signal is the
Fourier transform of its autocorrelation function (autocorrelation theorem, [42]). Thus, the
results obtained using the two approaches must be consistent. The choice of the calibration
approach is made on the basis of the experimental situation. PSD approach is particularly
useful when low frequency periodic noise, such as those due to electronic equipment or
mechanical vibrations, must be removed, as they are easily recognized as δ peaks overlapping
to the Brownian PSD. The ACF approach is more useful when the Brownian dynamics of
non-spherical particles must be studied.

1.3.3 FORMA

Power spectrum and autocorrelation function analysis have traditionally been the most used
methods to calibrate optical tweezers. However, they present some limitations as they require
sampling at regular time intervals and the stiffness obtained depends on the choice of the
parameters that are used for fitting the experimental data. FORMA [43] overcomes these
constraints by exploiting the fact that in the proximity of an equilibrium position the force
field can be linearized and then estimated using a maximum-likelihood estimator. Starting
from the overdamped Langevin equation (Eq. 1.12), it is possible to discretize it and express
the viscous friction force at a given n-th time interval as

fn = γ
∆xn

∆tn
=−kxn +σwn (1.23)

where σ equals to
√

2Dγ2

∆tn
and wn is a random number normally distributed with zero mean

and unit variance. Given that ∆xn
∆tn

and xn can be obtained from measurements as experimental
data sets, and that Eq. 1.23 is written as a linear regression model, it is possible to calculate
the parameters k and σ by means of maximum-likelihood estimators. In the case of the trap
stiffness k, the estimator can be expressed as [43] (see Fig. 1.4 (g-i)):
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k∗ =
∑n xn fn

∑n x2
n

(1.24)

Eq. 1.24 can be solved very fast as its computational solution benefits from the existence of
highly optimized linear algebra libraries. To provide a quantitative consistency check of the
quality of the estimation, it is possible to compare the theoretical diffusion coefficient with
the estimated one that can be computed from Eq. 1.23:

D∗ =
1
N ∑

n

∆tn
2γ2 ( fn + k∗xn)

2 (1.25)

FORMA, contrary to the power spectrum and autocorrelation methods, is also able to measure
complex and non conservative optical fields by expanding the ideas introduced here. More
information can be found on [43].

1.4 Applications

In this section, we provide an overview of recent developments in the applications of optical
tweezers and optical forces. We focus on a selection of systems that are particularly relevant
to this thesis, illustrating how optical trapping has emerged as a powerful tool to enhance the
study and understanding of diverse systems such as red blood cells, cosmic dust, microplastics,
and active particles.

1.4.1 Mechanical properties of red blood cells

Optical tweezers have found extensive use in the field of biological sciences, with one of
their most successful applications being the exploration and measurement of the mechanical
and elastic properties of red blood cells. While traditional blood tests typically emphasize
the chemical attributes, changes in the mechanical properties of red blood cells have been
associated with various pathological conditions [44, 45]. Very early in the history of optical
tweezers Ashkin et al. showed that red blood cells (and many other biological species)
could be trapped without optical damage using an infrared laser beam [46]. Subsequent
experiments aimed at determining their mechanical properties have used the direct trapping
method, or applied forces indirectly using optically trapped microbeads bound to the cell as
‘handles’. Nowadays, optical tweezers have been used to test several diseases that affect red
blood cells including malaria (plasmodium falciparum) [47, 48] and diabetic retinopathy [49].
Similarly, optical tweezers have been used to show the effects of drugs on the mechanical
properties of cell membranes [50].
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Fig. 1.4 Calibration methods applied to one measurement on the x, y and z directions. (a-
c) Power spectrum analysis .(d-f) Autocorrelation method. (g-i) FORMA method. Even
though the plots are for one single trajectory, the values of the trap stiffness k have been
averaged over ten different measurements. The trap stiffness obtained through the three
distinct methods shows strong agreement amongst them. As anticipated, the z component of
the stiffness possesses the lowest value, indicating that the trap is weaker in that direction.
The experimental data used for these calculations can be found at: github.com/brontecir/
ExerciseOpticalTweezers/tree/main/ProblemForAM_Book/Exercise

github.com/brontecir/ExerciseOpticalTweezers/tree/main/ProblemForAM_Book/Exercise
github.com/brontecir/ExerciseOpticalTweezers/tree/main/ProblemForAM_Book/Exercise
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1.4.2 Microplastics and cosmic dust

The ability of optical tweezers to isolate and control individual particles without physical
contact is instrumental in ensuring that samples remain uncontaminated, a key requirement
in the study of both microplastics [51] and cosmic dust [52].

In the realm of environmental science, microplastics have become a focal point due to
their widespread presence in ecosystems and potential impact on human health [53]. Optical
tweezers enable the isolation of individual micro and nano plastic particles [54, 55], allowing
for contamination-free investigation. Such insights are fundamental in assessing the broader
environmental and health implications of microplastics.

Concurrently, in astrophysics, optical tweezers offer a non-destructive, non-contact, and
non-contaminating approach to the study of cosmic dust particles [29, 56]. Optical tweezers
have the potential to trap dust particles in vacuum thus reproducing a microgravity environ-
ment and ensuring that the original characteristics of the dust particles are preserved. This
allows for accurate analysis of physical properties, light scattering behavior, and composition,
making optical tweezers an ideal tool for applications in curation facilities designed for
the uncontaminated handling and preliminary characterization of extra-terrestrial samples
returned by space probes.

The perspectives for optical trapping and manipulation of particles in space and on the
surfaces of planetary bodies, might still need some key improvements in experimental setups.
However, the current applications of optical tweezers in studying both microplastics and
cosmic dust underscore their versatility and potential. By facilitating single particle, non-
contact and contamination-free handling, optical tweezers continue to push the frontiers of
research in both fields, contributing to a deeper understanding of our world and the universe
beyond.

1.4.3 Active matter

Active matter refers to a diverse range of living and artificial systems capable of autonomously
performing work, including cargo transport, movement, and the application of forces, by
utilizing the energy present in their environment. These systems can exhibit remarkable self-
organization and collective dynamics (school of fish, swarm of birds, motility induced phase
separation), giving rise to complex emergent properties [57, 58]. In the context of optical
forces, our focus lies on active matter at the microscale, encompassing entities like bacteria
[59], sperm cells [60], and self-propelling colloids [61]. At this scale, Brownian fluctuations
exert a significant influence on the motion of these systems, while inertia becomes negligible
[62]. The control of active matter at the microscale poses challenges, and light-based methods



1.4 Applications 19

offer distinctive advantages. Optical forces leverage high energy density, precise spatial
and temporal control, the ability to tune different degrees of freedom independently, and
the efficient transfer of both linear and angular momentum to effectively manipulate these
microscale systems [63].

When light interacts with matter, both linear and angular momentum are transferred,
resulting in the generation of forces and torques exerted on the material. In many instances,
these forces and torques are employed to trap particles within a highly focused region, as
seen in optical tweezers and in the previous sections [4]. However, there is a growing interest
in utilizing these optical interactions to actively manipulate microscopic particles and induce
controlled motion. Recent research has explored the momentum transfer to propel tiny
vehicles by harnessing directional light scattering from plasmonic and dielectric surfaces
incorporated into the particles [64–66]. This approach generates sufficient lateral force to
drive the particles in a desired direction and the light-driven vehicles have been demonstrated
as capable of micro manipulating colloidal particles and micro-organisms [64]. Moreover, in
this thesis, we will explore how the shape of a particle can influence light scattering, thereby
inducing an optical force that propels the particle along a specific direction. Furthermore, we
explore the motion of these particles in complex optical landscapes (see Chapter 5).

While the focus of this thesis centers on exploring the momentum transfer between light
and particles, it’s important to acknowledge that light possesses other degrees of freedom
that can be harnessed to control active matter, including light intensity, wavelength, and
polarization. Among these, light intensity stands out as the most extensively used property
for manipulating active matter. Some micro-organisms have evolved to sense and respond
to light, adjusting their position and orientation to optimize photosynthesis efficiency [67].
Beyond naturally photoresponsive microorganisms, optogenetics has enabled the engineering
of bacteria to modulate their mobility and population density in response to light [68],
facilitating applications such as powering biohybrid microbots [69]. On the artificial side,
a prominent example of micromotors lies in Janus particles [70]. These colloidal particles
exhibit two different physico-chemical properties on their surface, this asymetry can be
exploited to induce self-propulsion due to local thermodynamic gradients [71, 72]. Light
intensity can be effectively utilized to induce such asymmetry and modulate temperature
profiles (e.g., when one side is coated with a light-absorbing material) [73] or concentration
profiles (e.g., by coating one side with a photocatalytic material) [74]. Combining different
wavelengths further enhances the versatility of these particles, allowing for more complex
behaviors. For instance, employing two hemispheres of a Janus particle with materials that
catalyze hydrogen peroxide over distinct wavelength ranges [75]. Furthermore, the integration
of optical forces and torques with light-induced thermophoretic effects adds complexity and
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richness to the particle’s dynamics, as will be explored in Chapter 4.. Polarization of light
has also been proposed as a tool to increase the level of control over active matter [63].



Chapter 2

Machine learning enhanced optical force
calculations

The calculation of optical forces traditionally faces a trade-off between speed and accu-
racy. In this chapter, we introduce machine learning to overcome this limitation, achieving
both faster and more accurate results. We validate this approach in the geometrical optics
regime using a spherical particle as an analytical ground truth. Thanks to the acceleration
facilitated by neural networks, we are now able to study the dynamics of ellipsoidal particles
and red blood cells in various optical trap configurations, a feat previously considered compu-
tationally unfeasible. Additionally, we explore the potential of machine learning with other
approaches, such as T-matrix, with an emphasis on microplastics. The image showcases a
comparison between the optical forces on a cylinder as calculated by traditional geometrical
optics and those determined using neural networks, adapted from [76].
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2.1 Machine learning for optical trapping

Several aspects of optical tweezers, which have been difficult to study theoretically due to
computational costs or modeling complexity, are now being addressed with machine learning.
This approach can enhance the calibration of optical tweezers [77] and improve particle
tracking [33]. Moreover, recent advancements in machine learning are benefiting real-time
control [78] and optimization in the design of optical tweezers setups [79]. In this chapter,
our focus is on the application of machine learning specifically for optical force calculations.
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Due to its complexity, the calculation of the forces generated by optical tweezers often
relies on approximations that depend on the size of the particle [4]. For particles larger
than the light wavelength, such as cells [80, 49], micro-bubbles [81], micro-plastics [55], or
metal-coated Janus micro-particles [82], these forces can be described using the geometrical
optics (GO) approximation. In this approximation, the light field is represented as a collection
of rays, and the momentum exchange between the rays and the particle is calculated via the
laws of reflection and refraction [2], see section 1.1.1.
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Even though GO force calculations are much faster than solving the full electromagnetic
theory, they are still prohibitively slow for many applications. Often, multiple force calcula-
tions are required for a single numerical experiment studying the dynamics of a particle in
an optical field. For example, to simulate the trajectory of a 2 µm ellipsoidal particle held
by a double trap in water that is sufficiently long to estimate its Kramers’ rates, one might
require ≈ 107 time steps and therefore force calculations. Since a single force calculation
with sufficient accuracy (i.e., with a large enough number of rays) requires about 0.1s, it
would take several days to obtain one single meaningful trajectory. GO calculations can be
sped up by decreasing the number of rays, but this compromises the accuracy.

There are alternatives to increase the speed of the calculation, but they come with their
own limitations. The force generated by an optical trap can be approximated by a harmonic
potential [83, 84]. However, while this is a good approximation for particles that remain
close to the equilibrium point, there are plenty of situations where it is clearly insufficient,
e.g., particles escaping an optical trap [85] or repelled by optical forces [86]. Another
approach could be to avoid the sequential calculation imposed by the random Brownian
motion by calculating the force in advance at different points in the parameter space and
then interpolating the forces at intermediate points [87]. This improves the calculations for
a sphere moving in 3 dimensions where a grid of 1003 previously calculated points would
suffice. However, the number of points that needs to be stored in memory grows exponentially
with the number of degrees of freedom (DOF), and as we consider more complex shapes and
configurations, the required grid points would easily surpass the current computer memory
storage capabilities (e.g., the position, orientation, size and aspect ratio of an ellipsoid of
revolution requires 7 DOF).

Recently, neural networks (NNs) have been demonstrated to be a promising approach to
improve the speed of optical force calculation for spheres using the T-matrix method [88].
NNs are able to use data to adapt their solutions to specific problems [89]. These algorithms
have proved to improve on the performance of conventional ones in tasks such as determining
the scattering of nanoscopic particles [90], enhancing microscopy [91], tracking particles
from digital video microscopy [92] or even epidemics containment [93].

In this chapter, we demonstrate that NNs can accelerate force calculations and, surpris-
ingly, enhance the accuracy of GO. Initially, we validate this for a spherical particle with 3
Degrees of Freedom (DOF), corresponding to the particle’s position, developing an analytical
solution for optical force applied by a focused beam. We then extend the study to 9 DOF
by encompassing relevant parameters for an optical tweezers experiment, such as refractive
index, particle shape, position, and numerical aperture of the objective. We utilize NNs to
accurately and efficiently map the dynamics of ellipsoidal particles in a double beam config-
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uration, a task previously considered computationally unfeasible. Furthermore, we apply this
strategy to train an NN for optical force calculations on red blood cells (RBC), enabling a
detailed exploration of their Brownian dynamics in different trapping configurations. This
is particularly promising as more efficient trapping reduces the risk of photo-damaging the
cells. In the final section of the chapter, we employ NNs to enhance optical force calculations
for micro and nanoplastics in the T-matrix regime. Although the use of optical tweezers
for trapping microplastics is relatively new, the contactless study of single micro and nano
particles makes this a promising tool. Rapid advancements in the theoretical understanding
of optimal trapping configurations (wavelength, power, light pattern, etc.) for different
microplastics are needed, and our work aims to contribute to this progress.

2.2 Modelling ellipsoid trapping

We employ NNs to calculate optical forces on ellipsoids in three different study cases. First,
we compare the traditional GO calculation to the NNs approach in the simplest case of
a sphere in an optical trap (3 DOF), where we have developed an analytical solution that
we can employ as ground truth, based on Ashkin’s original contribution but considering a
continuous distribution of rays instead of a discrete set. Second, we expand this to the case of
an ellipsoid (9 DOF), increasing the number of DOF to a value sufficient for most situations
people encounter when working with optical tweezers. In these two study cases, we show
how NNs are not only much faster but also more accurate than GO. Finally, we use this last
NN to explore the dynamics of ellipsoids in a double beam optical tweezers, a problem that
would have been computationally impossible to tackle with the conventional approach.

2.2.1 Sphere in a single trap

We start by studying the simplest case: we calculate the forces (Fx,Fy,Fz) applied by an
optical tweezers on a sphere as a function of its position (x,y,z), see Fig. 2.2(a). We repeat
this calculation with two different methods and compare them with the exact analytical
calculation. First we employ the conventional GO approach considering 100 rays (Fig.
2.2(b)). Second, we use these data generated with GO to train a NN with 3 inputs, 3 outputs,
and 5 hidden layers in between (≈ 104 trainable parameters, see Fig. 2.2(c)). The parameters
of the system are typical of an optical tweezers experiment: 2 µm sphere with refractive
index 1.5 in water, objective numerical aperture (NA) 1.3, and laser power 5mW.

The NN provides more accurate results than GO for the same number of rays. Both
GO and NN calculations show the expected equilibrium position close to the focus for both
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Fig. 2.2 Optical force calculations on a sphere. (a) 3D schematic of the sphere in an optical
trap. (b) GO schematic of the rays reflected and transmitted by the sphere. (c) Architecture
of a densely connected NN with an input layer (light red, particle position: x,y,z), an output
layer (light green, optical force: Fx,Fy,Fz), and i hidden layers (light blue) in between. Each
of the hidden layers has j neurons and all the neurons in each layer are connected to all the
neurons in the previous and next layer. In the model trained with 100 rays, i = 5 and j = 16.
(d,e) Optical force along the (d) x-axis and (e) z-axis calculated using GO (green solid line)
and NN (orange solid line), as well as exact model (black dashed line) obtained using the
analytical expression for spheres, see [76]. (f,g) The difference between the exact model
and the GO (green lines) and NN (orange lines) calculations along the two axes shows that
the NN is more accurate than GO, especially for Fz where the GO artifacts are more evident.
Image adapted from [76]
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transversal (x) and axial (z) directions, see Fig. 2.2(d,e). However, GO introduces artifacts
due to the discretization of the continuous light beam into a finite number of rays, see Fig.
2.2(a,b). We manage to remove the artifacts by designing a NN that is complex enough to
learn the smooth force profile, but not the superimposed fluctuating artifacts. This strategy
allows the NN to achieve an accuracy higher than that of the training data, see Fig. 2.2(f,g).

Fig. 2.3 Comparison of GO and NN for different numbers of rays. (a,b,c) GO calculation of
Fz in the xz-plane. The number of rays considered for each calculation is 100, 400 and 1,600
respectively. (d,e,f) NN predictions when trained with data generated with 100, 400, and
1,600 rays, respectively. (g,h,i) Difference between GO and NN, and the exact model across
the axis y = x = 0 (dashed region in (a) and (d)). (j) Average error of GO and NN with the
exact model in the calculation of Fz across the axis x = y = 0 for 100, 400, and 1,600 rays.
The NN is always more accurate than GO for an equivalent number of rays. Furthermore,
even the NNs trained with the least amount of rays (100) are more accurate than GO with the
most amount or rays (1,600). Image adapted from [76].

We can improve the accuracy of GO by increasing the number of rays. To illustrate
this, we now focus on the axial force Fz (light going towards positive z) across the xz-plane.
Fig. 2.3(a-c) shows the force calculation with GO for different number of rays. All the
calculations retrieve the expected result of an equilibrium point close to the focus, positive
force (blue) below the focus and negative force (red) over the focus. However, there are some
artifacts that depend on the number of rays and that affect the accuracy of the calculation.
Comparing the GO calculations with the analytical ground truth, see [76], we obtain the
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Table 2.1 Calculations per second for the sphere with 3 DOF

GO NN (CPU) NN (GPU)
100 rays 50.4±0.5 407±2 54100±300
400 rays 32.1±0.3 405±2 54400±200

1,600 rays 16.8±0.1 532±3 59700±400

anticipated results: higher number of rays result in a lower error (see Fig. 2.3(g-i) where the
solid green line corresponds to the error of GO against the exact analytical model). On the
other hand, the NN (Fig. 2.3(d-f)) provides more accurate results than GO even when trained
with data obtained with a lower number of rays (Fig. 2.3(g-i) where the solid orange line
represents the error of the NN). Furthermore, compared with our exact solution across the
z-axis, even the NN trained with 100 rays is more accurate than the GO considering 1,600
rays, see Fig. 2.3(j).

The NN is not only more accurate (Fig. 2.3), but also much faster than GO. GO reaches a
calculation speed of around 50 calculations per second when considering 100 rays, and this
speed decreases down to 17 calculations per second for 1,600 rays. The calculation speed by
using our trained NN is between one and two orders of magnitude faster, see Table 2.1. The
calculation speed of the NN does not depend on the number of rays used in the training set,
but on the network architecture and on its number of trainable parameters. If we consider
many particles, many beams, or we run many simulations at the same time, we can benefit
from the straightforward implementation of the NN in the GPU to increase the speed by
another two orders of magnitude.

2.2.2 Ellipsoid in a single trap

We now consider a more complex case with more DOF: We include different positions (x,y,z),
orientations (θ and φ , corresponding to the angle of the major axis with the z direction and
to the angle between the x direction and the projection of the major axis in the xy-plane),
length of the major axis (c), aspect ratios (AR), refractive indices (np) of the particle, and
different numerical apertures of the objective (NA), see Fig. 2.4(a). The forces and torques
are computed using GO considering 400 and 1,600 rays, see Fig. 2.4(b). The data generated
with GO is used to train a NN with 9 inputs (corresponding to the 9 DOF) and 6 outputs
(Fx,Fy,Fz,Tx,Ty,Tz), see Fig. 2.4(c). The architecture and the range of validity of the trained
NN are defined in section 2.5. To account for the higher complexity of the problem, the
training data is increased up to 2.5 · 107 points, a number larger than that for the sphere
but much smaller than the prohibitive ∼ 1009 points that would have been required for the
interpolation approach previously discussed. The NN trained with data generated with 1600
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rays has more trainable parameters so it can benefit from the increased accuracy in the GO
calculation.

Fig. 2.4 Optical forces calculations for an ellipsoid. (a) 3D schematic of the ellipsoid in
an optical trap. (b) GO schematic of the rays reflected and transmitted by an ellipsoid. (c)
Architecture of a densely connected NN with an input layer (light red), an output layer (light
green), and i hidden layers (light blue) in between. Each of the hidden layers has j neurons
and all the neurons in each layer are connected to all the neurons in the previous and next
layer. In both NNs j = 384 but the for the one trained with 400 rays i = 5 while in the
one with 1,600 rays i = 8. (d-i) GO and NN calculations of Fx (d,e,f) and Ty (g,h,i) in the
xy-plane at z =−3.0 µm . The parameters chosen for the plots have been selected randomly
across the space of parameters for which we have trained the NN. The major semiaxis (c)
of the ellipsoid is 3.7 µm long, the aspect ratio (AR) is 1.5, and its orientation is determined
by θ = 1.03rad and φ = 2.14rad. The refractive index (nP) of the particle is 2.5 and the
numerical aperture of the objective 1.2. Image adapted from [76].

Similarly to what we observed for the sphere, the NN improves the accuracy and drasti-
cally increases the speed when compared to GO. Even though in this situation we do have
no ground truth to compare the accuracy of the different methods as there is no equivalent
for ellipsoids of the analytical expression obtained in [76], we can compare the results with
400 rays against those with 1,600 rays. Differently from the case of the sphere, we can now
explore all the 9 DOF. Selecting a random xy-plane in the 9 DOF space of parameters, the
NN trained with 400 rays obtains the expected profile of the forces, see Fig. 2.4(d-f), and
the torques, see Fig. 2.4(g-i), note that there is a non zero torque at x = y = 0 because the
major axis of the ellipsoid is not aligned with the beam. The NN overcomes the accuracy of
the training data even when trained with only 400 rays. Like in the previous example, the
NN improves the calculation speed by 1-2 orders of magnitude when using the CPU and two
more orders of magnitude when using the GPU (see Table 2.2).
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Table 2.2 Calculations per second for the ellipsoid with 9 DOF

GO NN (CPU) NN (GPU)
400 rays 9.62±0.06 404±1 50200±300

1,600 rays 5.59±0.02 297±1 43400±1400

2.2.3 Ellipsoid in a double trap

We can now explore the dynamics of an ellipsoid in a double trap by enhancing the calculation
using the previously described NN. In a microscopic system, transitions between different
equilibrium points can be induced by thermal fluctuations that allow the system to overcome
the potential barrier. These transitions play a key role in electronics [94], physics [95] and
biology [96], and optical tweezers have become an useful tool to study them [97–100]. While
these previous studies have focused on spherical particles, considering different shapes could
enrich the dynamics of these systems. However, these simulations often require a lot of
repetitions of the force calculation, which with the conventional GO becomes prohibitively
slow. In this situation, traditional approaches to speed up the calculation become unfeasible.
We cannot consider the interpolation approach due to the high number of DOF of the system
and we cannot use the harmonic approximation because of the broken assumption of small
displacements around the equilibrium point. Therefore, we employ our trained NN to
overcome these issues and achieve a fast and accurate calculation of optical forces. Since
there are two focused beams, we first calculate the force and torque applied by each of them
using the trained NN and then add both contributions to obtain the total effect on the particle.
See section 2.5 for details about the simulation of the dynamics.

On the single-trajectory level, we observe the expected results for the dynamics of an
ellipsoid in a double trap (Figs. 2.5(a,b)). The particle remains with its long axis aligned
along the direction of the beam (color coding of Fig. 2.5(c)), which is typical for this kind
of elongated structures [101, 102]. Apart from the focuses of the two traps, an additional
equilibrium point emerges in between (densely explored region around x = y = 0 in Fig.
2.5(c)). Furthermore, when looking at the trajectories (Fig. 2.5(c-f)), the particle center
remains confined around the origin of the x-axis (as expected), jumps between the two traps
and an intermediate equilibrium point along the y-axis, and it is slightly displaced towards
the positive values of z-axis due to the scattering force as it has already been observed
experimentally [97].

Powered by the fast NN calculation, we can simulate many trajectories as the ones
presented in Fig. 2.5 and explore the statistical properties of the dynamics. Exploring
different configurations of parameters, we study how the equilibrium points and the Kramer’s
rate (ωK) depend on the aspect ratio (AR) and on the distance between traps (d). We focus
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Fig. 2.5 Simulation of the dynamics of an ellipsoid in a double trap. (a) 3D schematic of
an ellipsoid in a double trap (b) GO schematic of the rays reflected and transmitted by an
ellipsoid in a double trap (c) Simulated 2-minute trajectory of an ellipsoid in a double trap.
The color codes the orientation of the long axis of the ellipsoid with respect to the beam. The
ellipsoid has a refractive index of 1.5, its major semiaxis is 4.2 µm, and its short semiaxis
is 1.5 µm. The distance between the two beams is 1.24 µm, the intensity of each of them is
0.25mW, and the NA of the objective focusing the light is 1.30. (d,e,f) show a 20-second
trajectory of the center of mass along the x-, y-, and z-direction, respectively. The dashed
purple lines correspond to the position of the focus of the beams in each of the axes. Image
adapted from [76].

first on the dependence with d. Regarding the equilibrium points, in the state diagram we
can distinguish three different regions, see Fig. 2.6(a). When the traps are close to each other
they behave as a single one with the particle trapped in between. By increasing the separation
between traps (d) the probability distribution starts widening until reaching a region with 3
equilibrium points. Separating even further the traps, the intermediate equilibrium position
disappears and eventually the traps behave independently. The behaviour of the ellipsoids
(Fig. 2.6(b)) is very similar to what was predicted and observed for spheres [98]. Regarding
the dependence of ωK with d, the transition rate reaches a maximum in the region where
the system transits from three to two equilibrium points, see Fig. 2.6(c). We now focus
on the dependence of the equilibrium points and ωK on AR, i.e., understanding how the
change in shape affects the dynamics of the particle. Fixing d = 1.3 µm, the two farthest
equilibrium points come closer to each other when increasing the length of the ellipsoid.
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Fig. 2.6 Dynamics of an ellipsoid in a double trap changing its aspect ratio (AR = c/a) and
the distance between traps (d). NA = 1.3, nP = 1.5, a = b = 0.75 µm are kept constant over
the simulation, the particle is in water at 20◦C and the intensity of each beam is 0.25mW.
Notice that while the length of the axes a and b is fixed, as we change c and the AR we also
change the volume of the ellipsoid. (a) State diagram in the AR−d parameter space. The
parameter d samples the space from the situation where the two traps behave as one to the
situation where the two traps are completely independent of each other. The AR ranges from
1 (a sphere) to 4 (ellipsoid). The three coloured regions correspond to 1 (blue), 3 (gray),
and 2 (green) equilibrium points, the purple dashed line indicates the transitions between
regions. The insets show the probability distribution averaged over 100 trajectories. In (b,c)
we study the situation where AR is fixed to 2.8 and we change d while in (d,e) d is kept
constant to 1.3 µm and we vary the AR. (b) Position of the equilibrium points vs d. The
purple dashed line indicates the trap position. (c) Kramer’s rate (ωK) vs d. (d) Position of the
equilibrium points vs AR. The purple dashed line indicates the trap position. (e) ωK vs AR.
Image adapted from [76].

Moreover, a third equilibrium point emerges for an intermediate region of lengths, see Fig.
2.6(d). Studying ωK, it increases with the length of the ellipsoid until reaching a maximum
and remaining approximately constant, see Fig. 2.6(e). It is known that the stiffness of the
trap in the beam direction decreases with the length for elongated structures [103–105]. This
decrease in the stiffness (see Supporting Information, “Trap stiffness dependence on the
aspect ratio” in [76]) makes the particle more likely to reach the transition region as described
for spheres in [97] and therefore the Kramer’s rate increases.

It is worth noting that while a NN with many Degrees of Freedom (DOF) is valuable
for approaching systems and studying their dependence on various parameters, the increase
in generality can lead to a slight decrease in both accuracy and calculation speed (though
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it still outperforms GO), as well as requiring longer training (more data needed). In our
study of the dynamics of the ellipsoid in a double trap, we did not employ the full potential
of the NN as we kept certain input parameters of the NN constant (such as NA , a, and
np). However, even in this non-optimal situation, we have demonstrated that it is possible
to train a single NN that accounts for all the DOF of a typical OT experiment, enabling
the study of new problems. If the reader wishes to explore specific situations where most
of the DOF remain fixed, designing more tailored NNs might be beneficial. The trained
NNs and a tutorial showing how to use them have been prepared and are available online:
https://github.com/brontecir/Deep-Learning-for-Geometrical-Optics

2.3 Modelling red blood cell trapping

Red blood cells (RBCs), also known as erythrocytes, play a crucial role in delivering oxygen
to tissues and organs in the human body. The elasticity of the RBC membrane is closely
associated with the proper functioning of the microcirculation. When the membrane elasticity
is compromised, it can lead to severe dysfunctions such as the blockage of capillaries,
resulting in tissue necrosis, organ damage, and failure [106].

In recent decades, OT have emerged as a valuable tool in RBC research, allowing scientists
to investigate the biochemical and biophysical properties of both healthy and unhealthy RBCs
using single- or multi-beam OT techniques [107]. Since RBCs are significantly larger than
the incident wavelength (typically infrared light around 1064 nm), the geometrical optics
approximation effectively describes the interaction between the laser beam and the cell
[108–110]. However, as in the case of the ellipsoids, this approximation poses a trade-off
between calculation speed and accuracy.

In this section, we present a novel approach that utilizes a NN to enhance the speed and
accuracy of optical force calculations for RBCs. This approach enables a more comprehensive
exploration of the Brownian dynamics of RBCs, facilitating the study of various trapping
configurations. By identifying more efficient trapping configurations, we can minimize the
laser power required and, consequently, reduce the risk of photo damage to trapped cells—a
critical concern when working with biological samples.

2.3.1 Single trap

To evaluate the effectiveness of our approach, we begin by testing the ability of the NN to
predict the forces and torques acting on an RBC in a single beam OT (SBOT). We compare
the NN predictions (trained with data generated using 4×102 rays) and the GO calculations

https://github.com/brontecir/Deep-Learning-for-Geometrical-Optics
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considering 4 times more rays (1.6×103 rays) at 1×105 random positions and orientations.
The 2D density plots shown in Fig. 2.7-c and -d illustrate the agreement between the NN and
GO in predicting the optical forces (regression coefficient 0.998, R2 = 0.996) and torques
(regression coefficient 0.999, R2 = 0.996), respectively. Although there is no ground truth for
this situation, we can assess the accuracy of the NN by comparing the NN (trained with data
generated with 4×102 rays) with the GO calculation (considering a greater number of rays).
Fig. 2.2-e shows the normalised root mean squared error (NRMSE) between the predictions
of the NN trained with 4×102 rays and the GO calculations with different numbers of rays
(up to 5×103 rays). The NRMSE decreases as the number of rays increases. The forces and
torques calculated with 5×103 rays result more similar to the NN output than to the forces
obtained with a total of 4×102 rays, meaning that the NN is able to increase the accuracy of
the force and torque prediction, even for an object with such a complex shape.

2.3.2 Double trap

Since the NN is trained for a SBOT, one may think it can only predict the optical forces and
torques for a SBOT. However, similarly to what we did for the ellipsoid in the double beam
configuration, the NN can be used multiple times to simulate multi-beam optical tweezers.
In fact, the NN can predict the forces generated by a single beam on different locations on
the cell, and the total force acting on the centre of mass of the cell may then be calculated as
the vector sum of each contribution. The experimental implementation of a multi-beam OT
setup presents greater challenges in the beam alignment, power balance and beam control
compared to a single-beam configuration. However, recent advancements in the field of OT
and beam shaping techniques have made it possible to realize the potential of multi-beam
OT in experimental setups [112, 113, 4]. Here we consider a double-beam optical tweezers
(DBOT) where the two beams geometric foci are positioned 5.06µm apart along the x-axis,
similar to the experiments conducted by Agrawal et al. [49], Fig. 2.8(a). To the best of
our knowledge, the cell configuration observed by Agrawal et al. is the only one observed
experimentally when a DBOT is employed for trapping. Indeed, optical torques and forces
are responsible to maintain the positional and orientational equilibrium of the cell. In fact,
for any displacements from the equilibrium configuration restoring torques/forces act on the
cell pushing it back to the equilibrium position and orientation.

Fig. 2.8(b-c) shows Tx(α) and Fx(x) calculated with GO and predicted with the NN for
a cell in its folded configuration (i.e., cell major axis parallel to the optical axis) trapped
in a DBOT. In both cases, the NN predictions (solid line) agree well with the GO method
(dots), demonstrating the possibility to use the NN for multi-beam optical traps. We therefore
conclude that this approach can be extended to predict forces and torques generated by a
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Fig. 2.7 Optical forces applied on a red blood cell by a single beam. a) Definition of particle
(yellow) and laboratory (white) reference frames and rotation angles (α , β , γ) of the cell
around the laboratory reference frame; b) schematic depiction of the neural network. The
input layer contains six neurons describing the cell position and orientation, and the output
layer has six neurons describing the components of force and torque acting on the cell. In
between are seven hidden layers (i = 7), each of them with 256 neurons ( j = 256). c-d)
Density plots comparing the magnitude of the total force (FNN

tot ) and torque (T NN
tot ) predicted

with NN with those calculated with the GO method (FGO
tot ) and (T GO

tot ). Regression lines
are shown in red. e) Log-Log plot of the normalised root mean squared error (NRMSE)
between FNN

tot and FGO
tot , and T NN

tot and T GO
tot as a function of the number of rays used in the GO

calculation. For each data point, the NN employed remains the same (trained with 4×102

rays). Image adapted from [111].

three- and four-beam OT, situations in which the GO calculation is considerably slower given
the very large number of light rays required.

We now investigate the cell dynamics within a DBOT using both NN and GO to compute
the optical forces. The simulation of the Brownian dynamics follows the strategy explained
in the Methods section (Particle dynamics simulation) where now the force and torque
considered is the sum of the contributions of each of the beams. Fig. 2.8(a)-(d) shows the
probability distribution of the centre of mass of the cell for a total simulation time of 5s,
while Fig. 2.8(e) shows the orientation of the cell with respect to the fixed reference frame as
a function of the simulation time. It is important mentioning that in the current configuration
a rotation around the y-axis (β ) would be a rotation around the cell axis of symmetry and



2.3 Modelling red blood cell trapping 35

x

y

z

a b

c

d
e

Fig. 2.8 Red blood cell trapped in a double beam configuration. a) Schematic depiction of an
RBC trapped by a double-beam OT. b-c) Comparison between the GO calculation and the
NN prediction for the b) torque-rotation curve for rotation around the x-axis and c) force-
displacement curve along the x-direction. (d) Comparison of the probability distribution
obtained with the GO calculation and with the NN prediction for a RBC in a DBOT. (e) Cell
orientations in the numerical simulation for both GO and NN. Image adapted from [111].

therefore completely irrelevant. By extracting the average values for each degree of freedom,
it is possible to compare the final equilibrium configuration obtained with the NN and with
GO. Indeed, the average values obtained with the predictions of the NN match the ones
obtained with GO methods and agree well with previously reported values [111], see Table
2.3.

Moreover, the biggest advantage of using the NN for numerical simulations is a consistent
decrease in the simulation time required to achieve the same precision (the NN is two orders
of magnitude faster). Since the NN shows a higher computational efficiency, hereafter, we
make use of the NN prediction to simulate the Brownian dynamics of an optically trapped
RBC.

We therefore move to extract quantitative information on the trap constants. Initially we
analyse the hydrodynamics of the RBC, since non-spherical particle could have an intrinsic
roto-translation coupling due to their peculiar shape [114]. In our case, the diffusion tensor
D does not show any strong roto-translation coupling; therefore, we do not expect to find any
strong correlation in the cell motion intrinsically due to the RBC hydrodynamic interactions.
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Table 2.3 Equilibrium position and orientation for a RBC in a double-beam OT as found with
GO and NN.

GO NN
x2,eq(µm) 0.01±0.05 0.01±0.05
y2,eq(µm) 0.00±0.05 0.00±0.04
z2,eq(µm) −0.20±0.08 −0.18±0.08
φ2,eq(

◦) 90.65±2.11 90.27±1.44
θ2,eq(

◦) −90.45±1.06 −90.09±0.92

Still, optically trapped non-spherical particles could show roto-translation coupling in their
motion as previously observed by others. In this framework, the normalised auto-correlation
function (ACF) has been successfully used to extract quantitative information about the
trapping constants [115, 116].

We first evaluate the spatial ACFs
(
Cxx (τ) ,Cyy (τ) ,Czz (τ)

)
of the particle centre of

mass trajectories. Cxx (τ) and Czz (τ) decay as a single exponential with characteristic decay
frequencies ωx = 28 s−1 and ωz = 6.4 s−1. Contrariwise, Cyy (τ) is well fitted with a double
exponential with characteristic frequencies ωy,1 = 42 s−1 and ωy,2 = 2.7 s−1, Fig. 2.8-a.
We associate the fast decay rate to the translation, while the slower decay can be related to
rotation around the x-axis (α) induced by a motion along the y-direction. The values of the
normalized cross-correlation function between α and y at zero time lag (Cαy(0) =−0.368)
further confirm a roto-translation coupling, Fig. 2.9-c and see [117]. Fig. 2.9-b shows
a density plot of the rotation around the x-axis (α) as function of the motion along the
y-direction. Here it can be seen a moderate negative correlation which suggests that the
RBC rotates as it moves away from yeq,2, and undergoes to an “oscillating” motion about the
equilibrium configuration where it is stably confined. To better comprehend this correlation
we calculate Fy (α) (Fig. 2.9-d) and τx (y) (Fig. 2.9-e) which undoubtedly shows the coupling
between the motion along y and α . Actually, the cell in its “folded” position (i.e. α = 90◦) is
constantly subjected to a force along the y-direction that moves the particle away from yeq,2

which in turns induces a rotation around the x-direction. On the other hand, as extensively
described by Tognato et al., the transverse forces and torques components confine the cell
in its “folded” configuration [110]. The overall consequence of these stable and unstable
equilibria is a “circulating motion” of the cell within the optical trap about the equilibrium
configuration. This would suggest that the coupling is intrinsically due to particle shape and
to the optical trap rather than to the hydrodynamic of the particle.

Lastly, we extract average values and the standard deviations for the force constants
(k2,x =

ωxkbT
Dxx

= 0.166±0.024 pN
µm·mW , k2,y =

ωykbT
Dyy

= 0.218±0.025 pN
µm·mW , k2,z =

ωzkbT
Dzz

=

0.005 ± 0.001 pN
µm·mW). These values are in excellent agreement with a previously re-
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Fig. 2.9 Analysis of the double trap configuration. a) Translational autocorrelation function.
The solid lines are exponential fits. Cxx (t), Czz (t), decay as single exponential while Cyy (t)
as double exponential. b) y−α correlation shown as density plot. c) Normalised cross-
correlation function between the rotation around the x-axis (α) and the y-displacement (red
line exponential fit). Both Fy (α) d) and Tx (y) e) reveal unstable equilibrium when the cell is
tilted of 90° around the x-axis (i.e. RBC in its folded position). Image taken from [111].

ported work [110]. Similarly to the translational motion, we calculate Cαα (τ) and Cγγ (τ).
Cαα (τ) and Cγγ (τ) decay as a single exponential and the respective trap constant are:
kα = ωα kbT

Dαα
= 0.352± 0.096 pN·µm

rad·mW and kγ =
ωγ kbT

Dγγ
= 1.587± 0.382 pN·µm

rad·mW . We do not
analyse the dynamics around β since the cell is not confined about this axis.

2.3.3 Triple trap

As previously suggested, one of the greatest advantage of using a NN instead of GO is the
significant lowered computation time, especially when a very high number of light rays
is needed (e.g. a triple- or four beams optical tweezer). Now, we exploit this feature to
investigate the equilibrium orientation and position of a RBC with a reconfigurable triple-
beam OT.

If directly trapped, a healthy biconcave RBC can assume two different and alternative
orientations within the optical trap depending on the number of beams used for trapping
[107, 110]. In a double-beam OT, the major axis of a RBC is parallel to the optical axis
and the beam foci are contained in the cell, known as “folded” configuration [49]. On the
contrary, if three or four beams arranged in symmetric configurations are used (i.e. beams
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foci on the vertex of equilateral triangle or a square), the major axis of the cell is confined to
be orthogonal to the optical axis (i.e. α = 0◦), configuration referred to as ‘flat’ configuration
[118]. Here, we sought for alternative (and intermediate) RBC equilibrium configurations in
respect to the well-known “folded” and “flat” ones.

We consider a trap configuration that is intermediate to those able to trap the cell in
its “folded” or “flat” configuration. We consider a triple-beam optical tweezers (TBOT)
composed by three identical and tightly focused Gaussian laser beams. Two beams are
always arranged along the x-axis in a diametrically opposite location on the thickest portion
of the cell (white crosses in Fig. 2.10-a). A third beam (yellow cross in Fig. 2.10-a) can be
translated over the thickest portion of the cell and is used to counteract Tx generated by the
two fixed beams. For simplicity, henceforth, the position of the moving beam is described by
a polar co-ordinates system in the x− y plane. Its location is defined by a single angle (ζ ),
and the distance from the origin is fixed and equal to the radius of the thickest portion of the
cell (2.76µm), Fig. 2.10-a.

Next, we proceed with the identification of the positional and translational equilibria. As
a first step in our investigation, we simulate a force-field acting on the cell for ζ = 45◦ to
appreciate the effect of the potential landscape on the RBC. In this simulation, the cell is
in its “flat” configuration and located at z = 0. It can be seen that the light pattern creates
a very complex force-field (Fig. 2.10-b). Non-negligible optical forces act simultaneously
along the x− and y-direction for every location of the cell. The complexity of the force-field
makes it extremely difficult to identify the equilibrium positions (i.e., point in space where a
specific force component vanishes with negative slope). This process would require several
reiterations for every degree of freedom, rendering the process labour intensive. However,
we note that if a particle is subjected to an optical potential and it falls into the equilibrium
position/orientation, it would be possible to identify the equilibrium configuration studying
its dynamics as suggested by Cao et al [119].

From symmetry arguments, the effect of different locations of the third beam can be
understood restricting ζ in the interval [0◦,90◦] as schematically depicted in Fig. 2.10-a.
Moreover, since we are looking for alternative equilibrium configurations (or to a transition
from a “flat-like” to “folded-like” configuration), it is also rational to disregard every position
where two beams are too close to each other (i.e. ζ < 15◦), which should induce a “folded”
configuration. Thus, the position of beam 3 can be restricted to 15◦ ≤ ζ ≤ 90◦. To evaluate
the effect of the reconfigurable optical trap, ζ is sampled every 15◦, and for each ζ the
Brownian dynamics are simulated for a 10 s trajectory starting from a RBC positioned in its
‘flat’ configuration (θ = 0◦ and φ = 0◦) centred at (0,0,0). The simulation finishes once the
cell equilibrates around a stable position and orientation. The final position and orientation
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Fig. 2.10 Red blood cell trapped in a triple beam configuration. a) Schematic depiction of
the triple-beam optical trap and the polar co-ordinates system used to identify the position of
the moving beam, and respective beam definition as beam 1, 2 and 3. (b) Force-field acting
on the RBC located on a grid of coordinates in the x-y plane for ζ = 45◦. The colour code
indicates the total force acting on the x-y plane, while the grey arrows indicate the direction
of the force. (c) Three-dimensional trajectories of the cell centre of mass over a simulation
time of 10 s for different ζ , and the average values for the last second of simulation. d) Polar
(φ ) and e) azimuthal (θ ) orientation of the RBC as a function of the simulation time. Average
orientations are measured over the last second of the simulation. The error bar represents
the standard deviation. f,g) Final equilibrium configuration for a RBC in the reconfigurable
triple beam optical trap for ζ = 15◦ and 90◦ respectively. The blue dot indicates the center
of mass of the RBC while the red stars indicates the beams’ foci. The numbers indicate the
position of each of the beams. Image taken from [111].
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are then shown as the average position and orientation with the standard deviation of the last
second of the simulation.

Fig. 2.10-c shows the 3D trajectories of the RBC’s CM obtained from the simulations
carried out for different ζ . Here, while x and y equilibrium positions remain close to the
origin for different angles, the equilibrium in z does depend on ζ . In particular, for ζ < 30◦,
zeq < 0µm and for ζ > 45◦, zeq > 0µm, Fig. 2.10-c. We anticipate that for ζ ≤ 30◦, the cell
is in its “folded” configuration, Fig 4-d and Fig. 2.10-f. This is due to a combination of the
light intensity distribution and the cell configuration within the trap. In fact, when the cell is
in its “folded” position, the cell’s major axes are parallel to the direction of propagation of the
light beam. In this condition, more highly converging “light rays” strike the biggest faces of
the RBC. This increases significantly the gradient force (Fg). Simultaneously, while in folded
position, the scattering force (Fs) decreases appreciably because of the smaller geometrical
cross-section of the cell. However, if ζ increases, this effect is less pronounced since the
light rays strike the cell less symmetrically, and for ζ = 30◦, zeq ∼ −0.2µm. Conversely,
for ζ ≥ 45◦ a net shift in the axial position is evidenced (zeq ∼ 0.8µm), and this is due to a
sequential shifting from the “folded-like” configuration to a “flat-like” configuration, Fig.
2.10-c and Fig. 2.10-d.

Much more interesting is the analysis of the rotational equilibrium. In Fig. 2.10-d are
shown the polar orientation (φ ) of the cell as a function of the simulation time for different
locations of the moving beam (i.e. various ζ ). It is evident that ζ strongly influences the final
polar orientation of the cell, Fig. 2.10-d. In particular, as beam 3 approaches beam 2, the cell
tilts more until it reaches the “folded” configuration (i.e. φ = 90◦) for ζ = 30◦. Analysing
the final orientation of the cell in more detail, it is possible to discriminate between three
different regions. When the two beams are close to each other, ζ ≤ 30◦, the cell is in the
“folded” configuration. If 30◦ ≤ ζ ≤ 75◦, the RBC’s tilting seems to vary linearly with ζ ,
from a “folded-like” configuration to “flat-like” configuration. The last region is for ζ ≥ 75◦,
where the cell tilting cannot be decreased further, Fig. 2.10-d. It is also interesting to note
the minor effect that ζ has on θ . Here, we define θ = 0◦ when zp (defined in Figure 1-a) is
pointing along the positive x-direction. For example, in the simple case of a double beam
optical tweezers, the cell plane point towards the positive (θ = 90◦) or negative (θ = 90◦)
y-axis. Either direction are equally plausible due to the symmetry of the cell. Therefore,
in the case of a triple beam optical tweezers, the induced cell rotation around the z-axis is
relatively small for different location of beam 3. In fact, the cell rotates at most of ≈ 10◦.
Yet, the rotation can be explained with the tendency of maximizing the overlapping volume
between the trapped particle and the illuminating beam in order to minimize the energy of
the system. This can be well understood in the discrete dipole approximation. In particular,
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for ζ = 45◦ it is possible to obtain the highest cell’s tilting around the z-axis, Fig. 2.10-e.
For every other ζ , the tilting of the RBC around the z-direction decreases towards θ = 90◦.

2.4 Microplastics trapping

Microplastics, defined as plastic particles with dimensions below 5 millimeters [51], pose a
significant environmental threat due to their widespread distribution in various ecosystems,
including oceans and freshwater bodies. The potential for transfer through the trophic chain
[53] makes them a source of contamination at all trophic levels, raising concerns about
potential impacts on human health. Thus, conducting a comprehensive study of microplastics
is essential to assess their sources, distribution patterns, and ecological implications, as well
as to formulate effective strategies for environmental protection and human well-being.

Notably, existing surveys have primarily focused on particles with sizes ≥ 20µm [120–
123], with limited reports addressing the sub-20µm fraction [124, 125]. Recently, Raman
tweezers have emerged as an efficient tool to study small microplastics and nanoplastics
[54, 55]. In this section, we utilize machine learning techniques to improve the calculation of
trapping stiffness for microplastics with different refractive indices and radii ranging between
50 and 1000 nm. Given that the size of these particles is comparable to the wavelength
(785 nm) of the trapping laser, we employ the T-matrix approach for the calculations [126].
Despite the fact that T-matrix provides accurate results, such calculations can be extremely
computationally demanding.

In our study, we demonstrate the remarkable capability of NN to accurately predict trap
stiffness values for microplastics with radius and refractive index values never encountered
during training. The training dataset available to the NN is relatively small, comprising 156
data points (39 points for each of the four different refractive indices: 1.4, 1.5, 1.6, and
1.7, distributed between 50 and 1000 nm radius), as shown in Fig. 2.11(a). This data set
is generated for a laser power of 1 mW and an objective with a NA of 1.3. Despite this
limited dataset, the NN, see architecture in section 2.5, is able to effectively generalize and
successfully predict trap stiffness values for different values of refractive indices (1.45, 1.55,
and 1.65). As depicted in Fig. 2.11(b), the NN predictions (represented by the dashed line)
align precisely with the exactly calculated data points (purple stars).

Moreover, it is noteworthy that the NN’s prediction extends effectively to intermediate
radii, as illustrated by the red data point in Fig. 2.11(b). The NN captures the intricate
variations in the "fine" structure of the trap stiffness, outperforming traditional methods
like linear interpolation. This ability of the NN to adapt to previously unseen data points
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Fig. 2.11 Stiffness of microplastics trapping using a 785 nm laser with 1 mW power, focused
through a 1.3 NA objective. (a) Transverse stiffness as a function of radius for different
refractive indices, calculated using the T-matrix approach. This dataset represents all the
available data used for training the NN. (b) The scatter points represent exact stiffness
calculations for specific refractive indices and radii, while the dashed lines indicate the NN
predictions. The black scatter points correspond to the data shown in panel (a), whereas
the purple stars represent data that the NN has not encountered during training. Notably,
the NN exhibits remarkable generalization ability. The NN prediction matching the red
point obtained with the exact calculation at a radius of 0.3 µm and a refractive index of 1.7
illustrates the NN’s superior performance compared to a simple linear interpolation method.

and interpolate complex relationships enhances the accuracy and reliability of trap stiffness
predictions for a wide range of microplastic configurations.

Indeed, the NN’s remarkable ability to generalize the calculation offers a broader perspec-
tive, as demonstrated in Fig. 2.12. The comprehensive map of the parameter space provides
valuable new insights into the optical trapping of microplastics. Moreover, this approach
paves the way for the inclusion of additional parameters, such as the trapping wavelength, to
further enhance the optimization and study of small microplastics and nanoplastics using
optical trapping techniques.

2.5 Methods

2.5.1 Neural Networks

Here, we discuss the training, architectures, data generation, range of validity, and the
hardware and software utilized for the Neural Networks.
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Fig. 2.12 Map of the stiffness as a function of radii and refractive index. The first map is
the one obtained plotting the 156 training points computed with the T-matrix method during
several days while the map below contains over 4000 points and is the one generated with
the NN in a fraction of a second.

Training

The training procedure is composed of five main steps. These include defining the architecture
and pre-processing the data (both executed just once), followed by data loading, the actual
training phase, and performance evaluation (all of which are conducted iteratively). The
architecture definition consists of choosing the number of layers and the number of neurons
per layer. A schematic of the structure of this type of NN can be found in Fig. 2.2. The
architecture is adjusted according to the complexity of the different studied problems. In
general, a higher number of trainable parameters will produce a model that will be able to
learn more from the training data. However, we must be careful; we do not want to learn
the artifacts coming from GO. The training data is obtained by calculating the optical forces
using GO for a given set of parameters. These parameters can be spread over very different
scales, from around unity in the case of parameters like the aspect ratio or the refractive index,
to ∼ 10−6 for the positions, ∼ 10−12 for the forces and ∼ 10−18 for the torques. To achieve
an efficient training of the NN we need to apply a pre-processing step where the variables
must be rescaled around unity and the angles are expressed in terms of sines and cosines to
avoid inconsistencies around 2π . Shuffling the data and dividing them into a validating and
training set is the final step of the pre-processing.
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The iterative part of the training starts by loading a subset of the training data and applying
the training step where the NN weights are optimized to minimize the loss function. We
used the mean squared error as the loss function and the Keras implementation of the Adam
optimizer with the default parameters [127]. When the weights of the NN have been updated,
the training data is deleted from the RAM memory and another subset of the training data
is loaded before repeating the same process. Dividing the training set in smaller subsets
(instead of loading all the data at once) allows to use big training sets independently of the
RAM memory of the computer. Once the training dataset has been fully explored through
all the subsets, the error between the NN calculation and the validating dataset (defined
as the mean square difference) is computed. The iterative step is repeated until this error
stops decreasing. For the training data generated using for example 100 rays the artifacts are
significant enough that a well trained NN could learn them. In order to prevent these artifacts
from being acquired by the NN, the error between the NN calculations and the validating
data generated with 1,600 rays is computed. The training stops when this value reaches its
minimum. Fig. 2.13 shows how the NN starts to acquire the information of the artifacts
present in the calculation with 100 rays. This is favoured by the fact that the architecture
is more complex and by not using a validating data set generated with more rays to decide
when to stop the training.

Architectures

• Spheres (3 Degrees of freedom): The NN architecure for 100 and 400 rays consists of
5 hidden layers with 16 neurons each of them (≈ 1 ·103 trainable parameters) while
for 1600 rays consists of 3 hidden layers with 64 neurons in each of them (≈ 8 ·103

trainable parameters)

• Ellipsoids (9 Degrees of freedom): The NN architecture for 400 rays consists of 5
hidden layers with 384 neurons each of them (≈ 6.0 ·105 trainable parameters) while
for 1600 rays consists of 8 hidden layers with 384 neurons each (≈ 1 ·106 trainable
parameters)

• Red blood cells (5 Degrees of freedom): The NN architecture for 400 rays consists of
7 hidden layers with 256 neurons each of them (≈ 4.0 ·105 trainable parameters).

• Microplastics (2 Degrees of freedom): The NN architecture for training with 156 data
generated with the T-Matrix formalism consists of 3 hidden layers with 32 neurons
each of them (≈ 3.3 ·103 trainable parameters).
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Fig. 2.13 Comparison between geometrical optics with 100 rays, the exact calculation, and
two different NNs trained for 100 rays, one trained using a threshold and with a simple
architecture (NN) and the other one trained without threshold and with a more complex ar-
chitecture (NN overtrained). (a) Shows Fz in the axial direction with the different approaches.
While the NN properly designed matches perfectly the exact calculation, the NN that is
overtrained acquires the artifacts from geometrical optics. (b,c,d) show the force in the
x− y plane at z =−1.2µm calculated with geometrical optics, the overtrained NN, and the
properly trained NN respectively. While the overtrained NN (c) keeps the overall structure of
the artifacts, the properly trained NN (d) is able to remove them. Image taken from [76].

Data generation

The data for training the NN is generated with the GO method. The optical forces calculation
is computed with different numbers of rays, allowing to compare the machine learning and
the traditional approaches in different situations. The data points are randomly selected from
the parameter space of interest. Since the force profile changes faster close to the focus, the
position parameters (x,y,z) are chosen according to a normal distribution centered in the
beam focus. To get an uniform probability of orientations of the non-spherical particles in
the case of the ellipsoids and the red blood cells, the probability of generating an orientation
angle θ is proportional to sinθ . The rest of the values of the parameters are equally probable.
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Table 2.4 Parameters space for the sphere (3 DOF), general ellipsoid (9 DOF), the red
blood cell (5 DOF), and the microplastics (2 DOF). l is defined as the maximum between
dimensions a and c

Sphere Ellipsoid Red blood cell Microplastics
a 1µm [0.5µm,3µm] 3.91 µm [50nm,1µm]
c 1µm [0.5µm,3µm] 1.26 µm
θ [0,π/2] [0,π/2]
φ [0,2π] [0,2π]

NA 1.3 [0.25,1.3] 1.3 1.3
n 1.5 [1,4] [1.4,1.7]
r ri ∈ [−4µm,4µm] x,y ∈ [−4l,4l];z ∈ [−6l,6l] ri ∈ [−4µm,4µm]

Training region and range of validity of the NN

The validity of the Neural Network (NN) to compute optical forces is constrained to a specific
training region, defined by a set of parameters. In Table 2.4, the range of validity for the
various NNs utilized in our study is detailed. While certain networks (e.g., those designed
for spheres, RBCs, and microplastics) have been tailored to specific problems, we recognize
that the majority of experiments likely fall within the general parameter region defined for
the ellipsoid. It is important to note that if there is a need to employ the NN outside this
established validity region, additional training within that specific region will be necessary.

Hardware and software

The NNs are modelled and trained in Python using Keras (version 2.2.4-tf) [127] with
TensorFlow backend (version 2.1.0). The training of the NN is done in a GPU type NVIDIA
GeForce RTX 2060 with 16 GB of memory. The processor of the computer is an Intel Core
i7-10700 and it has 16 GB of RAM.

2.5.2 Brownian dynamics simulation

The particle dynamics simulation consists on the integration of the Langevin equations
considering the Brownian motion, the optical force and torque contribution, and the non
spherical shape. Since we will be considering microscopic particles in water, we can safely
consider the overdamped regime [128]. For simplicity, we start by considering a sphere
moving in 2D. In the overdamped regime, the Langevin equations can be written as:

dx
dt

=
Fx

γt
+
√

2Dt ξx(t) (2.1)
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dy
dt

=
Fy

γt
+
√

2Dt ξy(t) (2.2)

dθ

dt
=

Tθ

γr
+
√

2Dr ξθ (t) (2.3)

where D = kBT/γ and where γt and γr are 6πηR and 8πηR3 respectively. η is the viscosity
of the fluid. When simulating more complex shapes, the diffusion tensor, which depends
only on the shape of the particle, becomes slightly more complicated. In the case of the
ellipsoids we can use the analytical solution for ellipsoids derived by Perrin [129, 130]. In
the case of the RBCs, the morphology is more complex and requires numerical methods for
its determination. Here, we used the bead model technique developed by De La Torre et al.,
exploiting the widely used software winHYDRO++[131, 132]. In the bead model, a series of
spheres are used to approximate the size and the total volume of the RBC. From the bead
model, winHYDRO++ calculates the 6x6 tensor (Ξ) encoding the hydrodynamic resistance of
the non-spherical particle. We then obtain the diffusion tensor D via the generalised Einstein
relationship [133]:

D = kBT Ξ
−1 (2.4)

where kB is the Boltzmann constant, and T is the temperature of the system. While the tensor
needs to be computed only once per simulation, the rest of the steps need to be computed
iteratively.

In each time step we compute the contribution to the motion of the optical force and
torque (lab frame of reference) and of the Brownian noise (particle frame of reference). Since
both contributions are computed in different frames of reference, we need to continuously
build the matrices that allow us to switch from one to another. While generating the Brownian
motion contribution and computing the matrices can be fast, the optical contribution to the
force and torque used to be the bottle neck of the process and is the one now being optimized
by the NN. Once the contributions to the rotation and displacement are computed, we relocate
and reorient the particle. To implement correctly the rotation of the axes of the particle
reference frame we used the Rodrigues formula [134, 128]. Repeating this process for each
time step allows to construct the trajectories from where we can obtain statistical properties
like the probability distribution or the Kramer’s rate of the ellipsoid in a double beam OT.
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2.6 Conclusions

Employing NNs, the compromise between speed and accuracy for the calculation of optical
forces on microscopic sized particles with complex shapes is no longer a limitation. By
computing the optical forces using GO, it is possible to train a NN that predicts the forces not
only faster but also with higher accuracy. The NN can enhance the accuracy of the training
data, allowing us to train it with faster, less precise data. We only need a small amount of
more accurate data to know when to stop the training.

The NN approach works not just for spheres, but also for more complex shapes. Even a
single NN that considers all the key factors in an optical tweezers experiment is faster and
more accurate than the traditional GO method. This improvement allows us to study the
behavior of ellipsoids in double beam optical tweezers, including the balance points and
changes related to trap distance and ellipsoid shape. With GO, we could have studied one
specific point, but mapping the whole area was not possible. Now, we can even extend our
study to complex shapes like red blood cells, exploring different trapping setups, and map
the trapping stiffness for microplastics using T-matrix data.

While training a Neural Network (NN) can be time-consuming, the resulting advantages
are substantial. The lengthiest part of the process is generating the training data, but this
can be accelerated by parallelizing the calculation. Once the NN is trained, two primary
benefits are realized. Firstly, the increase in computational speed enables the exploration of
scenarios that were previously beyond the reach of the Geometrical Optics (GO) approach.
Secondly, a trained NN is more straightforward to utilize and integrate with other software
compared to existing GO methods. We have prepared a tutorial, including the trained
NNs, demonstrating how to use them (see https://github.com/brontecir/Deep-Learning-for-
Geometrical-Optics).This approach can be adapted to various trapping configurations, beam
profiles, or particle shapes without additional complexity (unless the DOF are increased).
We believe that NNs could democratize the ability to perform optical forces calculations,
allowing for a further development of the optical manipulation field pushed by numerical
simulations.



Chapter 3

Optical trapping for space applications

Dust pervades the universe, but until the mid-20th century it was merely seen as a
nuisance that obscured starlight. Today, we recognize the vital role of dust in processes such
as planetary, star, and galaxy formation and the ignition of a potentially life-bearing chemistry.
In this chapter, we delve into the exploration of cosmic dust using optical tweezers. By
characterizing dust particles in water with standard and Raman tweezers, we can determine
their mineral composition and response to light. This opens up possibilities for using optical
tweezers in sample return missions and extraterrestrial environments. In the accompanying
image, optical tweezers are depicted as a potential tool for space exploration, underscoring
their promise for analyzing cosmic dust beyond our planet. Image credits: Alessandro
Magazzù from CNR-IPCF Messina [56].
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3.1 Investigation of cosmic dust with optical tweezers

Cosmic dust has become a subject of interest in astrophysical science and related technology
due to its role in cycling processes active in the universe. The term cosmic dust refers to
small solid particles ranging in size from a few nanometers to tenths of millimeters that are
present in the interstellar medium (interstellar dust) or in the interplanetary space of the solar
system (interplanetary dust). Interstellar dust is mainly generated by the lifecycles of many
generations of stars: it is released by radiation pressure and solar wind or ejected during
the end-time explosion of stars or during the blowing off of their outer layers [135–137].
Interplanetary dust is formed through collisions between solid bodies (e.g asteroids, planets
and their satellites) or evaporation of icy bodies (e.g. comets [138]). Remote observations
are mostly used to study interstellar dust [139, 140], whereas interplanetary dust is available
through sample-return space missions from interplanetary medium, planets, and minor
bodies [141–143], or by collecting particles from the Earth’s stratosphere [144–147] and
micrometeorites from its surface (e.g., [148–150]). These collected samples are then analyzed
at terrestrial facilities using state-of-the-art analytical techniques since some instruments are
too large to be flown into space [151–153].

The physico-chemical properties of cosmic dust can be examined through techniques such
as X-ray diffraction [154], Transmission Electron Microscopy [155], Raman spectroscopy
[156, 157], and mass spectroscopy [158]. However, these traditional methods can encounter
complications, such as unwanted effects from substrate shielding or interference from other
particles. To overcome these challenges, we have adopted optical tweezers, a contactless
and non-destructive approach, and employed standard and Raman tweezers to investigate
individual grains of cosmic dust [159, 56]. By focusing a laser beam with great precision,
optical tweezers enable the trapping and manipulation of dust particles without physical con-
tact, as they exchange momentum with the particles. This allows for tracking and analyzing
the particle dynamics within the optical trap, thereby facilitating the characterization of the
response of dust partiles to optical forces and torques. In addition to this, the mineralogical
composition of the dust particles can be identified using Raman tweezers.

Our Raman tweezers have trapped and characterized a diverse range of samples, focusing
on those with known textures and mineralogic compositions. Our goal is to validate the
application of optical manipulation techniques to cosmic dust by reproducing the well-known
compositions of these trapped particles. We have analyzed samples of both terrestrial and
extraterrestrial origin, including: (1) a quartzarenite (M-26) from the Kamil Crater in Egypt
[160], (2) a hawaiite from the Etna volcano in Italy (HE-1), (3) the CV3-OxA carbonaceous
chondrite Allende (A-1), and (4) a lunar meteorite (polymict regolith breccia) found in
Antarctica (DEW 12007) [161]. Previously, mineral grains used to calibrate the dust analyzer
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Giada on board the Rosetta space mission [162] were used as the simplest possible starting
material (monomineralic, uniform size range). In this work, we have purposely chosen more
complex, non-uniform samples to make our investigations more representative of the range
of materials found in the solar system. The terrestrial rocks M-26 and HE-1 are considered
analogues of planetary materials and contain both mono and polymineralic components.
Meanwhile, the extraterrestrial rocks, representing primitive (A-1) and differentiated (DEW
12007) bodies within the solar system, offer valuable insights into the diversity of cosmic
dust.

a b d

c

Fig. 3.1 Sample preparation and sketch of the experimental setups. a) SEM image of DEW
12007 lunar meteorite powdered sample showing the poly-crystalline nature of each of the
individual grains. b) Dust samples are dispersed in distilled water by ultrasound sonication
and c) the solution is placed within a cavity glass slide and sealed with a coverglass. d)
Screenshots of four different 3D optically trapped grains of cosmic dust in water solution
having different sizes and morphology. Image taken from [56].

Before studying them with optical tweezers, the samples are powdered and analyzed
using scanning electron microscopy to characterize their texture, including shape and grain
size. X-ray powder diffraction is employed to determine the samples’ mineralogy. These
characterizations are conducted at the Dipartimento di Scienze della Terra and the Center
for Instrument Sharing of the University of Pisa (CISUP). All the optically trapped samples
were initially provided as dried powder, with grains displaying a non-homogeneous size and
shape distribution, as shown in Fig. 3.1(a,d). The first step in sample preparation for optical
trapping involved dispersing the powder in distilled water through ultrasound sonication to
achieve an appropriate concentration for optical trapping (e.g., a few particles per microliter).
The water-dust solution was sealed in a glass cavity slide, as depicted in Fig. 3.1(b,c), and
placed on the sample holder of our optical tweezers for investigation, see Fig. 3.1(c). To study
individual dust grain particles dispersed in water, we used both standard and Raman optical
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tweezers. With standard optical tweezers, we tracked the motion of the trapped particle using
a quadrant photodiode (QPD) and analyzed the trajectory to calculate optical forces and
rotations resulting from its interaction with light. For Raman tweezers, backscattered light
from the particle was collected through the same focusing objective and directed to a Raman
spectrometer for phase identification.

3.2 Optical forces and torques on dust particles

By studying the force and torque applied to the particle, we can retrieve information about
the light-matter interaction. The configuration of the standard optical tweezers is as explained
in Chapter 1 and depicted in Fig. 1.3. Specific details about the configuration can be found
in section 3.4.

The output signals from the QPD, proportional to the particle displacement from its
equilibrium position, are analyzed to calculate both the trap stiffness and to detect particle
rotation in the perpendicular x− y plane. We utilize autocorrelation function (ACF) and
power spectral density (PSD) calibration methods [4, 163], see section 1.3, to obtain the
relaxation frequencies of the trapped particles as fitted parameters. These parameters enable
the calculation of the trap stiffness, as illustrated in Fig. 3.2(a). An observed increase in the
stiffness of an optically trapped grain of the lunar meteorite DEW 12007 corresponds with
increased laser power, as shown in Fig. 3.2(c). Notably, the three components of the stiffness,
κx, κy and κz, increase almost linearly with laser power. Differences in stiffness along the x
and y directions may be attributed to a possible asymmetry of the trapped grain with respect
to the propagation axis z. The comparatively lower values of the stiffness κz relative to κx

and κy result from the longer extension of the Gaussian beam along the z axis [4].
The linearity of stiffness with power enables the determination of the stiffness efficiency,

denoted as qi = ki/P (with i= x,y,z) by fitting the values of κi shown in Fig. 3.2(c), where P is
the laser power at the objective output. Specifically, through linear fitting, we obtain qx = 1.38
pNµm−1mW−1, qy = 1.104 pNµm−1mW−1,and qz = 0.536 pNµm−1mW−1, respectively.
Radiation pressure on complex shaped or absorbing particles can also have a destabilizing
effect by pushing the trapped particles in regions of lower intensity along the z axis. For
example, grains from Allende meteorite are difficult to trap in 3D and were investigated in
2D when pushed against the wall of the cell.

Rotations of a trapped particle induce a correlation between its x and y trajectories. In such
scenarios, optical tweezers can be utilized for photonic torque microscopy to quantify these
rotational motion [117]. Specifically, rotations occurring in the x−y plane can be highlighted
by evaluating the differential cross correlations DCCFxy(τ) = ⟨x(t)y(t + τ)⟩−⟨y(t)x(t + τ)⟩
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Fig. 3.2 Effects of the laser light on trapped particles. a) The black line represents the
power spectrum density (PSD) of the trajectory along the z direction for a trapped dust grain
from the lunar meteorite DEW 12007. The red line corresponds to a Lorentzian fit of the
calculated PSD, from which the relaxation frequency of the trapped grain is obtained as a
fitted parameter. b) The black scatter plot represents the experimental data of the differential
cross correlation function DCCFxy(τ) of the sample HE-1 from Etna. Discrepancies between
the experimental data and the fit (red line) arise due to the presence of a second rotational
or vibrational motion caused by the non-spherical geometry and anisotropy of the trapped
particle [116]. c) Trap stiffnesses κx , κy and κz as a function of the laser power measured
at the objective for a single trapped grain of the lunar meteorite DEW 12007. d) Rotational
frequencies Ωrot of different samples as a function of the laser power measured at the
objective. e) Rotational frequencies, Ωrot, of an optically trapped single dust grains of HE-1
for different polarised light: left circular polarised (LCP), linear polarised (LP) and right
circular polarised (RCP) light. Negative frequency values correspond to an anticlockwise
rotation, while positive values correspond to a clockwise rotation, both with respect to the
z-axis. Image adapted from [56].
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of the signals acquired from the QPD, as illustrated in Fig. 3.2(b), for varying lag times τ .
The rotational frequency Ωrot can be determined as a fitting parameter of the DCCFxy using
a sinusoidal model [164, 116]. In Fig. 3.2(d) we show the rotational frequencies Ωrot of
three distinct trapped samples, demonstrating an increase in Ωrot with higher laser power. It
is noteworthy that the polarisation employed for trapping the samples listed in Fig. 3.2(d)
is linear and does not possess any spin-angular momentum. Consequently, the observed
rotations are solely attributed to the radiation torque exerted by the light on the particles
because their asymmetric shape (referred to as the windmill effect).

In the presence of circular polarised light, an additional spin angular torque can be
induced by a laser beam, depending on the absorption properties of the particle [165, 4].
When a laser beam is circularly polarized, each photon carries a spin angular momentum
of +h for left circularly polarized light (LCP) and −h for right circularly polarized light
(RCP). Consequently, the total torque acting on a non-spherical particle comprises various
contributions, including a radiation torque (windmill effect) associated with the particle’s
shape and the transferred spin angular momentum. Specifically, the spin angular momentum
augments the "windmill effect" if they go in the same direction, while it diminishes this effect
if they go in opposite direction [4].

In Fig. 3.2(e) we report the rotational frequencies Ωrot of an optically trapped grain from
the terrestrial samples HE-1 from Etna volcano for various light polarizations. In this case,
Ωrot decreases from -18 s−1 for LCP to -28 s−1 for RCP with a central value of -23 s−1 for
linearly polarized light (LP). These values indicate that the trapped particle absorbs circular
polarized light with a spin angular momentum +h for LCP light and −h for RCP light. Thus,
negative frequency values correspond to anticlockwise rotation with respect to the z axis,
while positive frequency values indicate clockwise rotation with respect to the z axis. The
rotational frequency Ωrot presented in Fig. 3.2(e) is the result of the combined effect of the
total torque acting on the sample. The radiation pressure torque, which is independent of
the light polarisation, results in a particle rotation frequency of -23 s−1. However, the spin
angular momentum torque either adds or subtracts depending on the light’s helicity. For
LCP light, the contribution of the spin angular momentum torque is positive, augmenting the
radiation torque and increasing the particle’s rotational frequency to -18 s−1. Conversely, for
RCP light, the contribution is negative, reducing the rotational frequency of the particle to
-28 s−1. This observation demonstrates that the overall optomechanical interaction between
particles and light relies on both the particle’s shape and the helicity of the laser beam.
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3.3 Spectroscopic analysis of cosmic dust

We utilize Raman tweezers to examine the mineralogical compositions of terrestrial and
extraterrestrial dust grains, focusing on various shapes and sizes. These samples are optically
trapped in either three dimensions (3D) or two dimensions (2D) when the radiation pressure
exceeds the axial gradient force. When 3D optical trapping is impractical due to radiation
pressure pushing the particle along the z direction (aligned with the laser beam propagation),
we apply an alternative approach. The particle is constrained against the wall of a glass
slide, effectively restricting it in the z direction, while the optical gradient forces confine it
in the x-y plane, defining the optical potential. The setup of the Raman optical tweezers is
the one explained in Chapter 1 and illustrated in Fig. 1.3. Further information regarding the
configuration is provided in section 3.4.

For every sample, we acquire a reference background spectrum in the absence of any
trapped particle. This spectrum is utilized to eliminate unwanted signals originating from
the glass slide and the surrounding media (such as water or immersion oil). Thereafter, a
fitting routine is employed to identify and compare the peaks of each spectrum with reference
spectra, enabling us to determine the constituent phases present in the trapped samples. In
the initial analysis, we focus on the standard samples M26, HE-1, and A-1, aiming to match
their mineral compositions with those reported in the existing literature [160, 166–168].

a b

Fig. 3.3 Raman spectra of optically trapped single dust model particles. a) M26 from Kamil
crater (black line), red line represents the Raman spectrum of quartz used as reference
(RRUFF R150074). b) HE-1 from Etna (black line) and A-1 from Allende meteorite (blue
line). Red line represents the Raman spectrum of olivine used as standard reference (RRUFF
X050088). Please note that the spectra are offset for clarity. Image adapted from [56].

In Fig. 3.3(a), we report a Raman spectrum (illustrated by the black line) of a single
optically trapped grain from sample M26. Quartz, represented by the red line in the figure, is
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the main constituent identified in this sample, corroborating findings in the literature [160].
Fig. 3.3(b) presents the Raman spectra of two distinctive grains: one from the HE-1 sample
collected from Etna volcano (black line) and another from the A-1 sample from the Allende
meteorite (blue line). Both meteorites have been previously recognized to contain olivine
[168], denoted by the red line in the figure. Notably, the experimental spectra depicted in
Fig. 3.3(a,b) align closely with the reference spectra for the identified mineral compositions,
validating the accuracy of our measurements.

After testing our Raman tweezers on terrestrial and extraterrestrial standard grains, we
investigate cosmic dust from the lunar meteorite DEW 12007. In particular, we trap about 70
different particles in 2D and 3D, following a specific protocol to avoid trapping the same
grains multiple times, trapping them in both 2D and 3D configurations. Fig. 3.4(a-e) presents
the Raman spectra of four distinct trapped grains of DEW 12007, indicated by the black lines,
along with the reference Raman spectra of some of their constituent minerals as reported in
the literature [161]. Speficically, in Fig. 3.4(a-e) we observe that the trapped grains contain
the following minerals: plagioclase (labradorite); pyroxene (augite and pigeonite); olivine
(forsterite and fayalite); ilmenite. The colored lines in the figure represent the reference
Raman spectra of these minerals. We identified both monomineralic (Fig. 3.4(a-d)) and
polymineralic grains (Fig. 3.4(e)), as expected for a rock in which the grain-size is highly
variable.

The mineralogical composition of the lunar meteorite DEW 12007 has been examined
through the analysis of over 70 dust grains, and the findings are illustrated in Fig. 3.4(f). The
assessment identifies plagioclase as the predominant mineral constituent, constituting 50.5%
of the observed occurrences. Following plagioclase, pyroxene appears as the next most
abundant mineral, accounting for 27.8% of occurrences. Olivine and ilmenite are present in
lower proportions, with abundances of 11.3% and 10.4%, respectively. These observations
are consistent with mineral abundance data found in existing literature [161]. It is important
to recognize that the grinding process used in preparing the samples may introduce variations
in the homogeneity of the cosmic dust. Consequently, some grains may contain multiple
mineral components or might not have a distinct mineral identification.

3.4 Methods

The light source of the standard optical tweezers used for the investigation of cosmic dust is
a laser diode (LD) generating a linear polarised laser beam with a wavelength of 830 nm.
The laser beam is expanded by a two lenses telescope system and reflected by a dichroic
mirror towards the back aperture of a high numerical aperture (NA) oil immersion objective,
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Fig. 3.4 Raman spectra and mineralogical composition of optically trapped dust particles
of the lunar meteorite DEW 12007. Black lines represent the Raman spectra of the trapped
samples, while colored lines represent the reference Raman spectra from the RRUFF database
of: a) plagioclase (RRUFF X050108), b) pyroxene (RRUFF R200002), c) olivine (RRUFF
X050088) and d) ilmenite (RRUFF R060149), used for the mineral identification of the
trapped single grains. All spectra are offset for clarity. e) Raman spectra of a single grain of
DEW 12007 (black line) containing several mineral components (colored lines). f) Mineral
occurrence of the mineral constituents over 70 trapped grains of the lunar meteorite DEW
12007. Image taken from [56].
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which was also used to imagine the sample on a CMOS camera, see Fig. 1.3. Thanks to the
telescope system, the beam overfills the back aperture of the objective giving rise to a highly
focused laser beam that maximizes the optical field gradient in the focal spot, resulting in
a more efficient trapping. A sample holder is equipped with a 3D translation piezo-stage
to move the focal spot within the cavity glass slide containing the sample solution. The
dichroic mirror used to reflect the laser beam to the objective acts like a short pass filter, it
reflects the laser light towards the objective and transmits the visible light to a CMOS camera,
preventing the saturation of the detector and allowing a clear view of the sample on a monitor.
The polarisation of the trapping beam can be tuned by a waveplate to investigate the optical
response of cosmic dust for different light polarisations. In particular, changing the light
polarisation from linear to right- or left-circular, the occurrence of spin-angular momentum
transfer from light to the dust can be investigated [169, 4].

The forward-scattered light from a trapped particle, containing information about the
particle position, is collected together with the transmitted light by a condenser. The super-
position of these two beams generates an interferometric pattern, which is reflected by a
second dichroic mirror towards a quadrant photo diode (QPD) through a lens (l3), see Fig.
1.3[170, 4]. A QPD converts the interferometric pattern collected by a condenser in analog-
ical voltage signals, proportional to the displacement of the particle from its equilibrium
position [171, 4, 172]. The signals from the QPD were acquired at a sampling frequency of
50 kHz for time intervals of 2 seconds. The sampled signals were then analysed providing
information about the opto-mechanical interaction between light and a single grain of cosmic
dust. In order to characterize the optical trapping forces on a single dust grain, we apply the
power spectrum method and the autocorrelation function analysis, see section 1.3.

The Raman tweezers used for the identification of the minerals constituents of our
samples is a customised setup obtained by coupling a homemade optical tweezers with a
commercial Raman spectrometer (Horiba TRIAX 190) through a notch filter, see Fig. 1.3.
This filter reflects the laser light, from a laser diode having a wavelength of 780 nm, to the
back aperture of an oil immersion objective, similarly to the case of the dichroic mirror
previously described in the standard optical tweezers setup, see Fig. 1.3. The notch filter
reflects only the single wavelength of the laser beam, and it is transparent to all the other
wavelengths. In such a way, the elastic component of the scattering is cut out by the notch
filter and only the Raman signal is transmitted to the spectrometer, which is equipped with a
grating having a spectral resolution of 8 cm−1 and coupled to a silicon Peltier-cooled CCD
camera to acquire the spectra. The Raman spectra of our investigated samples were obtained
with a laser power of about 7 mW at the sample and acquired with an integration time of few
tens of seconds.
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3.5 Conclusions

3.5.1 Challenges

Challenges associated with the application of optical tweezers in space applications en-
compass both theoretical and experimental aspects. From a computational standpoint, the
diversity of dust particles in an astrophysical context implies a richness of models that need
to be developed to calculate the optical forces. While exact electromagnetic solutions exist
for calculating forces on model spherical particles [4], realistic dust grains possess complex
and irregular shapes, as depicted in Fig. 3.1(a,d). In order to capture the scattering properties
of real dust, several model particles have been proposed, including aggregates, stratified
structures [173], agglomerate debris [174], and Gaussian random particles [175]. While
these sophisticated models provide a closer representation of physical reality, the increased
complexity in morphology necessitates higher computational power, thereby limiting the
number of configurations that can be thoroughly explored numerically.

From an experimental perspective, optical tweezers (OT) have been predominantly
utilized for trapping and manipulating micron-sized objects in liquid environments rather
than in air or vacuum. The preference for liquid media stems from several inherent advantages.
Firstly, liquid environments are compatible with living biological samples, facilitating the
study of biological systems [4]. Secondly, the liquid medium dampens the motion of trapped
particles, enhancing trapping stability and minimizing the effects of external perturbations
and inertia on the particle dynamics [4, 163]. Thirdly, liquid media offer the advantage of
suspending particles for extended periods, allowing specific single particles to be selected
and trapped from a multitude.

In contrast, trapping stability in air or vacuum can be compromised by various external
factors including airflows, acoustic shocks, thermal drift, mechanical vibrations, and the inten-
sity noise of the trapping laser [176–178]. Air tweezers require launching a large number of
particles, with passive trapping occurring as particles naturally approach the laser focus under
the effect of gravity. This lack of control over particle selection, along with the difficulties
in precise positioning and storing of trapped particles, represents significant drawbacks in
air trapping setups [176, 178, 179]. Furthermore, in air OT, the numerical aperture of the
focusing objective cannot exceed unity [180], leading to substantial scattering forces that
might overcome trapping forces. The utilization of long working distance objectives and
lenses with lower numerical apertures is often mandated in air trapping setups to prevent
contamination of the objective lens. Additionally, since air is less efficient in dissipating
heat compared to liquid, trapping absorbing particles in air may enhance photophoretic and
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convective forces. Such forces, generated by airflows, can often destabilize the trapped
particle dynamics [176, 181, 182].

3.5.2 Recent progress

In recent years, significant efforts have been made to model optical forces on complex-shaped
particles in order to accurately compute the forces applied to real particles in different position
and orientations [4]. However, there is always a trade-off between calculation accuracy and
speed. When studying particle dynamics in systems where inertia plays a role, such as in
air or vacuum, the equations of motion must be integrated using very short time steps, and
the optical force needs to be computed at each of these time steps [83]. While traditional
methods of force calculation can be prohibitively slow for exploring these systems, recent
advances in machine learning techniques have significantly enhanced the speed at which
optical forces can be computed [88, 76]. This enhanced calculation speed is crucial for
accurately modeling particles with complex shape. Furthermore, the improved calculation
time opens up possibilities for real-time adjustments of light intensity and beam shape to
optimize trapping conditions for specific particles in optical tweezers experiments. By rapidly
adjusting these parameters based on the calculated optical forces, researchers can enhance
the trapping efficiency and stability of a given particle in real-time.

From the experimental standpoint, various configurations have been developed to achieve
stable three-dimensional trapping in air or vacuum. One approach is to use setups with
counter-propagating beams, which help balance the effect of radiation pressure on the
trapped particle [176, 183]. Another technique involves employing structured light beams,
such as Bessel, hollow, or vortex beams, instead of Gaussian beams, either in horizontal or
vertical configurations [176, 184–186, 179]. Furthermore, configurations having a single
beam, such as the confocal-beam trap, combine the simplicity of a single beam and the
robustness of a dual beam trap. In this configuration a spherical concave mirror reflects back
the incident focused beam, forming a symmetric counter propagating beam [176, 184]. In
addition to these techniques, the stability of a single beam trap can be increased also by a
feedback device, that by controlling the laser power improves the trapping stability [187]
and can even enable laser cooling of the particle motion [163].

3.5.3 Concluding remarks

Space tweezers have emerged as a valuable tool for the trapping and characterization of
extraterrestrial particulate matter. Theoretical studies have utilized scattering theory to calcu-
late optical forces on complex particles of astrophysical interest, simulating atmospheric and
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planetary environments. In parallel, significant progress has been made in the development
of versatile, stable, and more compact setups that can be used to trap micro and nanoscopic
particles in controlled laboratory experiments. These advancements have contributed to the
advancement of space tweezers applications, providing a non-destructive, non-contact, and
non-contaminating means of investigating extraterrestrial particles. The use of space tweezers
opens up new possibilities for the study of space materials that are currently inaccessible
using traditional instrumentation employed in space missions.

However, many different challenges still need to be faced . While perspectives for optical
trapping and optical manipulation of particles in space and on planetary bodies surface might
still need some key improvements in experimental setups, applications in curation facilities
designed for the uncontaminated handling and preliminary characterization of extra-terrestrial
samples returned by space probes appear at hand.





Chapter 4

Optically driven Janus micro engine with
full Orbital motion control

Microengines are poised to revolutionize nanotechnology, microfluidics, and nanomedicine,
but achieving precise control over their dynamics has been a substantial obstacle. In this
chapter, we introduce a microengine that overcomes this challenge by exploiting both optical
and thermal effects to attain a high degree of controllability. The demonstrated enhanced
flexibility in guiding microengines paves the way for their application in various domains,
including microscale transport, sensing, and actuation. The accompanying image presents an
artistic depiction of a Janus particle orbiting the center of a focused beam, exemplifying the
innovative approaches discussed in this chapter to control microengine dynamics [188].
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4.1 Introduction to light-driven microengines

Microengines have steadily gained popularity and become prevalent as effective tools for
controlling processes on small scales [189]. Their ability to convert energy into active motion
makes them essential for nanotechnology applications such as generating precise fluid flows
in microfluidic chips [190–192], delivering drugs more efficiently in nanomedicine [193,
194, 69], or for environmental remediation [195, 196]. Janus particles [197], characterized
by two distinct hemispheres with different physical properties, are the most widely used
model system for microengines. Their inherently asymmetric design allows them to self-
propel under various conditions. For instance, dielectric Janus particles can be designed
with a metallic cap that generates a local, asymmetric heat profile under light exposure,
resulting in its directed motion [198–202]. While microengines are able to overcome random
thermal fluctuations and exhibit directed motion, the lack of control over their dynamics is a
significant limitation for their broader application.

Light is one of the most efficient approaches to induce and control the motion of micro-
engines [203–205]. Although non-optical electric [206] and magnetic fields [207] are also
promising alternatives, light has distinct advantages such as high energy density, precise
control over its position and time, and the ability to effectively transfer both linear and angular
momentum [4]. Specifically, a highly focused laser beam can confine particles around the
focal point through the exchange of momentum between light and particles, see Chapter
1. Once confined, by transferring momentum to the particle, there are two main strategies
for turning the trapped particle into a rotating microengine. Firstly, spin [208–210] and/or
orbital [211, 209, 30] angular momentum can be transferred to the particle, generating a
polarization or phase-dependent torque that drives orbital rotations. The direction of rotation
can be controlled by adjusting the polarization or phase gradients of the beam. Secondly, for
asymmetric particles the scattering generates an optical torque [212, 213, 4, 56] where the
direction of rotation is fixed by the scattering pattern (windmill effect) and determined by the
shape of the particle. This effect has also been observed for metal-dielectric Janus particles
[198, 214], highlighting the relevance of both light scattering and thermal effects [198].

Indeed, for light absorbing particles, not only momentum transfer but also energy ab-
sorption and consequent heating plays a key role in their dynamics, giving rise to more
complex behaviours [215, 216, 201, 200, 198, 217, 192, 199, 218, 219, 18]. Because of the
combination of optical and thermal effects, microengines can show elevator-like motion
[200], elliptical [218], trochoidal [199] and circular orbits [198, 217, 192, 18], reach high
rotation velocities [216], and present reconfigurable assemblies of multiple particles [220].
This shows that the integration of optical and thermal effects can induce a diverse range of
dynamic behaviours. However, the controllability over these dynamics is very limited. For
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instance, unless the beam is continuously repositioned [215], the direction of rotation is either
fixed by a previously designed geometry of the particle [216] or is erratic and influenced
by random thermal fluctuations [217, 192, 198, 218]. Thus, a more sophisticated scheme is
required to simultaneously manipulate the direction of rotation and the angular velocity in
order to enhance the control of microengines.

In this chapter, we combine the precise control obtainable via optical forces with the
strong driving forces of thermal effects to realize a microengine that allows simultaneous
control of its speed, radius, and direction of rotation using a single beam of light. Specifically,
we investigate a gold-silica Janus particle trapped by a linearly polarized Gaussian beam at a
distance from the beam center where the opposing optical and thermal forces balance. By
employing circularly polarized light, the transfer of the light spin angular momentum to the
particle induces a tilt in the particle orientation. This tilt breaks the symmetry between the
optical and thermal forces acting on the particle, leading to simultaneous rotations around
the beam axis and around the particle axis (the particle rotates with the gold side always
pointing inwards). We control the particle direction of rotation and angular velocity by tuning
the beam ellipticity, showing that transitions between rotational and stationary states can
be achieved within the same system. The experimental results are in agreement with an
extended geometrical optics phenomenological model that also considers the polarization
of the light beam and enables the calculation of the optical power absorbed in the particle
cap. Our findings delve into the complexities of light-matter interactions in thermally
driven microengines, presenting new insights and paving the way for enhanced control and
manipulation in the field of nanotechnology.

4.2 Experimental realization

In this chapter, we investigate a microengine driven by both optical and thermal effects and
whose motion we can precisely control by adjusting the power and polarization of the incident
light beam. The microengine consists of a gold-capped silica Janus particle fabricated by
sputtering a 10 nm-thick gold layer on top of a 3 µm diameter silica particle (Fig. 4.1(b)).
The gold facet of the particle is optically thin enough not to significantly alter its optical
properties and, consequently, its trapping capabilities. However, it is thick enough to induce
thermal temperature gradients under light illumination (see Methods-Numerical Model). The
beam shines from below (red arrow in Fig. 4.1(a)) and the focal spot is located at a distance
h = 8 µm above the particle (bright spot at the top of Fig. 4.1(a)). When the beam is circularly
polarized (white spiral in Fig. 4.1(a)), the Janus particle performs orbital rotations at almost
constant speed v around the center or the beam. The particle motion is recorded via digital
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video microscopy at 20 fps and tracked with customized Python routines. During its motion,
the gold-cap always faces inwards (vector n⃗ pointing away from the cap in Fig. 4.1) and in
the presence of circular polarization is misaligned (θ ) with the local Poynting vector (⃗S) of
the laser beam, see angle θ between the xy-projections of n⃗ and S⃗ (yellow and green dashed
lines respectively). We observe this behaviour for various distances between particle and
focal spot in the range 6 ≤ h ≤ 10 µm, whereas the particle can not be trapped for h ≤ 6 µm
or does not rotate for h ≥ 10 µm. We find that the microengine is driven by both optical and
thermal effects, and can be precisely controlled by adjusting the power and polarization of
the incident light beam. Through both experimental and numerical analysis, we explore the
dynamics of the microengine under varying light power and polarization conditions.

Fig. 4.1 Orbital motion of Janus particle under circularly polarized light. a) Schematic of
the orbital motion of a gold-capped Janus particle made of SiO2 under a circularly polarized
focused beam (red arrow with white spiral illustrating the direction and polarization of the
light beam). The particle is constantly rotating at speed v (blue arrow) around the center of
the beam 8 µm below its focal point (red spot on the top). The particle orientation is sligthly
tilted at angle θ , which indicates the misalignment between the xy-projections of the cap
orientation (yellow arrow, n⃗) and the local Poynting vector (green arrow, S⃗). b) SEM images
of the fabricated Janus particles. Insets show specific regions of the particle, where the left
inset show deposited gold layer and the right inset the transition from the gold cap to the
SiO2 particle. Image taken from [188].

4.2.1 Motion as a function of laser power

When the light is circularly polarized, the Janus particle performs continuous circular orbits
(Fig. 4.2(a)). Upon increasing the power of the light beam we observe that both the orbital
radius (ρ) and the confinement of the particle are increasing (Fig. 4.2(b)). At low power
(P = 6 mW) the Janus particle is mostly located in close proximity to the beam center
(ρ = 2.4±0.6 µm) and the distribution of radial positions has a large standard deviation. At
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intermediate powers (P = 16 mW) the radius of motion increases and the radial confinement
is enhanced, resulting in a narrower radial distribution. The average radial position peaks at
the maximum power of our laser P = 34mW with ρ = 7.5±0.4 µm, showing a well defined
circular trajectory. Note that a fundamental difference between our experiment and other
works on active colloids in optical potentials [204, 221] lays on the fact that in our case the
orientation of the particle does depend on its position (gold always faces inwards).
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Fig. 4.2 Janus particle motion dependence on laser power. a) Bright-field image of a tracked
Janus particle (yellow outline) with center-of-mass position (red cross) rotating around the
center of the beam (marked by black cross) at a distance ρ (green dashed line) with its
circular trajectory (blue dotted line) during 3.5 s. b) Recorded positions of the particle
orbiting around the center of the beam (black cross) for different incident powers P for 50 s-
long trajectories. c) Probability distribution of ρ for three different powers (P = 6,16 and
30 mW) and fitted with a Gaussian function (dashed grey line). From the standard deviation
of the radii distribution we can quantify the particle’s radial confinement. d) Average radius ρ ,
e) average angular velocity Ω, and f) average linear velocity v of the trajectories as a function
of laser power. The error bars correspond to the standard deviation for 5 measurements of
10 s each. Image taken from [188].

Next, we fully characterize the dependence of the particle motion on laser power for its
change in orbital radius ρ , angular speed Ω, and linear speed v. We find that ρ increases
non-linearly reaching the maximum radius at the maximum power (P = 34 mW, Fig. 4.2(d)).
Although Ω decreases slightly (between 1.6±0.2 and 1.3±0.1rad/s, Fig. 4.2(e)) the linear
speed v increases significantly (from 3.8±1.2 to 9.5±0.6 µm/s) with increasing laser power
(Fig. 4.2(f)). While the decrease in angular velocity with laser power is modest, the strong
power dependence of the radial distance is ultimately responsible for the observed increase
in linear velocity.
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Similarly shaped orbits such as the ones exhibited by our proposed microengine have been
previously reported in the literature [198, 200, 217]. However, our microengine offers distinct
advantages in terms of controllability. While previous systems with Janus particles in water
showed sudden jumps in equilibrium position when varying laser power for circular orbits
[198] as well as for elevator-like motion [200] our microengine exhibits a smooth dependence
of the orbital radius ρ with power. A similar power dependence of ρ has been reported
for optically heated spheres at a water-air interface (ranging between 3 and 11 µm) [217].
Moreover, an advantage of our system is the presence of continuous and predictable rotations,
which contrasts with the orbiting microengines reported in previous studies [217, 198]
that rotate in unpredictable directions and can change the direction of rotation randomly.
Interestingly, a comparable behavior has been reported for a silica particle optically trapped
in vacuum [18] using transverse spin forces [222, 170] instead of a combination between
thermal forces and transfer of angular momentum. They found that an increase in power
results in an increase in the value of ρ (ranging between 0.2 and 1.4,µm) and enhanced
radial confinement of the particle [18]. Similarly to our system, they also obtain a better
defined rotation frequency for higher powers. We can achieve this not only by increasing
the power but also by increasing the ellipticity, see Fig. 4.3 showing the analysis of the
power spectral density of the particle trajectories. However, unlike our system, V. Svack et
al. reported an increase of the angular velocity of the particle with power, exploiting the
low-viscosity environment to achieve rotation frequencies of up to 15 kHz [18].

Fig. 4.3 Power spectral density of the trajectories of the microengine. a) Light circularly
polarized and with different powers. b) Light with constant power (34 mW) and different
degrees of ellipticity of the incoming light.

4.2.2 Motion as a function of light polarization

Transfer of angular momentum can induce rotation of particles around their own axis [210].
In our experiment, circularly polarized light induces a spinning rotation of the particle around
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its z-axis that breaks the symmetry between optical and thermal forces acting on it and thus
induces its directional orbital motion. This motion can be stopped or reversed by changing
the polarization state of the light, see Fig. 4.4(a-c). When exposed to linearly polarized light,
the particle remains confined to a specific distance ρ from the center of the beam where it
diffuses randomly (around the circle of radius ρ) due to Brownian motion, see Fig. 4.4(b).
Note that for linearly polarized light, the only acting torque is the one that orients the particle
such that its gold cap (⃗n) is aligned along the local Poynting vector of the beam impinging on
the particle (⃗S), see Fig. 4.4(a-c) and Fig. 4.5, similarly to what has been reported for a Janus
particle [200]. This alignment prevents random rotational diffusion of the particle orientation
and distinguishes our microengine from other examples in the literature where the particle
rotates in random orientations [198, 217].

a

c

d

b

Fig. 4.4 Motion of a Janus particle as a function of light polarization. a-c) The particle
is shown at t = 0,2,4 and 6 s, the plotted points correspond to previous positions at 0.1
seconds intervals. The black cross indicates the centre of the beam and the yellow arrows
in the initial frame represent the orientation vector n⃗ as illustrated in Fig. 4.1(a). The green
dashed lines show the direction of the local Poynting vector. a) Light circularly polarized
clockwise induces clockwise rotation with more than a full orbit completed after 6 s. b)
Light linearly polarized keeps the particle at the same radius difussing with no directed
motion. c) Light circularly polarized anticlockwise induces anticlockwise rotation with
almost a full orbit completed after 6 s. d) Positions (points) and direction of motion (arrows)
of the particle for linearly polarized light (orange), circularly polarized light in clockwise
(blue), and anticlockwise directions (pink). Positions are plotted every second for a 60 s-long
trajectory. Image taken from [188].

When applying circularly polarized light, the direction of rotation is entirely determined
by the polarization direction of the circularly polarized light, and can be reversed by switching
between clockwise and anticlockwise circular polarization (Figs. 4.4(a,c)). From the recorded
video frames in Figs. 4.4(a-c) we observe the gold-coated side of the Janus particle (the
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darkest region in transmission microscopy) facing always radially inwards to the center of
the beam (yellow arrows represent the orientation vector n⃗ in Fig. 4.1(a)). Even though the
thin gold coating (10 nm) does not offer sufficient contrast to precisely quantify the exact
orientation of the Janus particle, note that for circular polarization the orientation vector n⃗
is not aligned with the position vector (green dashed line in Figs. 4.4(a,c)) but is slightly
tilted, which results in the breaking of symmetry that generates the tangential force (Ftan)
responsible for its motion. See Fig. 4.5 for a more detailed view of the gold-coated side and
the non-coated side of the Janus particle.

Fig. 4.5 Orientation of the Janus particle under circularly polarized light. Janus particle
rotating under light circularly polarized clockwise. The particle is shown at t = 0,0.5,1,1.5
and 2 s. The black cross indicates the centre of the beam. The gold-coated side of the Janus
particle (the darkest region in transmission microscopy) faces always radially inwards to the
center of the beam while the silica particle (lightest region) faces outwards. Image adapted
from [188].

Although the direction of rotation of the particle is determined by the polarization of
the beam, the orbit and radius of motion are independent of polarization and are solely
determined by the power (as discussed in the previous section). Fig. 4.4(d) shows the particle
positions and the direction of motion for 60 s trajectories (each point represents 1 s time
steps). Pink and blue points represent different senses of circularly polarized light whereas
orange points indicate linearly polarized light. The particle is located at a distance ρ of
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around 7 µm and eventually closes a loop in approximately 6 s. The erratic Brownian motion
observed for linear polarization (orange points in the upper right corner) where the particle
remains at the same location and diffusing due to Brownian motion, stands in contrast to the
well-defined directional motion observed for circular polarization (blue and pink points).

Additional control can be gained by also adjusting the velocity and direction of rotation
using elliptical polarization, as demonstrated in Fig. 4.6. We have previously shown that
changing laser power affects, both, the microengine’s velocity and the radius of rotation,
see Fig. 4.2(d,f). However, adjusting the ellipticity of the light allows further velocity
tuning without affecting the radius. Completely circularly polarized light yields the highest
values of the angular velocity (Ω), see φ =±π/4 in Fig. 4.6, where φ is the angle between
the polarization plane of the linearly polarized and the fast axis of the λ/4 wave plate.
Furthermore, the experimental velocities match the theoretical dependence on sin(2φ),
see Fig. 4.6. Note that the standard deviations of the angular velocities are three times
larger for intermediate elliptical polarizations than for circular polarization. We attribute
this to asymmetries in the beam profile profile (arising from misalignment or from the
highly focused nature of the beam [223, 224]) that create energy barriers that are more
difficult to overcome when the tangential force Ftan is lower, resulting in a less homogeneous
motion. The difference (30%) between the experimental maximum velocity for clockwise
and anticlockwise polarization is likely due to differences in the transmission of optical
elements such as mirrors and dichroic beam splitters that result in slightly lower power for
clockwise polarization.

Fig. 4.6 Angular velocity as a function of the ellipticity of the light. The solid line indicates
the theoretical dependence on sin(2φ). The experimental error bars correspond to the
standard deviation for 5 measurements of 10 seconds each. Image taken from [188].

Although there exist other microengines capable of producing closed orbits [217, 198,
192], they are unable to be stopped at a specific location within their trajectory without
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minimizing the power and returning to the center of the beam. Our microengine, in contrast,
offers complete flexibility in terms of orbital direction, the ability to halt at any distance, and
even reverse its trajectory, therefore setting a new standard in controlling microsystems that
are typically dominated by random fluctuations. The precision of control demonstrated by
our proposed microengine, achieved through the ellipticity of the incoming beam, is only
comparable to microengines that rely on transferring angular momentum between particles
and light [225, 211, 209]. However, our microengine distinguishes itself by enabling control
at various distances from the beam center, rather than being limited to a single focal point.

4.3 Numerical study

The presented micro engine is governed by a series of intricate physical phenomena. While
these mechanisms possess a high level of complexity, our objective is to establish a compre-
hensive understanding of the driving mechanism of the system through the utilization of a
simplified phenomenological model. This model incorporates three key elements. Firstly,
the mechanical effects of light, which serve to attract the particle towards the center and
maintain its orientation. Secondly, the light-induced heating of the particle that results
in a propelling swimming force from the hot region (gold cap) to the cold region (silica
part). Lastly, polarization-dependent torques that change the orientation of the particle
when the light is circularly polarized. Even though our simplified phenomenological model
comes with some limitations (not considering the effect of the surface in the hydrodynamics
flow, assuming the gold coating to be homogeneous, not considering possible plasmonic
modes. . . ), see Methods-Numerical Model, it effectively captures the fundamental aspects of
the experimentally studied microengine.

The model, by considering the geometrical optics approximation [2], computes both
the exchange of momentum between light and particle (generating optical forces [4]) and
the absorption and consequent heating of the gold cap (generating thermal forces [226]).
While the optical force draws the particle towards the center, the thermal force, caused by
the difference in temperature between the gold (inner part) and silica (outer part), pushes
the particle away. The combined effect of the opposing forces creates a force that cancels
out at a distance ρ , see Fig. 4.7(a). Furthermore, the total force has a negative slope at the
point where the opposing optical and thermal forces are balanced, see the inset of Fig. 4.7(a),
leading to the formation of a stable stationary point. If the particle moves further away, it will
experience a negative force that will attract the particle back towards the stable stationary
position. On the contrary, if the particle approaches the center, it will experience a positive
force pushing it away. For small radial displacements from the stationary position, the total
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radial force Ftot can be approximated as a Hookean force (Ftot =−kρ ρ), with the stiffness
kρ being determined by the slope of the force in the proximity of the stationary point, see
dashed red line in Fig. 4.7(a).
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Fig. 4.7 Numerical study of the microengine. a) Thermal, optical, and total force in the
radial direction as a function of the radius for a power of 15 mW. The stationary point is at
ρ = 5.1± 0.6 µm and the stiffness is 12nN/m. b) Total force exerted on the particle as a
function of ρ for different powers. Both the stationary position and the stiffness increase with
the power. c) Simulation of the dynamics of the Janus particle for a 50 seconds trajectory
when illuminated with different powers and d) simulation of the dynamics of the particle
under anticlockwise circularly polarized light (pink), linearly polarized light (orange) and
clockwise circularly polarized light (blue). The black crosses represent the center of the
beam. The parameters of the plots c) and d) are identical to the ones of Fig. 4.2 and Fig. 4.4.
Image taken from [188].

We find that our numerical analysis is consistent with our experimental results demon-
strating that the orbital radius of the Janus particle increases with power, see Fig. 4.7(b).
While the forces are increasing with power, their dependence is non-linear thereby shifting
the stationary position. If, both optical and thermal forces grew linearly with the power,
the stiffness would increase linearly but the stationary position wouldn’t shift, as the forces
would still balance at the same point, which is in contrast to experimental observations. In
our model, optical forces are considered to scale linearly with the power whereas the thermal
force introduces non-linearities, see Eq.4.4 and Eq.4.9. In our simulations, we observe a
change in stationary position from 3.0±0.7 µm at 10mW to 9.0±0.5 µm at 35mW (experi-
ments show ranges from 2.4±0.6 to 7.5±0.4 µm). Higher powers push the particle further
away while increasing its radial confinement, consistently with experimental observations.

Under circularly polarized light, the transfer of spin angular momentum causes the
particle to change orientation around its own z-axis. The force acting in the tangential
direction Ftan is due to the symmetry breaking between the optical and thermal forces (the
optical force pulling the particle towards the center of the beam and the thermal force pushing
it from the gold to the silica part). More precisely, in the presence of circularly polarized
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Fig. 4.8 Forces acting on the Janus particle under different laser polarizations. Forces acting
on the Janus particle under linearly polarized light (a,c) and elliptically polarized light (b,d).
The optical force acting on the particle can be decomposed into two components: a gradient
part that directs the particle towards the center, and a scattering part in the z direction, which
pushes the particle away from the cover slip. In (b), θ is the angle between the direction of
the optical force (towards the center of the beam) and the direction of the thermal force (from
gold to silica) that gives rise to the tangential force that drives the orbital motion. Image
taken from [188].
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light, the orientation of the cap n⃗ does not exactly align with the local Poynting vector S⃗,
but is tilted. This tilt is due to an additional small azimuthal rotation by the transfer of
angular momentum, which breaks the mirror symmetry of the configuration. This creates
a steady tangential force Ftan that keeps the particle rotating in its circular orbit. As we
observe continuous rotations, we know that the tangential component of the thermal force
should be equal to the drag force: Ftan = γ v, where γ is the viscous coefficient and v is
the speed of the particle (we obtain the maximum value of Ftan for maximum power and
circular polarization being approximately 0.2pN). The numerical model allows us to also
determine the radial component of the thermal force (as the radius remains constant, it must
have the same magnitude and opposite direction to the optical force which in this situation is
approximately 1pN). Knowing both, radial and tangential components of the thermal force,
we can estimate the required tilting θ of the particle around the vertical direction (due to the
torque applied by the circularly polarized light) to give the expected tangential force. We
find this angle θ to be around 10 degrees for circularly polarized light. On the other hand,
when the polarization is linear (see Fig. 4.8), the cap is aligned with the local Poynting vector
such that the absence of the tangential force does not induce steady rotation but yields an
equilibrium distance ρ at which the particle is confined.

Our Brownian dynamics simulations (see Methods-Numerical Model) also confirm that
the particle remains confined at a given radius ρ that increases with power from 3.3±0.9 µm
at 10mW up to 9.1 ± 0.6 µm at 35mW, see Fig. 4.7(c), which is consistent with both
experimental and theoretical results. Additionally, the simulations verify that the radial
confinement does also depend on the power, with the trajectory for higher powers being less
spread than that for lower ones, see Fig. 4.7(c). In Fig. 4.7(d) we show simulations where
different ellipticities of the incoming light such as in experiments have been considered. In
particular, we plot the results for circularly polarized light in both orientations (blue and pink
points) and for linearly polarized light (orange points). As for our experimental results (see
Fig. 4.4(d)), in the case of linear polarization the particle remains around the same location
and only diffuses, which stands in contrast to the well-defined directional motion observed
for circular polarization.

4.4 Methods

4.4.1 Janus particles

The fabrication of the Janus particles (diameter 3 µm) made of silica (SiO2) and half coated
with gold (Au) splits into three different steps. The first one consists of obtaining a crystalline
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monolayer of silica spheres on the glass surface. Starting from a solution of silica spheres
in water, we deposit the droplet on the glass, and when the solvent evaporates we obtain
a monolayer of particles on the substrate. We find the best structures when covering the
substrate with a Petri-dish and keeping it at a temperature of 19◦C until the sample dries.
The second step consists of coating one half of the particles’ surface with a 10-nm thick layer
of gold. For this, we employ the thermal evaporation technique, which evaporates the metal
and condenses it on the particles surface at high vacuum conditions. To improve the adhesion
of gold to silica, we added a 2nm layer of Titanium before adding gold. Third and last, to
release the particles in solution, we immerse the substrate in water and sonicate for 5 seconds
(SONICA, 1200M). SEM micrographs were collected by a Quanta 450 (FEI, Hillsboro, OR,
USA) with a large-field detector (LFD) and an accelerating voltage of 20 kV in high vacuum
(1−6 mbar).

4.4.2 Experimental setup

To prepare the sample chamber, a small amount of Janus particles in aqueous suspension
(15−20 µl) is drop casted on a clean microscope slide and then covered with a coverslip.
The obtained chamber is sealed with nail polish to avoid evaporation during measurements.
The light source for the optical tweezers is a laser diode source (Thorlabs DL8142-201) at
830 nm wavelength. After passing through a couple of anamorphic prisms and an optical
isolator, the laser beam is expanded to overfill the back aperture of a high numerical aperture
objective (Olympus, Uplan FLN 100X, NA=1.3), aiming at obtaining a diffraction-limited
spot approximately 600nm in diameter. Laser power at the objective is varied in the range
between 5 and 35 mW. A λ/4 wave plate, placed in the beam path, is used to control the
light polarization state. The relative position between the chamber and the focus of the beam
is controlled using a piezoelectric stage (Mad City Labs NANO-LP200). The focal spot is
located 8 µm above the substrate while the motion of the particle takes place directly on top
of the substrate. The particle images are taken in transmission with a CCD camera and are
calibrated by imaging a microscope slide ruler. Tracking of the particle dynamics follows
standardized digital video microscopy techniques and has been implemented in home-made
Python codes. See Fig. 4.9 for a schematic of the experimental set up.

4.4.3 Numerical model

The interaction of the Janus particle with the focused Gaussian optical beam is described in
the geometrical optics approximation [2, 76]: the beam is represented by an appropriate set
of rays that, impinging on the Janus particle surface, are reflected, transmitted, and, when
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Fig. 4.9 Schematic of the experimental set up. The schematic includes the laser source, the
two lenses (L1 and L2) that expand the beam, the λ/4 waveplate, the dicroic mirror (DM)
that reflects the beam into the objective (Obj), the condenser (C), the illumination source
(LS), and the computer that analyzes the images. Image taken from [188].

hitting the gold-coated spherical cap, also partially absorbed, see Fig. 4.10. While each ray is
undergoing this infinite series of scattering events, it exchanges linear and angular momentum
with the particle and therefore applies an optical force and torque. Additionally, the metallic
cap absorbs some of the incident light thereby increasing its temperature locally around the
stationary point ≈ 5−10 K. Given that the gold cap is largely continuous and gold exhibits
excellent thermal conductivity, we assume the gold cap being isothermal. As the particle is
immersed in solution, the temperature of the water in close proximity to the cap increases
too: this asymmetry induces a temperature gradient across the particle. As fluids typically
move from cold to hot regions, the particle experiences a slip flow in the opposite direction,
inducing thermophoretic (Fthp) motion of the particle [202]. Moreover, the temperature
increase in the volume of water close to the particle induces a volume expansion of the water
(Fexp). This causes an unbalanced force towards the non-expanding volume region (i.e. the
“cold” side of the Janus particle). In practice, the particle feels a force proportional to the
increased water volume, propelling the particle towards its cold end, see Fig. 4.11.

Our experimental observations regarding the orientation of the particle, as depicted
in Fig. 4.4(a-c) and Fig. 4.5, are in line with previous studies [200] and with symmetry
arguments. Based on these findings, we make the assumption that for a Janus particle with
a thin gold layer, the optical torque resulting from geometrical scattering stably orients the
particle in a manner where its gold cap aligns with the local Poynting vector S⃗ of the beam
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Fig. 4.10 Schematic of a ray impinging on a Janus particle. The ray î reaches the particle
and divides into a scattered ray r̂1 and a transmitted ray t̂2. The change in linear momentum
results in an applied force on the particle F. Image taken from [188].

Fig. 4.11 Parameters as a function of temperature. Density of water (ρwater), linear expansion
coefficient of water (cL) and volume expansion force (Fexp) as a function of temperature.
Image taken from [188].
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impinging on the particle, see Fig. 4.1(a). While our model assumes an isothermal gold cap,
the presence of small isolated grains along the borders of the cap in combination with the
inhomogeneous illumination induces a thermophoretic torque. This torque, similarly to the
optical torque resulting from geometrical scattering, would act to align the gold cap with the
local Poynting vector in the horizontal plane, thereby preserving radial symmetry. Although
we did not explicitly incorporate this phenomenon into our model due to its complexity, we
acknowledge its potential influence on the behavior of the system. Also, the combination of
particle size (3 µm) with the proximity to a planar boundary determines that the orientation
of the particle is not very much affected by the Brownian noise, as the relaxation time of the
rotational dynamics is significantly longer than the one in bulk in the order of magnitude of
about 20s. In our dynamics simulation, hence, we consider the degrees of freedom related to
the position of the particle center only, the orientation in each point is defined by the local
Poynting vector S⃗, Fig. 4.12.

Fig. 4.12 Orientation of the Janus particle for different radial positions under linearly po-
larized light. The local Poynting vector of the focused beam (⃗S, in green) is perpendicular
toplane that contains the border between gold and silica and goes in the opposite direction to
the orientation vector (⃗n, in yellow). Image taken from [188].

From our main experimental observations we saw that elliptically polarized light induces
orbital motion of the particle around the beam axis. We can simulate this by introducing
a polarization dependent torque in our model. The Brownian dynamics equations for our
particle, transposed already in the finite difference formalism, read as:
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∆ρ =
Dtransl

kBT
Fρ,tot ∆t +

√
2Dtransl ∆t Wρ ,

∆s =
Dtransl

kBT
Fs,tot ∆t +

√
2Dtransl ∆t Ws,

∆ψ =
Drot

kBT
Tz,pol ∆t,

(4.1)

where ρ is the radial coordinate from the center of the beam and S⃗ is the coordinate in
the tangential direction, oriented in the sense of positive angles (i.e., obtained from ρ̂ and
the direction of the beam propagation axis ẑ via ŝ = ẑ× ρ̂), and ψ is the azimuthal angle
describing the orientation vector of the particle in the standard lab reference frame with basis
unit vectors: x̂, ŷ, ẑ.

The term Fρ,tot is the total force component along the radial direction ρ̂ , Fs,tot is the
component along the tangential direction ŝ, and Tz,pol is the torque along the beam propagation
axis direction ẑ due to the amount of circular polarization of the light. The diffusion constants
are Dtransl and Drot, which are related to the components D||, Drot,⊥ of the diffusion matrix of
a spherical particle[219]. Wρ and Ws are Gaussian white noise terms related to the random
Brownian fluctuations. Both terms have zero mean and unit variance.

The total force is calculated as:

Ftot = Fopt +Fthph +Fexp +Fweight +Fbuoyancy +Fint (4.2)

where Fopt is the optical force due to the scattering of the rays on the particles, Fthph is the
thermophoretic force due to the slip flow of the thin layer of fluid in the proximity of the
particle surface induced by the temperature gradient along the particle diameter (direction
metallic cap-uncoated end), Fexp is the force due to the volume expansion of the water caused
by the temperature increase in the region near the cap, Fweight is the weight of the particle,
Fbuoyancy is the upwards force that the fluid applies to the particle because of its mass density,
and Fint is the interaction force with the bottom slide, that we assume to be short range and
repulsive, representing a colloidal electrostatic interaction which decays exponentially with
increasing distance between the particle and bottom slide preventing sticking. As the cap
is oriented in the direction of the local Poynting vector, i.e., the coated cap faces the beam
focus, while the uncoated particle hemisphere faces downwards and thus the bottom slide,
the vertical component of the sum of all forces except for the electrostatic interaction with
the substrate is directed downwards. Therefore, we assume that the substrate must always
compensate the vertical forces with the right amount of repulsion, and the particle always
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remains close to the substrate at a given minimal distance from it (≈ 50nm). For this reason,
we do not include an explicit equation for the particle position in the vertical direction, see
Fig. 4.8 for a schematic of the direction of the forces under different polarization conditions.
Note that the presence of a surface, such as a bottom slide, can alter the hydrodynamic flows
and impact the propulsion of the particle [227]. Although this factor may have a significant
role in certain systems and the interaction between particles, we did not account for this
effect in our numerical model. Instead, we deliberately developed the simplest numerical
model that accurately captures the experimental observations.

The expression for the different forces are given here below. The optical force is calculated
in the standard way from the scattering, summing the contribution of the force due to the
single rays [2]:

Fopt = ∑
m

F(m)
ray (4.3)

with

Fray =
nmPi

c
î− nmP(1)

r

c
r̂1 −

∞

∑
j=2

nmP( j)
t

c
t̂ j, (4.4)

The temperature increase is calculated while calculating the scattering, calculating the
power absorbed by each single ray and summing it:

Pabs = ∑
m

P(m)
cap,ray (4.5)

If we consider the cap isothermal, the temperature increase ∆Tcap is

∆Tcap =
Pabs

(2π +4)κmR
, (4.6)

where κm is the thermal conductivity of the medium and we can define a temperature gradient
across the particle given by:

∇T =
∆Tcap

πR
. (4.7)

The thermophoretic velocity is expressed as vph =−DT ∇T where DT is the thermal diffusion
coefficient [226]. From vph we obtain Fthph =

kBT
Dtransl

vph. This force is assumed to push the
particle in the n⃗ direction, from its coated cap to its uncoated end.

The magnitude force related to the volume expansion of the water when the temperature
is increased (Fexp) is modelled as follows. We estimate a linear expansion coefficient cL

for the water between the base temperature (T ) and the increased value of the temperature
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(T +∆T ) as:

cL =
ρwater(T )

ρwater(T +∆T )
−1, (4.8)

where ρwater(T ) indicates the mass density of water at temperature T and we write:

Fexp = α pwater cL R2, (4.9)

where R is the radius of the particle, pwater is the hydrostatic pressure in the fluid, that we
assume equal to the atmospheric pressure at sea level, and α = 0.003 is a proportionality
constant. This is a phenomenological, simplified model of the complex fluid dynamics
occurring inside the fluid chamber, that are normally modelled using the Navier-Stokes
equations. Fexp results from a force unbalance between the expanded water region (i.e.,
close to the gold cap) and the unexpanded water region (i.e., close to the silica half) and it is
assumed to push the particle along the direction from its coated cap to its uncoated end.

The polarization torque is calculated summing the contribution of each ray impinging on
the particle as:

Tpol = ∑
m

T(m)
pol,ray (4.10)

The contribution of each ray is modelled as proportional to the power absorbed on the first
scattering event that involves the cap:

T(m)
pol,ray = σ

P(m)
1,abs,ray

ω
r̂(m)

1,abs,ray (4.11)

In the equation above, ω = 2πν is the angular frequency of the optical wavelength used
for the laser beam, σ is a parameter between -1 and 1 describing the amount of circular
polarization transported by each ray (where 0 corresponds to linear polarization), P(m)

1,abs,ray is

the power that the mth ray deposits on the cap the first time it hits the cap, and r̂(m)
1,abs,ray is the

direction of the mth ray when this event happens.

4.5 Conclusions

In this study, we have introduced a highly controllable microengine by combining both
optical and thermal effects. We demonstrated that a 3 µm gold-silica Janus particle can be
confined at a specific distance from the center of a highly focused beam, with the gold side
facing inwards. The balance between optical forces, which pull the particle towards the high
intensity region, and thermal forces, which push it away from the same region, is responsible
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for this confinement. Remarkably, the stationary position can be fine-tuned by adjusting the
beam power. Furthermore, we showed that circularly polarized light can transfer spin angular
momentum from the light to the particle, breaking the mirror-symmetry of the system and
inducing a moon-like rotation (orbital motion of the particle around the beam axis with the
gold side towards the center of the beam). The speed and the orientation of this rotation can
be precisely controlled by varying the ellipticity of the light. Our experimental findings have
been validated by a phenomenological numerical model based on the geometrical optics
approximation that matches our observations and provides further insights into the intrinsic
properties of the system. Overall, the high degree of control we have achieved with this
microengine opens up new possibilities in a wide range of applications, from microscale
transport to sensing and actuation.





Chapter 5

Propulsion of capped elongated
microparticles via optical forces

Optical forces can control and manipulate particles, with their full potential in active
matter still under exploration. This chapter demonstrates self-propulsion in shape-asymmetric
particles due to momentum transfer via transverse optical forces, amplified by thermophoretic
effects from a light-absorbing coating. Exposing these particles to complex optical fields
creates a web of dynamic trajectories influenced by particle size and light intensity. Supported
by a numerical model in line with experiments, our findings enhance understanding of motion
determinants and have implications across various scientific domains. The image depicts
the probability distribution of a capped elongated particle navigating a speckle light profile,
highlighting the intricate motion patterns discussed in this chapter
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5.1 Introduction

In the realm of active matter, where systems are capable of autonomous work, controlling
particle motion presents a significant challenge. Light has emerged as a uniquely advanta-
geous tool for this purpose, offering precise spatiotemporal control that surpasses alternative
actuation methods such as electric fields [206], magnetic fields [207], and chemical reac-
tions [228]. Specifically, the modulation of light intensity has become the prevailing strategy
for external control, finding applications in a diverse range of systems including molecular
motors [229], colloidal particles [230], bacteria [68], and even macroscopic robots [231].
However, many properties of light, such as polarization, wavelength, and momentum transfer,
remain largely underexplored [63].

We demonstrate that asymmetric particles can self-propel due to transverse optical
forces induced by momentum transfer [20, 8]. This extends the traditional applications of
optical forces beyond mere trapping or confinement to induce propulsion. Importantly, these
particles can be made from a single material, simplifying the fabrication process compared
to more complex designs such as nanostructured light scatterers [65, 66] or chiral plasmonic
nanoantennas [66]. Propulsion efficiency can be further enhanced through thermophoretic
effects, achievable with a partial coating of light-absorbing material.

The sensitive nature of optical forces combined with particle asymmetry makes the
self-propelled motion responsive to features in a complex optical landscape. When exposed
to a speckle light pattern—created via the interference of light waves in a multimode optical
fiber—these particles not only experience propulsion but also follow complex, directionally-
biased trajectories due to forces that both attract and reorient them. Remarkably, these
intricate motions can be precisely modeled and predicted through our numerical simulations.
This approach offers a compelling alternative to traditional optical manipulation techniques
that require continuous monitoring for precise control. In sum, our approach offers a
simplified, yet powerful and scalable, strategy to light-based particle manipulation in the
microscale, possibly enabling advances in various fields from targeted drug delivery to
environmental remediation.

5.2 Results and discussion

In our quest to uncover the underlying principles of light-driven microparticle motion, we
explore two distinct particle geometries: simple cylinders and capped cylinders. Both particle
types measure 8 µm in length and have a diameter of 2 µm. For the asymmetrical variety,
one end of the cylinder is replaced with a cone-shaped “cap” featuring a 4 µm top diameter
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and forming an angle of approximately 30◦ with the cylindrical body. These particles
are fabricated using two-photon polymerization and placed under three different lighting
scenarios: the absence of light, a stable Gaussian optical landscape, and a speckle optical
landscape. The speckle optical landscape, see Fig. 5.1(c), is fabricated through a Speckle
tweezers setup utilizing the multimode optical fiber (the fiber remains static) [232], see the
experimental set-up in Fig. 5.7. On the other hand, the Gaussian landscape, see Fig. 5.1(b),
is achieved by rapidly rotating the multimode optical fiber (contrary to the previous case
where it remained static), generating an average, out-of-focus Gaussian light profile. The
cylinders have predictable behaviors such as Brownian diffusion both without light and
under a homogeneous Gaussian profile [114], contrasting with trapping in high-intensity
spots in the speckle case [233, 76]. Capped particles particles, on the other hand, exhibit
more complex yet predictable and controllable responses. Specifically, they manifest active
propulsion in the latter two scenarios, and under speckle illumination, their paths are sculpted
by the speckle, weaving a complex network of trajectories, see Fig. 5.1. The subsequent
sections embark on a comprehensive examination of these phenomena, dissecting the findings
from both experimental and numerical perspectives, and unraveling the intricate interplay
between shape, light, and motion.

5.2.1 Experimental study

Under no illumination, see Fig. 5.1(a), both types of particles - simple and capped cylinders
- exhibit similar behaviors, as depicted in Fig. 5.1(d,g). They undergo Brownian motion
showing random diffusion in both position and orientation without any discernible bias
[114]. As expected, the Mean Square Displacement (MSD) of their trajectories exhibits
ballistic behavior (MSD ∝ t2) at very short time intervals, transitioning to a diffusive regime
(MSD ∝ t) at longer durations [234].

A substantial shift in behavior occurs when the particles are subjected to Gaussian-like
profile illumination, as seen in Fig. 5.1(e,h). Simple cylinders continue their pattern of
random diffusion; notably, the Gaussian-like profile is sufficiently broad to preclude any
significant gradient forces that might attract particles toward the beam center. Conversely,
capped cylinders exhibit a distinct behavior, they display active, directed motion, advancing
from the cap toward the cylinder at speeds around 3 µm/s for an average light intensity of 1.6
mW/µm². Their MSD, as observed in Fig. 5.1(k), remains ballistic throughout (MSD ∝ t2),
in contrast to the simple cylinders which revert to a diffusive state (MSD ∝ t). Importantly,
the orientation of the capped cylinders continues to fluctuate randomly, akin to the behavior
observed in simple cylinders.
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Fig. 5.1 Panels (a-c) display the light intensity profiles of the three distinct optical landscapes
along the x-axis, as indicated by the dashed line in plots (d-f). A schematic on the left delin-
eates the two unique particle geometries and is complemented by digital video microscopy
insets in (d) and (g). The white dots together with the green rectangles and blue arrows in
(d-i) are plotted according to the schematic on the left. Plots (d-f) spotlight the cylindrical
particle’s behavior under three conditions: absence of illumination (d), Gaussian illumination
(e), and speckle illumination (f). Conversely, panels (g-i) offer a parallel analysis for the
capped particle. The Mean Square Displacement (MSD) of both position and orientation
are quantified in plots (j-l), in green the cylindrical particle and in blue the capped one. In
the absence of illumination (d, g), both particle types manifest similar random diffusion,
characterized by an MSD (j) that is linearly proportional to time t—except at very short times,
where it becomes ballistic and proportional to t2. Under Gaussian illumination, the capped
particle exhibits active directed motion (h), whereas the cylindrical particle maintains random
diffusion in both position and orientations, as quantified in the MSD plot (k). The divergence
in behavior becomes more pronounced under speckle illumination: the cylindrical particles
become confined in both angle and orientation due to gradient optical forces and torques, as
seen in plot (l), while capped particles continue to exhibit active propulsion (i), influenced by
a blend of these optical forces and torques, the MSD in (l) supports this analysis.
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When exposed to a speckle light pattern, as shown in Fig. 5.1(f,i), the dynamics become
markedly more complex. Rather than engaging in random diffusion, the simple cylinders
are confined to high-intensity zones due to gradient optical forces and torques, resulting
in stabilized positions and orientations. Contrarily, capped cylinders that are propelled
sufficiently to evade these high-intensity traps, largely maintain their active, directed motion
as depicted in Fig. 5.1(i). This speckle-patterned environment contrasts significantly with
uniform illumination settings. In this case, propulsion is no longer homogeneous (depends
on the local intensity) and the orientation is no longer randomly diffusive but is influenced by
gradient forces in high-intensity areas, exerting a torque (the same that impacts the orientation
of simple cylinders). Due to this torque, the MSD of the orientation increases at a rate that is
faster than linear growth (diffusive) but less than quadratic (ballistic), as noted in Fig. 5.1(l).
A rare exception to this active propulsion for the capped cylinders occurs when a particle
is anchored near a high-intensity zone due to insufficient propulsive force to counteract
the gradient force. In the following section we will add a new effect to prevent this from
happening. With this qualitative overview, the subsequent sections will delve into a more
detailed analysis of the propulsion mechanisms at play, as well as the unique dynamics of
capped particles under speckle light patterns.

Shape-driven propulsion by light

We commence our exploration with the Gaussian illumination condition, approximated as
flat within a 20 µm radius from the center. Under this illumination, cylindrical particles
maintain their random diffusion, akin to the no-light scenario, see Fig. 5.1(e,k). In contrast,
capped particles reveal active motion from the cap towards the cylinder (Fig. 5.1(h,k)). These
dynamics are analyzed across a range of average intensities (0 to 2.1 mW/µm²), showing
a positive correlation between intensity and trajectory length, thus higher speeds at higher
intensities, see Fig. 5.2(a).

The relationship between speed and light intensity displays a linear dependency where
the speed in µm/s can be expressed as v = 1.9 · I +0.1. The minor offset of 0.1µm/s is in
accordance with the notion that the absence of light eliminates propulsion, as shown in
Fig. 5.2(b). The speed is calculated considering 0.25 seconds intervals. At the maximum
average intensity available (2.1 mW/µm²), a peak speed of 4.1± 0.5µm/s was observed,
indicating that the particle moves about half its body length per second.

Given the particles’ uniform composition, propulsion cannot stem from compositional
asymmetry, as is the case in many active motion systems [235, 236]. Instead, our side-by-side
comparison of the behaviors of cylindrical and capped particles under Gaussian illumination
highlights shape as the critical determinant of propulsion. This observation aligns with
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the notion of a shape-induced transverse component of the optical force, which arises due
to the non-symmetric redistribution of light momenta when scattering from non-spherical
particles, as shown in Fig. 5.2(b). This transverse optical force [20] has been used to lift and
drive non-spherical particles in a homogeneous light field similar to our expanded Gaussian
beam [237, 7]. The linear correlation between particle speed and light intensity agrees with
the theory of momentum exchange in optical forces. An increase in photon flux through
the particle corresponds to an upswing in momentum exchange, which, in turn, leads to a
proportional acceleration of the particle’s speed.

Fig. 5.2 Capped particles under Gaussian illumination at various light intensities. (a) Depicts
one representative 4-second trajectory for five different intensities ranging from 0 mW/µm²
to 2.1 mW/µm², with arrows indicating the orientation of the particle plotted every second.
(b) A scatter plot represents the particle’s average speed as a function of light intensity. The
dashed gray line is the best-fit straight line to the experimental data, with the corresponding
expression shown in gray. The inset illustrates the redistribution of momentum resulting
in the propelling force. The change of momentum of light (equal magnitude and opposite
direction to the momentum of the particle) is represented as ∆p⃗

Dynamics of capped particles under different light patterns

Building on our previous work, where we established that the particle’s asymmetrical shape
is the key factor driving its propulsion (see previous subsection and Figs.5.1 and 5.2), we
now introduce an additional modification to enhance the propulsion. We coat one end of the
particle with a light-absorbing material (Platinium, refer to Methods section). This coating
introduces a temperature gradient, thereby inducing thermophoresis [238]. This modification
qualitatively affects the dynamics in speckle fields, where particles could otherwise become
immobilized due to an equilibrium between propelling and gradient forces. The modified
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design combines both propulsion mechanisms (transverse optical forces and thermophoresis)
for enhanced propulsion. To substantiate the impact of thermophoresis, we conducted
experiments with Pt-coated cylinders (non capped particles) under Gaussian light (no optical
forces, only thermophoresis). The observed propulsion speeds ranged from 1.4±0.4µm/s
at 1 mW/µm² to 10.9±4.3µm/s at 2 mW/µm². Notably, these speeds are in the same order
of magnitude as the speeds induced by optical forces we previously investigated. Upon
confirming the effectiveness of thermophoresis, we proceeded to evaluate the dynamics of
the capped, coated particles under three specific lighting environments: no light, Gaussian,
and speckle fields.

The intricate behavior of these particles unfolds as we study the probability distribution
of linear velocities (v) over 0.25-second intervals (Fig. 5.3(a)). Gaussian illumination yields
the highest mean velocity of 4.7±1.4µm/s, characterized by a normal distribution around
this value. As expected, this value is larger than the one we obtained for the non coated
particles (2.1 ± 0.2µm/s). A notably broad spectrum of velocities (not Gaussian) manifests
in the speckle case (2.3 ± 2.7µm/s), attributable to the heterogeneous light profile containing
regions of both low and high intensity, with the highest intensities leading to the most elevated
velocities. This results in the capability of propelling the particle to speeds as high as 15µm/s.

Shifting our focus to angular velocities (ω), see Fig. 5.3(b), we observe that both the
no-light and Gaussian scenarios, lacking gradient forces, present the lower angular velocities.
Here ω is defined as the rate of change of the orientation angle of the particle. Intriguingly,
Gaussian illumination results in slightly higher average angular velocities (14 ± 10◦/s)
compared to the no-light situation (9±7◦/s). This stems from the non-perfect revolution
symmetry of the particles (around the plane that contains the normal vector to the surface
and the direction vector of the particle), inducing a coupling between linear and angular
speed, thereby introducing chirality and causing propulsion that deviates from a straight path.
Although the average angular velocity in the speckle case (12±11◦/s) is slightly lower than
the Gaussian scenario, peaks of up to 100◦/s are reached, reflecting the influence of gradient
forces that exert torque on the particle (similar to observations with cylindrical particles in
Fig. 5.1(f)).

In analyzing the mean square displacement (MSD), see Fig. 5.3(c), the Gaussian case
stands out, revealing almost ballistic movement over a 5-second observation period. A rapid
transition from ballistic motion (MSD ∝ t2) to diffusion (MSD ∝ t) is discernible in the
absence of illumination, occurring more gradually in the speckle case but earlier than in the
Gaussian scenario. This complex behavior for the speckle can be ascribed to the torque from
the gradient force, that reorients the particle’s direction.
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In a meticulous examination of an individual particle’s trajectory within the speckle field
(Fig.5.3(d)), the particle’s alignment with high-intensity regions is evident, with the particle
trying to maximize its volume under high intensity regions. Acceleration observed when
the cap is positioned in such high intensity areas. This behavior can be understood through
the interaction between light and the particle, broken down into three distinct forces, as
depicted in Fig.5.1(a). The first force pushes the particle along its length: it is produced
by the light reaching the cap, and comes from the combination of the optical forces and
thermophoresis; the second pulls it toward bright areas and it is caused by optical forces;
the third turns it in the direction of these bright areas due to optical torques. These findings
uncover a fascinating mechanism where the light pattern actively guides the particle’s path,
reinforcing the central thesis that both the particle’s shape and the speckle light intensity are
the collaborative conductors in the dynamics of capped particles.

Speckle illumination: networked paths

Expanding from our previous examination of individual trajectories, we now turn our focus
to the spatial distribution of these paths. Specifically, we explore how an individual particle
navigates through space across up to 45 trajectories within the same speckle field. Far from
a random exploration, a well-defined network of paths emerges, influenced by the optical
torque that reorients the particles, as illustrated in Fig. 5.4(a). The thicker green line labeled
with an asterisk represents the trajectory previously depicted in Fig. 5.3(b), underscoring that
the rules governing each trajectory remain consistent across the network.

By plotting the position of the capped end, we observe that the particle moves faster in
bright regions (marked by more widely separated scatter plot points) compared to dark regions
(where scatter plot points are tightly clustered). This insight aligns with the conclusions
drawn in the preceding analysis that the particles speed is proportional to the intensity.
Delving further into the orientations of the particles reveals additional intriguing properties,
as displayed in Fig. 5.4(b). The paths tend to be unidirectional, breaking the directional
symmetry and suggesting a preferential exploration in one direction. This characteristic is
attributed to the random positioning and shape of the speckle’s high-intensity regions, which
reorient the particle. Since these regions are not symmetrically distributed, they disrupt the
symmetry in the particle’s orientation along the paths, enforcing a preferred motion direction.
This aspect is further discussed in Supporting Information.

Moreover, the interplay of Brownian noise introduces a stochastic component, allowing
paths to both merge and bifurcate. For example, particles 1 and 2 in Fig. 5.4(b), initially
sharing a path, separate, resulting in bifurcation (paths of particles 1 and 2 are the ones that
have the same colour as the numbers). While particle 2 maintains a horizontal trajectory,
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Fig. 5.3 Comparison of the dynamics of the capped particles under different light patterns.
(a,b) Show the normalized probability of linear (a) and angular (b) velocities over 0.25-
second time intervals; (b) is presented with the probability axis in log scale for clarity. The
situation with no light (gray) corresponds with the lower v and ω of the particle. When we
use Gaussian illumination (yellow), the average v reaches its maximum value 4.7±1.4,µm/s.
Even though Speckle illumination (red) provides a lower v (2.3± 2.7,µm/s), it also gives
rise to the highest instantaneous velocities (up to 15µm/s). This is also true for ω; the
high-intensity spots of the speckle pattern apply a torque that reorients the particles, resulting
in the highest values of ω , reaching values of ω = 100◦/s. (c) Depicts the Mean Squared
Displacement (MSD) for the particles over 5-second trajectories, with dashed lines indicating
the slope of a trajectory with ballistic motion (∝ t2) and one with only random diffusion (∝ t).
(d) Illustrates a representative particle under Speckle illumination, with arrows (plotted every
0.5 seconds) indicating orientation, pointing from the capped end towards the cylinder with
the same length as the particle. The white points show the position of the capped end of the
particle, which moves faster in the high-intensity regions and is reoriented in these spots.
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particle 1 shifts to an almost perpendicular vertical path. In contrast, the trajectory of
particle 3 converges with that of particle 2. The considerable length of our particle lowers its
rotational diffusion time, making it more prone to follow deterministic trajectories defined
by the intensity pattern.

Analyzing how the paths distribute, we observe that the particles tend to follow paths
through the high intensity regions. While the average intensity of the speckle is 0.36 mW/µm²,
the average intensity of the speckle at the particle paths is 0.51 mW/µm². This indicates a
preference of the particle to cross these regions. This is explained by the gradient optical
force that both attracts and reorients the particles.

Our observations lead us to hypothesize the existence of an optimal size for this network-
like motion to manifest. If the particle is too small, it would diffuse before reaching the
next high-intensity region. Conversely, if overly large, the particle would not only have a
lower rotational diffusion coefficient but would also perceive the cumulative effect of several
high-intensity spots, rendering the whole area nearly homogeneous and making it more
difficult to reorient, resembling the conditions of a homogeneous illumination case. This
discussion will be further detailed in the next section.

5.2.2 Numerical study

After analyzing the dynamics of the particles from our experiments, we introduce a numerical
model, encapsulating the minimal essential factors, to successfully reproduce the observed
experimental results. Our formulation is built on the Brownian dynamics of a cylindrical
particle in a 2D space, governed by the non-inertial Langevin equations. The interaction
between light and particle is dissected into three distinct forces: the first, arising from the
exchange of linear momentum induced by the particle’s asymmetry (presence of the cap) and
boosted by the thermophoresis due to the heating of the particle, propels it along its long
axis; the second, mediated by the optical gradient force, draws the particle towards areas
of high intensity; and the third, also linked to the gradient force, applies a torque, steering
it towards the high-intensity regions. A more comprehensive elucidation of the numerical
model can be found in the methods section.

Our simulations, guided by these principles, yield results congruent with the experimental
observations. Utilizing the same light pattern as in the experiments, we simulate the trajecto-
ries of particles with random starting positions and orientations, unveiling the emergence
of paths as depicted in Fig. 5.5(a). A composite of 2,500 simulated trajectories, contrasted
against colored experimental data, reveals a close alignment, as illustrated in Fig. 5.5(b).
Both experimental and simulated results uncover a network of paths with certain areas more
densely explored. The congruence between experimental and numerical analyses in the



5.2 Results and discussion 95

Fig. 5.4 Collection of trajectories of capped particles in the speckle field. (a) Network of
trajectories for this specific speckle field, with each color representing one of 45 different
trajectories. The thicker green line, marked with an asterisk, corresponds to the same
trajectory as in Fig. 5.4(d). (b) Zoomed-in region of the network, illustrating the particle
orientations. Arrows indicate the direction from the capped end to the cylindrical end but
are intentionally shorter than the particles themselves. The unidirectionality of the paths is
evident, with three specific trajectories labeled to highlight the bifurcation and merging of
paths. The labeled paths are the ones that have the same colour as the numeric label. (c)
Shows the light intensity at the particle position as a function of the travelled distance. The
continuous plots show the data for individual trajectories while the dashed black line shows
the average intensity at the particle trajectories (0.51 mW/µm²) and the dashed red line shows
the average intensity of the region (0.36 mW/µm²).
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locations of paths validates our numerical approach and its capacity to provide insights into
our system.

Lastly, we leverage our numerical model to investigate the interdependence of network
structure and particle length, a relationship graphically represented in Fig. 5.5(c). Our
analysis brings to light a captivating phenomenon that was previously hypothesized, the
network structure vanishes for both extremely short and long particles. Shorter particles, with
their tendency for rapid reorientation and susceptibility to the gradient force, create more
densely explored regions around high-intensity spots. Longer particles, on the other hand,
constrained by their limited ability to reorient, pursue more linear paths until the gradient
torque’s influence wanes. This observed dichotomy unveils an absorbing perspective on
the nuanced interplay between speckle size ratio, particle length, and network structure,
suggesting a rich area for further exploration.

Symmetry-breaking analysis

To deepen our understanding of the system, we now turn our focus to the directionality
symmetry-breaking phenomenon. Employing simulations with two distinct light pattern
distributions, we analyze the behavior of particle trajectories across three different particle
lengths, considering particles starting with opposite positions and orientations.

In the first scenario, we place three elliptical regions of high intensity (Fig. 5.6(a-c)). The
particle trajectories depend on the starting position and on the direction in which they exit
the high-intensity spots, which are responsible for attracting and reorienting the particles.
Particularly, particles with a length of seven microns demonstrate a pronounced difference for
opposite cases, as illustrated in Fig. 5.6(b). While all the particles starting from the bottom
reach the last high-intensity region, none starting from the top is able to do so. Shorter
particles, due to a higher rotational diffusion coefficient, reorient more rapidly, losing their
orientation upon exiting the high-intensity regions (Fig. 5.6(a)). Conversely, longer particles
may fail to reorient sufficiently within the high-intensity spot due to a lower rotational
diffusion coefficient, leading to the possibility of missing subsequent spots (Fig. 5.6(c)).

In the second scenario, we examine two high-intensity spots, each with different bright-
ness and elliptical characteristics (Fig. 5.6(d-f)). The more pronounced spot, with its greater
intensity, acts as a stabilizing agent for the orientation of particles. Should the particles first
encounter this brighter spot, they exit with a well-defined orientation. In contrast, when
particles initially interact with the dimmer spot, their paths exhibit greater variability, as
shown in Fig. 5.6(e-f). This difference in behavior leads to a notable observation: for particles
of all lengths, completing the path (passing through both spots) is more likely if the trajectory
begins with an encounter with the brighter spot.
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Fig. 5.5 Numerical results of elongated particles traversing a speckle field. (a) Eight-second
simulated trajectories for a 7-micron particle within the experimental speckle landscape.
Different colors denote distinct simulated trajectories, with arrows marking orientation at
1-second intervals. These simulations reveal behavior akin to the experimental findings, with
particles influenced by the high-intensity regions. Notably, even with a limited number of
trajectories, recurring paths become evident. (b) A black-and-white plot illustrates 2,500
simulated trajectories for a 7-micron particle in the same speckle field, highlighting the
network-like structure. Colored overlays represent experimental trajectories, demonstrating
substantial agreement between the simulations and experiments, with paths appearing in
nearly identical positions. (c) A comparative examination of the 2D-histogram of the
distribution of trajectories within the same speckle field but for particles of varying lengths,
ranging from 3 to 60 µm.
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Fig. 5.6 Trajectories of particles starting from opposite positions and orientations in two
different light patterns. (a-c) Trajectories of particles in a landscape of three high-intensity
elliptical spots. (a) Short particles (l = 3µm) that reorient and disperse quickly, failing
to follow a well-defined path. (b) Particles with the same length as the ones used in the
experiments (l = 7µm); those starting from the bottom align with the bright spots’ path,
whereas the blue trajectories only cross the first high-intensity spot due to the speckle’s light
distribution. (c) Larger particles (l = 20µm) experiencing the gradient force but unable to
fully reorient, thus not adhering to well-defined paths. (d-f) Trajectories of particles in an
optical landscape with two bright spots, one being brighter and more elliptical. The particles
starting from the bottom are illustrated in green, while those moving in the opposite direction
are in blue. Across all particle lengths (d-f), those encountering the brighter spot first are
more likely to complete the full path and reach the end of the other spot.
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5.3 Methods

5.3.1 Particles

Particles were fabricated using a 3D printing process, constructing cylindrical features with a
total height of 8 µm and a diameter of 2 µm on a fused SiO2 substrate using a photosensitive
resin (Nanoscribe Photonic Professional GT2, IP-Dip) with a refractive index of 1.54 at
the laser’s wavelength. For the asymmetrical capped cylinders, the cap was introduced by
replacing the top 2 µm of the cylinder with a cone-shaped “cap.” This tail featured a top
diameter of 4 µm and an angle of approximately 30◦ with the cylindrical part.

After the 3D printing and development stages, some of the samples were given a thin
metalic coating. This was achieved by sputter coating a thin layer of Pt (4 nm) on top at a
90◦ incidence angle. The particles were released from the substrate through a process of
ultrasonication for 20 minutes in 5 mL of Milli-Q water. This procedure yielded a suspension
of the particles in liquid, ready for further experimentation.

5.3.2 Experimental setup

Speckle tweezers utilize a multimode (MM) fiber to create a complex interference pattern, or
speckle, originating from a laser light source. This speckle pattern is frequently employed to
trap or filter particles at specific positions. In our experimental setup, see Fig. 5.1(b), we use
a Nd:YAG solid-state laser with a wavelength of 1064 nm and a maximum output power of
2W. The laser light is combined with the illumination light through a dichroic mirror and
then focused into the fiber. To maximize the amount of power injected into the fiber, we
arrange two lenses in a telescope configuration at the laser’s output, thereby increasing the
beam’s size. We utilize a 0.1 NA multimode fiber, where the numerical aperture determines
our speckle’s dimensions. As the light beam traverses the fiber, interference occurs due
to the overlapping of multiple wave modes. After exiting the fiber, the beam is directed
to a microscope set up with a 10x objective lens for focusing and a 60x objective lens for
imaging. This assembly is positioned vertically so that the light’s propagation direction
aligns with gravity’s force direction. After propagating through the sample on the stage, a
filter is placed to remove the laser light, and the system is imaged using a CMOS camera
(Thorlabs DCC1645C).

5.3.3 Numerical model

Our numerical model accounts for three degrees of freedom in the elongated particle, repre-
senting its position in the plane (x and y) and its orientation (θ ). For the sake of simplicity,
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Fig. 5.7 Schematic of the experimental arrangement, encompassing the laser, telescope
(lenses l1 and l2), light source, and dichroic mirror to couple the laser with the illumination.
Included also are the focusing lens (l3) for the multimode optical fiber (MM Fiber), the
two objective lenses for light focusing and sample imaging, the filter to eliminate the laser
wavelength, and the camera for system visualization.
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we establish our frame of reference within the particle itself, allowing for transformations
between the lab frame of reference and the particle frame of reference as needed. Due to the
small size of the particles, we employ the non-inertial version of the overdamped Langevin
equation, adapting it to the particle’s frame of reference. Thus, we can model the particle’s
motion through changes in its position along the long (∆r∥) and short (∆r⊥) axes, and changes
in orientation (∆θ ):

∆r∥ =
D∥∆t
kBT

·F∥+
√

2D∥∆t ·ξ∥, (5.1)

∆r⊥ =
D⊥∆t
kBT

·F⊥+
√

2D⊥∆t ·ξ⊥, (5.2)

∆θ =
Dr∆t
kBT

· τ +
√

2Dr∆t ·ξr. (5.3)

In these equations, D∥, D⊥, and Dr denote the diffusion coefficients along the particle’s
long axis, short axis, and orientation, respectively. Although the actual shape of the particle
is more complex, we approximate it as an ellipsoid and calculate the diffusion coefficients
using Perrin’s analytical solution for ellipsoids [129, 130].

The expressions detailed above describe a microparticle undergoing Brownian diffusion
while subject to applied forces. In our model, the influence of the optical landscape translates
into forces through three key mechanisms:

• The propelling force (Fprop), arising from the exchange of linear momentum due to the
particle’s asymmetry, propels it along its long axis and is proportional to the intensity
at the cap position. This force can be boosted by the effect of thermophoresis that we
approximate as linearly depending on the intensity so all the effects can be included in
the parameter α:

F⃗prop = α · I.

• The optical gradient force (Fgrad) draws the particle towards areas of high intensity and
is proportional to the light intensity gradient:

F⃗grad = β ·∇I.

• The torque (τgrad) steers the particle towards high-intensity regions with a magnitude
proportional to the intensity gradient along the angle:

τ⃗grad = γ · ∂ I
∂θ

.
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Where α , β , and γ are free coefficients obtained from experiments. Although this approach
considers forces and torques typical of optical forces [4], its simple formulation broadens its
applicability to various systems.

5.4 Conclusions

In our study, we have explored the untapped potential of shape-driven asymmetry to scatter
light asymmetrically and thereby propel particles. This achievement, demonstrating propul-
sion exclusively driven by optical forces, reveals an effect that can be combined with other
phenomena like thermophoresis, paving the way for new approaches beyond traditional
methods.

Our observations extend beyond mere propulsion. We found that optical forces act as
navigators, guiding particles along complex paths. This guidance gives rise to a network
of trajectories that are far from arbitrary, revealing an underlying structure that breaks the
symmetry of system directionality. These paths, with the ability to merge and bifurcate,
represent a fascinating interplay between direction and randomness. Supported by our
numerical model, which successfully replicates the experimental phenomena, we have not
only validated our insights but also established a framework to further control and manipulate
these particle trajectories.

Our study marks a thoughtful step towards understanding and controlling motion at
micro-scale levels, challenging traditional notions of what guides movement and trajectory.
Beyond the immediate applications in targeted drug delivery or material deposition, these
insights may resonate with broader phenomena in nature, such as bacterial motion or animal
migration. By revealing the intricate interplay of forces that shape trajectories, we contribute
to a growing conversation that transcends physics alone, inviting further exploration into the
multifaceted determinants of movement in both natural and engineered systems.



Conclusion

From early observations of comet tails to intricate manipulations of microscopic entities, the
relationship between light and matter has always been a rich avenue of study. This thesis is
a modest contribution to this vast expanse of knowledge. Utilizing optical trapping, I have
harnessed its potential to investigate novel systems and uncover the opportunities presented
by modern innovations.

Our attempt to incorporate machine learning with traditional methods sought to strike a
balance between computation speed and calculation precision. The cosmic realm, with its
minute particles, underscored the potential of new tools to delve into the intricacies of our
vast universe. Our exploration of the microengine aimed to demonstrate the enhanced control
of the orbital motion by exploiting the interplay between optical and thermal forces. And by
exploiting shape-asymmetry to propel active matter, we tried to offer a fresh perspective on
the determinants of motion at the microscale.

In essence, this work is a small step in the ever-evolving exploration of optical forces and
light matter interaction. Each chapter offers a glimpse into this expansive domain, together
hinting at the untapped potential in the synergy of light and matter. In moving forward,
the insights gained from this thesis may pave the way for new technological applications
and further scientific inquiries. Harnessing the interplay between light and matter has the
potential to open doors to new innovations and understandings. As the landscape of this
research area expands, we hope that the foundations laid here serve as a useful platform for
those who embark on this journey in the future.
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of optically bound matter levitated in vacuum. Optica, 8(2):220–229, 2021.

[184] I Manek, Yu B Ovchinnikov, and R Grimm. Generation of a hollow laser beam for
atom trapping using an axicon. Optics communications, 147(1-3):67–70, 1998.

[185] Arthur Ashkin and J. M. Dziedzic. Optical levitation by radiation pressure. Applied
Physics Letters, 19(8):283–285, 1971.

[186] Yong-Le Pan, Aimable Kalume, Isaac CD Lenton, Timo A Nieminen, Alex B Stilgoe,
Halina Rubinsztein-Dunlop, Leonid A Beresnev, Chuji Wang, and Joshua L Santarpia.
Optical-trapping of particles in air using parabolic reflectors and a hollow laser beam.
Optics Express, 27(23):33061–33069, 2019.



References 119

[187] Arthur Ashkin and JM Dziedzic. Feedback stabilization of optically levitated particles.
Applied Physics Letters, 30(4):202–204, 1977.

[188] David Bronte Ciriza, Agnese Callegari, Maria Grazia Donato, Berk Çiçek, Alessandro
Magazzù, Iryna Kasianiuk, Denis Kasianiuk, Falko Schmidt, Antonino Foti, Pietro G
Gucciardi, et al. Optically driven janus micro engine with full orbital motion control.
arXiv preprint arXiv:2305.06688, 2023.

[189] Alexander D. Fusi, Yudong Li, A. Llopis-Lorente, Tania Patiño, Jan C. M. van Hest,
and Loai K. E. A. Abdelmohsen. Achieving control in micro-/nanomotor mobility.
Angewandte Chemie International Edition, 62(5):e202214754, 2023.

[190] Xiao-Feng Lin, Guo-Qing Hu, Qi-Dai Chen, Li-Gang Niu, Qi-Song Li, Andreas
Ostendorf, and Hong-Bo Sun. A light-driven turbine-like micro-rotor and study
on its light-to-mechanical power conversion efficiency. Applied Physics Letters,
101(11):113901, 2012.
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