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A B S T R A C T

This paper presents an efficient yet practical approach for the automatic modal identification of structures
based on their free vibration response. The proposed approach relies on the Empirical Fourier Decomposition
(EFD) technique. It implements a new procedure to recognize automatically the number of modal components
to be extracted from noisy data in such a way to prevent both mode-mixing and mode-splitting effects. A
suitable strategy is adopted to improve the segmentation of the frequency spectrum of the free vibration
response, so as to identify accurately the bounds of the frequency spectrum partition corresponding to each
modal component. The related modal damping ratios are estimated by means of a robust area-based approach
in order to mitigate the noise-induced disturbances whereas a time-domain method based on the phase shift
of the free vibration response peaks is employed to identify the mode shapes.

The proposed approach is first validated through the analysis of synthetic signals that embed closely spaced
components and a lowly excited vibration mode. Finally, the proposed approach is applied to two real bridges.
The first case-study deals with the identification of modal frequencies and damping ratios of the cables of a
stay-cabled bridge. The second case-study involves the modal identification of a steel railway bridge deck
that exhibits two closely spaced vibration modes. The outcomes obtained using the proposed approach based
on EFD technique are compared with the results obtained by means of the Variational Mode Decomposition
(VMD) technique as well as with those computed through classical operational modal analysis techniques. The

consistent estimates produced by means of the proposed approach demonstrate its accuracy and robustness.
. Introduction

The dynamic identification of the modal parameters is an effective
ondestructive way to assess the condition of an existing structure.
ndeed, the modal parameters that can be identified from the dynamic
esponse are strictly related to essential, physical features of the struc-
ure such as mass, stiffness and energy dissipation. Therefore, they can
e conveniently used to monitor the global structural behavior while
heir variation in time might serve at detecting and tracking damage.
he estimation of modal frequencies, damping ratios and mode shapes
hus plays a crucial role for structural model updating [1] and diagnos-
ic [2]. Nonetheless, while the installation of large permanent sensor
etworks is becoming popular for the continuous dynamic identifica-
ion of major structures from ambient response, there exists a large
umber of constructions that can only be monitored sporadically and in
short time because of budget, technical and practical constraints. In

uch a case, free vibration tests might be a suitable strategy for dynamic
dentification because they can be performed by means of a network
onsisting of a few sensors temporarily installed on the structure in
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such a way to limit duration and cost of the experimental campaign.
Additionally, free vibration tests are usually performed by introducing
an initial perturbation that can induce a response significantly higher
than the ambient response. This, in turn, allows to reduce the noise-to-
signal ratio in the final measurements and/or to consider less stringent
requirements about the technical specifications of the sensors. The
results obtained from the free decay of the dynamic response are thus
generally recognized to be more accurate because the influence of the
noise is smaller and there is no need to make assumptions about the
loading conditions [3].

Several free vibration tests have been performed for the experimen-
tal dynamic characterization of base-isolated buildings [4–6], high-rise
buildings [7], masonry towers [8] and ancient tie-rods [9,10]. Free vi-
bration tests are also very common for the dynamic identification of the
modal features of some bridge typologies and components. Depending
on how the free response is induced and/or which component of the
bridge is tested, it might require a temporary closure of the infras-
tructure and the corresponding authorization by deputed authorities.
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In order to alleviate these practical issues, free vibration tests can be
arranged together with other activities that require a temporary bridge
closure, such as exceptional maintenance or retrofitting interventions,
static tests or inspections following accidental extreme events. Actually,
most of the existing applications of free vibration tests for modal iden-
tification are related to bridges. For example, Cunha et al. [11] have
performed free vibration tests to estimate the modal damping ratios
of a cable-stayed bridge. The free vibrations for this test have been
obtained by releasing a barge attached by means of a cable. Similarly,
Magalhães et al. [12] have performed the dynamic identification of a
bridge deck by exploiting its free vibrations due to the sudden rupture
of a cable with an attached heavy counterweight. The free vibrations
following the passage of a train have been often elaborated for the
dynamic identification of railway bridges [13,14]. Ko et al. [15] have
identified the equivalent damping of bridge stay cables equipped with
a magnetorheological damper from the free vibration decay following a
sinusoidal excitation. Van Nimmen et al. [16] estimated the equivalent
damping of a footbridge equipped with a tuned mass damper from its
free decay response induced by one person bobbing at the midspan.

The identification of the modal parameters through the elabora-
tion of the free response of a structure is generally accomplished by
detecting and extracting its uni-modal components from the recorded
vibrations. Several decomposition techniques have been proposed in
the last decades for this task. One of the most common is the Empir-
ical Mode Decomposition (EMD) technique [17], which combines an
iterative sifting process and the Hilbert–Huang transform. Despite its
widespread use, however, several studies have shown that the EMD
technique and, to a less extent, its improved variants [18] suffer from
mode-mixing effects [19,20]. Another approach based on the Hilbert
theory is the Hilbert Vibration Decomposition (HVD) technique [21].
An adaptive decomposition method based on wavelet analysis is the
Empirical Wavelet Transform (EWT) [22], which adopts a particular
form for the wavelet basis. The EWT initially operates a segmentation
of the frequency spectrum and a wavelet filter bank is next applied to
each segment to extract the uni-modal components. This method has
also some drawbacks: in fact, if the signal to be decomposed has a
high noise-to-signal ratio, then trivial (i.e., non-physical) components
might be extracted, thereby leading to gross errors [23]. Furthermore,
the transition phase related to each filter in the bank may produce
interference between contiguous uni-modal components, especially in
case of closely spaced modes, thus originating mode-mixing phenom-
ena [24]. Another adaptive decomposition technique is the Fourier
Decomposition Method (FDM) [25], which combines Fourier theory
and Hilbert transform to decompose the signal into a set of Fourier
intrinsic band functions. The main limitations of the FDM are at-
tributable to the poor performance in decomposing signals with low
spectral resolution or with closely spaced spectral components [26].
An adaptive decomposition method based on a variational formulation
is the Variational Modal Decomposition (VMD) technique [27], which
relies on a solid mathematical basis that differs significantly from all
existing proposals. In fact, it achieves the signal decomposition within
a computational framework in which the bandwidth associated to
each component is assessed by searching for the optimal solution of a
constrained variational problem. A very recent decomposition method
is the Empirical Fourier Decomposition (EFD) technique [24], which
operates the uni-modal components extraction via an improved suitable
segmentation of the frequency spectrum and a zero-phase filter bank.

The VMD technique and the EFD technique are among the ap-
proaches that are fast attracting more and more attention in this
field. One of the first applications of the VMD technique in structural
dynamic identification has been reported by Bagheri et al. [28], who
have adopted such a method to identify the modal parameters of
a footbridge. Civera and Surace [29] have analyzed pros and cons
of different decomposition techniques, namely EMD, HVD and VMD.
After a comprehensive examination, they have concluded that the VMD
2

technique is more suitable for structural monitoring applications than T
EMD and HVD techniques. A few applications of the EFD technique
are already available in the field of structural monitoring, but they
are limited to signal features extraction applications [30]. Overall, the
available evidence suggests that both VMD and EFD techniques can
provide very accurate results. Particularly, their performance depend
on the proper setting of the involved control parameters, which should
be possibly carried out without any feedback from the analyst in view
of automatic applications. The feasibility of the VMD technique for the
dynamic identification of the modal parameters of bridge structures
has been demonstrated by Yang et al. [14] and Mazzeo et al. [31,32],
who also developed suitable strategies towards the automatic optimal
tuning of its control parameters. To the authors’ knowledge, there is a
lack of applications and comparative evaluations related to the modal
parameters estimation of real structural systems by means of the EFD
technique, which is an impediment towards understanding its accuracy
and reliability in automatic dynamic identification. This is the existing
gap in the current literature that will be addressed within the present
study.

In this paper, an enhanced implementation of the EFD technique
is proposed for the automatic dynamic identification of structures
from free vibrations. The novel contributions are the following: (i) a
smoothing-based improved segmentation of the frequency spectrum;
(ii) an iterative automatic process for the optimal tuning of the number
of frequency spectrum partitions. The whole identification procedure is
completed by implementing an area-based approach for modal damp-
ing ratios estimation, whereas a time-domain method based on the
phase shift of the free vibration response peaks is employed to identify
the mode shapes. The performance of the proposed framework are
evaluated through numerical and experimental applications. First, a
numerical study based on synthetic signals is performed to quantify
objectively the accuracy of the proposed approach. Next, results ob-
tained from two real structures are discussed. The first experimental
case-study deals with the dynamic characterization of the cables in a
cable-stayed bridge. The second experimental case-study is concerned
with the modal identification of a steel railway bridge deck. The critical
review and the comparative evaluation of the results obtained by means
of the proposed approach demonstrate its correctness and robustness
for automatic applications.

2. Automatic modal identification based on the EFD technique

2.1. Modal identification by means of the EFD technique

The proposed identification procedure is based on the detection and
extraction of the uni-modal components from the free vibrations of
a structural system. This is accomplished by means of the EFD tech-
nique, which is an adaptive decomposition method introduced recently
by Zhou et al. [24] in order to overcome the limitations typically
recognized in the other methods based on Fourier transform such as
EWT [22] and FDM [25]. In fact, the EWT performance worsens in case
of noisy signals due to an unexpected signal segmentation, which may
affect the estimation of the instantaneous frequencies and select trivial
components. Similarly, FDM decomposition results have shown to be
inconsistent when different frequency scan techniques are adopted to
decompose the signal.

The EFD technique allows the decomposition of a multi-modal
signal into its uni-modal components and consists of two main steps,
namely a spectrum segmentation procedure and the construction of a
zero-phase filter bank. The segmentation procedure aims at producing
𝑁 frequency partitions of the frequency spectrum of the signal to be
analyzed whereas the zero-phase filter bank is required to perform the
actual decomposition.

The segmentation process is carried out within a normalized fre-
quency domain [0, 𝜋]. Here and henceforth, 𝜔 and 𝜈 will indicate the
ircular frequency in [rad/s] and the frequency in [Hz], respectively.

herefore, signal frequency lines must be also normalized. Initially, the
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Fig. 1. Zero-phase filter bank used in the EFD technique.
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oundaries of the 𝑁 contiguous frequency partitions, namely [𝜔𝑛−1, 𝜔𝑛],
re detected. Unlike other decomposition techniques that exploit the
pectrum segmentation (e.g., EWT), the frequencies 𝜔0 and 𝜔𝑁 that
efine the boundary of the first and last frequency partition are not
ecessarily equal to 0 and 𝜋, respectively. Fourier spectrum magnitudes
t 0 and 𝜋 are evaluated through an adaptive process and are sorted
ogether with other local maxima in decreasing order. The first 𝑁 fre-
uencies corresponding to the largest maximum magnitudes detected
n the signal spectrum are sorted in descending order and are denoted
s {𝛺1,… , 𝛺𝑁}. Furthermore, it is assumed 𝛺0 = 0 and 𝛺𝑁+1 = 𝜋.

For each pair of consecutive frequencies 𝛺𝑛 and 𝛺𝑛+1, the partition
s determined by picking the frequency value 𝜔𝑛 at which a global
inimum is attained as follows:

𝑛 =

⎧

⎪

⎨

⎪

⎩

argmin
𝜔

𝑋̂𝑛(𝜔) if 0 ≤ 𝑛 ≤ 𝑁 and 𝛺𝑛 ≠ 𝛺𝑛+1

𝛺𝑛 if 0 ≤ 𝑛 ≤ 𝑁 and 𝛺𝑛 = 𝛺𝑛+1,
(1)

where 𝑋̂𝑛(𝜔) is the Fourier spectrum amplitude between 𝛺𝑛 and 𝛺𝑛+1
whereas 𝜔 is the frequency variable.

The second step of the procedure consists in the construction of a
filter bank to perform the decomposition. Zero-phase filters are consid-
ered to avoid possible interference due to their transition phases, which
can produce mode-mixing effects. The zero-phase filter bank is designed
based on the frequency partitions obtained after the segmentation.
Hence, the boundary frequencies of each partition identify the cut-off
frequencies. Each zero-phase filter is a bandpass filter with no transition
phase operating on a given frequency partition [𝜔𝑛−1, 𝜔𝑛] with unitary
amplitude in frequency domain (Fig. 1):

̂𝑛(𝜔) =

{

1 if 𝜔𝑛−1 ≤ |𝜔| ≤ 𝜔𝑛
0 otherwise.

(2)

The zero-phase filter retains most of the Fourier spectrum contri-
bution in the given partition and remaining spectral components out
of the cut-off frequency range are eliminated. Let 𝑓 (𝜔) be the Fourier
transform of the signal to be analyzed, the generic filtered component
has the following expression:

𝑓𝑛(𝜔) = 𝜇̂(𝜔)𝑓 (𝜔) =

{

𝑓 (𝜔) if 𝜔𝑛−1 ≤ |𝜔| ≤ 𝜔𝑛
0 otherwise

∀𝑛 ∈ [1, 𝑁]. (3)

The modal component can be expressed in the time domain by means
of the inverse Fourier transform operator −1[⋅] as follows:

𝑓𝑛(𝑡) = −1[𝑓𝑛(𝜔)] = ∫

−𝜔𝑛+1

−𝜔𝑛
𝑓𝑛(𝜔)𝑒j𝜔𝑡d𝜔 + ∫

𝜔𝑛+1

𝜔𝑛
𝑓𝑛(𝜔)𝑒j𝜔𝑡d𝜔, (4)

where 𝑡 is the time variable. The reconstructed signal is obtained by
simply summing up the extracted components:

𝑓 (𝑡) =
𝑁
∑

𝑓𝑛(𝑡). (5)
3

𝑛=1
Central frequencies of all the segments are extracted as the frequency
values in the Fourier spectrum at which the first 𝑁 highest local
maxima are attained.

The decomposition of the free vibrations finally allows the iden-
tification of all relevant modal parameters of the structure according
to the approach described by Mazzeo et al. [31,32]. Particularly, the
component central frequencies are taken as modal frequencies of the
structural system. Modal damping ratios are obtained by means of an
area-based approach that significantly reduces the distortions due to
measurement noise as compared to the standard logarithmic decrement
method. For the 𝑛th modal component, assuming that 2𝑀𝑛 areas equal
to 𝑆𝑚,𝑛 each are enclosed between the 𝑛th free vibration response
function and the time axis, the 𝑛th modal damping ratio 𝜉𝑛 is calculated
as follows:

𝜉𝑛 =
1

√

1 +
(

2𝑀𝑛𝜋∕𝑅𝑛
)2
, (6)

where 𝑅𝑛 is given by:

𝑅𝑛 = ln
⎡

⎢

⎢

⎣

∑𝑀𝑛
𝑚=1 𝑆𝑚,𝑛

∑2𝑀𝑛
𝑚=𝑀𝑛+1

𝑆𝑚,𝑛

⎤

⎥

⎥

⎦

. (7)

The value of 𝑀𝑛 can be established so as to minimize the uncertainty
in modal damping ratio estimation according to Santoshkumar and
Khasawneh [33]. Let 𝑣(𝑠)𝑛 (𝑡𝑝) be the local peak value at the time instant
𝑝 corresponding to the 𝑛th modal response and the 𝑠th measurement
oint within a sensor network composed of 𝑆 sensors. The normalized
th mode shape vector can be thus evaluated as follows:

𝝓𝑛 =
{

𝑣(1)𝑛 (𝑡𝑝) 𝑣(2)𝑛 (𝑡𝑝) … 𝑣(𝑠)𝑛 (𝑡𝑝) … 𝑣(𝑆)𝑛 (𝑡𝑝)
}⊤

∕ max
1≤𝑠≤𝑆

|

|

|

𝑣(𝑠)𝑛 (𝑡𝑝)
|

|

|

. (8)

n order to mitigate the possible distortions in the modal shapes iden-
ification caused by measurement noise, this operation is repeated
y considering multiple local peaks at different time instants and
veraging the obtained values.

Although the application of the EFD technique is appealing for
odal identification of structures from free vibrations, there are two

ignificant shortcomings that prevent its automatic and robust imple-
entation.

• If the Fourier transform of the signal is noisy, especially close to
the peaks, a wrong segmentation is likely to occur. This is due
to the fact that trivial peaks not related to modal frequencies
occur, which might be wrongly picked up as suitable values of 𝛺𝑛.
Consequently, trivial local minima points are generated in each
frequency partition, thereby misleading the identification of 𝜔𝑛
based on Eq. (1).

• The number of frequency partitions 𝑁 and, as a consequence, the
number of components to be extracted must be assigned before
the identification starts. If there is not any a priori information,
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Fig. 2. Incorrect frequency spectrum segmentation of a real signal (dashed vertical lines denote the boundaries of the frequency segments).
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then the proper setting of this parameter might be an issue
for automatic applications. This, in turn, might jeopardize the
correctness of the decomposition procedure.

fficient strategies are proposed hereafter in order to cope with both
hese issues.

.2. Improved segmentation based on smoothed frequency spectrum

Even though the signal might be pre-processed by band-pass filter-
ng to retain only the frequencies falling within the range of interest,
he accurate estimation of the frequency spectrum might become chal-
enging due to the residual noise, thereby leading to an incorrect
dentification of the modal components. This turns out to negatively
ffect the search for the boundaries of the frequency partitions in
he EFD technique according to Eq. (1). In order to figure out the
etrimental consequences of this issue, a real signal is considered in
ig. 2 with 𝑁 = 3 (herein, it is considered the experimental cable
esponse of a cable-stayed bridge that will be thoroughly examined
ater). It is evident in Fig. 2 that the original segmentation process of
he signal spectrum wrongly sets a partition boundary at the peak that
orresponds to a system frequency 𝜈 representative of a vibration mode.
s a result, the first two frequency peaks (i.e., the first two vibration
odes) are not separated, and mode-mixing occurs. Spectral smoothing

pproaches have been adopted previously to mitigate the effect of the
oise in other decomposition methods and to assist the proper setting
f the boundaries of the frequency partitions. Smoothing approaches
ased on signal spectrum envelope [34,35], moving average filters [36]
nd Savitzky–Golay filter [37,38] have been adopted in the attempt to
mprove the spectral representation of the signals.

The proposed solution to improve the segmentation process in the
requency domain for the EFD technique consists in the application
f a zero-phase moving average filter in order to smooth the signal
pectrum. The moving average filtering operator can be expressed in
he following general form:

̂∗[𝑖] = 1
𝑛∗

𝑛∗−1
∑

𝑗=0
𝑓 [𝑖 + 𝑗], (9)

here 𝑓 [𝑖] is the sampled input spectrum, 𝑓 ∗[𝑖] is the corresponding
ampled output (smoothed spectrum) and 𝑛∗ is the number of samples

used in the moving average. The motivation for using this filter lies in
its simplicity of implementation and the minimum number of control
parameters. Actually, the only control parameter is the number of
samples 𝑛∗ in the moving average. It is advisable to use a small number
f samples 𝑛∗ in order to avoid too large distortions (i.e., excessive
lattening) in the frequency spectrum of the signal. Therefore, the
umerical value of this parameter must be related to the frequency
4

t

resolution adopted for the Fourier transform, which implies that it must
depend on the considered number of frequency lines 𝑛FT (this latter is
usually defined taking into account the recorded signal duration, and
it is settled a priori based on the imposed excitation level as well as the
expected structural damping). The following rule is thus implemented:

𝑛∗ = round[ln(𝑛FT)∕2], (10)

here round[⋅] is the rounding operation to the nearest integer. It must
e pointed out that the moving average filter in Eq. (9) produces a delay
etween original and filtered output such that the higher 𝑛∗, the larger
he delay. In order to remove the delay between input and output, the
ero-phase requirement is invoked in the filter construction (in MAT-
AB programming language, this result can be obtained by means of
he built-in function ‘‘filtfilt’’). Fig. 3 shows the comparison between the
requency spectrum presented in Fig. 2 and its filtered version obtained
y means of Eq. (9): it is evident that the frequency partitions are prop-
rly recognized after smoothing, and mode-mixing is now prevented.

It is important to highlight that the construction of the smoothed
requency spectrum only serves at detecting the frequency boundaries
or each partition. This means that, once the number of partitions 𝑁 has
een defined, the zero-phase filter bank involved in the EFD technique
s applied on the actual frequency spectrum of the signal using the
ut-off frequencies recognized from its smoothed frequency spectrum
ccording to Eq. (1).

.3. Automatic tuning of the number of frequency spectrum partitions

The correct choice of the number of frequency segments 𝑁 is a
ritical requisite for the EFD technique because it also defines the
umber of the extracted uni-modal components. A small value of 𝑁 will
ause mode-mixing (i.e., under-decomposition) whereas a large value
ill split the contribution of a single mode into several components

i.e., over-decomposition). A rough estimate of this parameter might be
btained by counting the number of peaks in the Fourier transform of
he signal. However, if residual noise remains after the filtering process
nd/or the signal exhibits closely spaced modes, then this criterion
ecomes too subjective and, ultimately, it is not suitable for automatic
pplications.

In order to overcome this further limitation of the original EFD
echnique, an automatic three-steps procedure is here proposed for the
ptimal tuning of the parameter 𝑁 . Initially, the Fourier Transform is
pplied to the considered signal and the resulting frequency spectrum
s smoothed by means of the moving average filtering as per Eq. (9),
eing the filter order defined according to Eq. (10). A few large peaks
n the smoothed frequency spectrum will have a physical meaning
ince they are associated with real modes, whereas the others are small

rivial peaks due to the noise. It is evident that the prominence of the
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Fig. 3. Smoothing of the signal frequency spectrum: comparison between original and smoothed frequency spectrum (left); correct segmentation of the frequency spectrum after
ero-phase moving average filtering (right).
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eaks plays a major role in this regard: in fact, only the peaks whose
rominence is larger than a given threshold count towards 𝑁 while
hey are trivial peaks otherwise. Keeping this in mind, a tentative value
f 𝑁 is initially established in the first step as the number of peaks
f the smoothed frequency spectrum whose amplitude 𝐹 ∗ fulfills the
ollowing condition:

̂∗ ≥ 𝑠1, (11)

here 𝑠1 is a threshold parameter. A rational probabilistic criterion is
roposed to set the threshold parameter 𝑠1. Let 𝐹 ∗ be a random variable
ith non-zero variance 𝜎𝐹 ∗ and non-zero mean 𝜇𝐹 ∗ . Regardless the

probabilistic distribution of 𝐹 ∗, the Chebyshev’s inequality [39] states
hat:

r(|𝐹 ∗ − 𝜇𝐹 ∗ | ≥ 𝑘𝜎𝐹 ∗ ) ≤
1
𝑘2
, (12)

where 𝑘 ∈ R. Since most of the peaks in the frequency spectrum are
ue to the noise, those corresponding to real modes are in the tail of the
robabilistic distribution of 𝐹 ∗. For a target probability of exceedance
qual to 0.90, it follows from Eq. (12) that 𝑠1 = 𝜇𝐹 ∗ + 𝑘𝜎𝐹 ∗ with
= 3.162. It is not recommended to assume a lower target probability of

xceedance (i.e., a lower value of 𝑘) since this will significantly increase
he chance of counting trivial peaks towards 𝑁 . Conversely, a larger
arget probability of exceedance (i.e., a larger value of 𝑘) will reduce

excessively the number of identifiable modes 𝑁 . It is highlighted,
however, that this first step provides a preliminary estimation of 𝑁 ,
whose value can be subjected to adjustments in the further steps of the
proposed procedure.

The energy lost in the reconstruction process is evaluated in the
second step. To this end, a performance reconstruction factor (PRF) is
introduced as follows:

PRF =
‖

‖

‖

𝑓 (𝑡) −
∑𝑁
𝑛=1 𝑓𝑛(𝑡)

‖

‖

‖

2

‖𝑓 (𝑡)‖2
, (13)

here ‖ ⋅ ‖ is a suitable norm operator (e.g., Euclidean norm). This
arameter is a measure of the accuracy in the reconstruction of the
nitial signal through the extracted components. The smaller the PRF
s, the closer the reconstructed signal 𝑓 (𝑡) given by Eq. (5) is to the
riginal one 𝑓 (𝑡). Having so done, the following condition is checked:

RF ≤ 𝑠2, (14)

here 𝑠2 is a threshold parameter. The definition of the threshold
arameter 𝑠2 depends on the target fidelity level of the signal re-
onstruction. A satisfactory trade-off for practical applications is a
aximum loss of energy equal to 1%, which implies that 𝑠2 = 10−2.

f the condition given by Eq. (14) is not fulfilled, this means that the
ignal is under-decomposed and mode-mixing occurs. Therefore, the
umber of segments must be at least one unit higher than the final
5

alue obtained previously (i.e., it must be assumed 𝑁 ↦ 𝑁 + 1). t
The last step of the proposed procedure aims at checking whether
he obtained value of 𝑁 produces an over-decomposed signal (i.e.,
ode-splitting phenomenon occurs). To this end, the signal is decom-
osed into a number of components equal to 𝑁 , as it was obtained in
he previous step. Hence, the distance between the central frequencies
or each couple of consecutive mode functions is evaluated as 𝛥𝜔𝑛,𝑛+1 =
𝑛+1 −𝜔𝑛 ∀𝑛 ∈ [1, 𝑁 − 1]. Next, it is counted the number of times 𝜃 for
hich the following condition is fulfilled:

𝜔𝑛,𝑛+1 ≤ 𝑠𝑛,3 ∀𝑛 ∈ [1, 𝑁 − 1]. (15)

ollowing such check, the number of frequency partitions is updated
s 𝑁 ↦ 𝑁 − 𝜃. The definition of the threshold parameter 𝑠𝑛,3 is
elated to the frequency resolution of the EFD technique, that is the
inimum distance between two consecutive central frequencies that

llows the correct extraction of the corresponding components. Taking
nto account the available studies [40], it is set as 𝑠𝑛,3 = 5𝜔𝑛∕100.

The flowchart in Fig. 4 illustrates the proposed procedure for the
utomatic tuning of the number of frequency partitions 𝑁 . Once the
ptimal value of 𝑁 is obtained at the end of the procedure detailed
n Fig. 4, the cut-off frequencies are recognized from the smoothed
requency spectrum of the signal as per Eq. (1). Finally, the zero-phase
ilter bank involved in the EFD technique is performed on the actual
requency spectrum of the signal to retrieve the 𝑁 components.

The proposed procedure for the automatic tuning of 𝑁 basically
ooks for its optimal trade-off by preventing both under-decomposition
i.e., mode-mixing) and over-decomposition (i.e., mode-splitting) of the
nalyzed signal. If the frequency spectrum of the considered signal is
mooth enough by itself, then the procedure is likely to converge to
he right value of 𝑁 at the end of the first step whereas the second
nd the third step holds no influence. This condition, however, is
ot the most common in practical applications. Consequently, if the
requency spectrum of the signal is rather noisy, then the first step of
he procedure will converge to an improper value of 𝑁 . Unfortunately,
he preliminary smoothing of the signal frequency spectrum does not
lways fix such problem. In order to better clarify the existing issues, a
eal signal with 𝑁 = 3 is investigated in Fig. 5 (herein, it is considered
he experimental cable response of a cable-stayed bridge that will be
horoughly examined later). On the one hand, if the actual signal fre-
uency spectrum is considered, then the high trivial (i.e., non-physical)
eaks near the ones corresponding to the real components will lead to
n incorrect estimation of the number of frequency segments 𝑁 . On
he other hand, the selection of the value of 𝑁 from the smoothed fre-
uency spectrum of the signal only can also produce a wrong spectrum
egmentation. In fact, since the application of the smoothing technique
n the frequency spectrum makes it more flat, the difference between
eaks corresponding to trivial and real modes is reduced and both
re wrongly counted towards 𝑁 , thereby overestimating its value and
ausing the over-decomposition of the signal. By considering the actual
requency spectrum of the signal, the proposed procedure prevents all

hese issues taking into account simultaneously the peaks prominence
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Fig. 4. Flowchart of the proposed automatic selection procedure for the number of the frequency partitions 𝑁 .
r
f

as well as the fidelity of the signal reconstruction and the allowable
frequency resolution of the EFD technique. So doing, the number of
frequency partitions 𝑁 and the corresponding boundaries are settled
correctly as shown in Fig. 5.

3. Validation on synthetic signals

3.1. Generation of synthetic signals

The proposed improved automatic implementation of the EFD tech-
nique is validated against synthetic signals in such a way to quantify
objectively its accuracy and robustness. Furthermore, since the refer-
ence results are known a priori in case of synthetic signals, the results
obtained via the proposed method based on the EFD technique are
compared with those carried out by means of the VMD technique [32]
in order to assess objectively its performance.
6

To this end, the typical free vibration response of a multi-degree-of-
freedom civil structure is considered, which can be generally expressed
as follows:

𝑓 (𝑡) =
𝑁
∑

𝑛=1
𝐴𝑛𝑒

−𝜉𝑛𝜔𝑛𝑡 cos(𝜔̄𝑛𝑡 − 𝜑𝑛) +𝑤(𝑡), (16)

where 𝐴𝑛 is the 𝑛th component amplitude, 𝜉𝑛 is the 𝑛th modal damping
atio, 𝜔𝑛 = 2𝜋𝜈𝑛 is the 𝑛th modal circular frequency (𝜈𝑛 being the modal
requency), 𝜔̄𝑛 = 𝜔𝑛

√

1 − 𝜉2𝑛 is the corresponding 𝑛th circular damped
frequency, 𝜑𝑛 is the 𝑛th component phase and 𝑤(𝑡) is the measurement
noise.

Free-noise data are considered to evaluate the accuracy under ref-
erence conditions. Noisy data are taken into account in order to test
and evaluate the robustness of the identification under more realistic
monitoring conditions. The measurement noise 𝑤(𝑡) in Eq. (16) is

generated as white Gaussian noise with an assigned signal-to-noise ratio
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Fig. 5. Possible issues that can jeopardize the correct estimation of the number of the frequency partitions 𝑁 for a real signal: occurrence of high trivial peaks near the ones
corresponding to the real components of the actual frequency spectrum of the signal (top-left); ill-conditioned discrimination between trivial and real peaks (both marked with
dots) due to the flattening originated by a preliminary smoothing of the signal frequency spectrum (top-right). Correct spectrum segmentation according to the proposed automatic
procedure (bottom).
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(SNR), which is defined as follows:

SNR = 10 log10

(

𝑃𝑠
𝑃𝑛

)

, (17)

where 𝑃𝑠 and 𝑃𝑛 denote the signal and noise average power, respec-
tively. The lower the SNR, the noisier the signal will be. Noisy signals
are thus simulated according to the targeted SNR level by assuming
an additive-type randomly generated white Gaussian noise 𝑤(𝑡) as per
Eq. (16). Three noise levels are considered, namely 0 dB, 5 dB and
15 dB (it is pointed out that the resulting synthetic noisy signals
are not subjected to preliminary denoising). Because of the inherent
randomness of the noise, a set of 100 independent noisy signals is
produced for each noise level to allow a statistical appraisal of the
final results. It is remarked that modal frequency and damping ratio
maintain their nominal value in each noisy signal simulation whereas
the randomness is only related to the additive Gaussian white noise
𝑤(𝑡), which is fleshly generated for each run.

3.2. Synthetic signal with closely spaced modes

It is considered the free response of a multi-degree-of-freedom
system simulated according to Eq. (16) and consisting of four super-
imposed vibrations modes (i.e., 𝑁 = 4). The natural frequency values
are taken equal to 𝜈1 = 1.5 Hz, 𝜈2 = 3.2 Hz, 𝜈3 = 3.6 Hz and 𝜈4 = 10 Hz.
It can be observed that the second and the third natural frequency
are rather close to each other (i.e., 𝛥𝜔2,3∕𝜔3 about 10%) in order to
assess the performance of the proposed approach in detecting closely
spaced modes. This condition sometimes occurs when dealing with
civil structures, even though it is not very common [41]. The modal
damping ratio values are 𝜉1 = 3%, 𝜉2 = 1.2%, 𝜉3 = 0.8% and 𝜉4 = 2%. The
amplitudes of the modal components are assumed as 𝐴1 = 3, 𝐴2 = 1.8,
𝐴3 = 1.6 and 𝐴4 = 5. All components are in phase (i.e., 𝜑𝑛 = 0 ∀𝑛) and
a sampling frequency 𝐹𝑠 = 1 kHz is adopted.

To begin with, the case of a free-noise signal is analyzed and thus
the measurement noise 𝑤(𝑡) in Eq. (16) is initially null. Fig. 6 shows
the considered signal and the corresponding frequency spectrum.

It can be inferred from Fig. 6 that the proposed algorithm for
7

the selection of 𝑁 (see Fig. 4) enables the extraction of the right
number of frequency partitions through the EMD technique. Taking
into account the Nyquist–Shannon sampling theorem, the following
frequency boundaries are obtained: 𝜈A = 0, 𝜈B = 2.5 Hz, 𝜈C = 3.4 Hz,
𝜈D = 7.7 Hz and 𝜈E = 499.9 Hz. Fig. 7 shows that there exist an almost
erfect match between the automatically extracted components of the
onsidered free-noise synthetic signal and the corresponding reference
nalytical modes.

The same free-noise synthetic signal is now decomposed by means
f the VMD technique. To this end, some control parameters must be
et in advance to perform the decomposition [27]. Particularly, two
ey control parameters govern the performance of the VMD technique,
amely the number of expected modes 𝐾 and the quadratic penalty

factor 𝛼 [19,42]. The control parameter 𝐾 defines the number of
uni-modal components to be extracted from the signal. Once again,
therefore, an over-decomposition of the signal is obtained for a high
value of 𝐾 while a low value of 𝐾 can produce mode-mixing effects.
The control parameter 𝛼 rules the amplitude of the bandwidth. If 𝛼 is
small, then the bandwidths will be overestimated and closely spaced
modes might be grouped by causing mode-mixing effects. Conversely,
a too high value of 𝛼 can produce distortions that will compromise
the fidelity of the signal reconstruction. The main advantage of the
EFD technique over the VMD technique is thus related to the lower
number of control parameters to be tuned: while 𝑁 only must be
determined within the EFD technique, 𝐾 and 𝛼 must be defined to
perform the VMD technique. It must be also remarked that, even if
the correct value of 𝐾 is singled out, the results of the VMD technique
are very sensitive to variations of the value of 𝛼. Additionally, in view
of automatic applications, the proper selection of the parameter 𝑁
in the EFD technique by means of the proposed procedure is rather
straightforward as compared to the optimal tuning of the parameters
𝐾 and 𝛼 involved in the VMD technique. In this regard, the optimal
tuning of 𝐾 in the VMD technique according to the procedure proposed
by Mazzeo et al. [32] needs the calculation of a stabilization diagram
based on the concept of minimum correlation between mode functions.
Such a stabilization diagram then provides a feasible set of values for 𝛼,
from which the optimum is determined taking into account the power
spectrum of the processed signal and each mode function extracted

iteratively by means of the VMD technique. More details about the
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Fig. 6. Synthetic free vibration response with closely spaced modes: free-noise synthetic signal (top-left); comparison between original and smoothed frequency spectrum of the
signal (top-right); frequency spectrum segmentation by means of the proposed automatic implementation of the EFD technique (bottom).
Fig. 7. Synthetic free vibration response with closely spaced modes: comparison between the reference analytical modes and the components extracted using free-noise data by
means of the proposed automatic implementation of the EFD technique.
automatic optimal tuning procedure for the control parameters of the
VMD technique are provided by Mazzeo et al. [32].

Fig. 8 illustrates the results carried out by applying the VMD tech-
nique. The decomposition is initially performed by assuming 𝐾 = 4
nd the default value 𝛼 = 103. Lastly, the automatic tuning procedure
resented by Mazzeo et al. [32] is applied, which provides 𝐾 = 4 and
= 5.7⋅105. The comparison between the extracted components and the

orresponding reference analytical modes demonstrate the correctness
f the VMD technique, provided that the numerical values of both 𝐾
nd 𝛼 are properly selected.

Tables 1–2 provide the results obtained by implementing the VMD
echnique with default value of 𝛼 (i.e., 𝛼 = 103, given 𝐾 = 4) and the
ptimal value of the control parameters estimated according to Mazzeo
8

et al. [32] (i.e., 𝛼 = 5.7 ⋅ 105, 𝐾 = 4). The results obtained by means of
the proposed implementation of the EFD technique are also reported.

The analysis of the results listed in Table 1 demonstrates that the
VMD technique as well as the EFD technique are able to identify
accurately the natural frequencies of the considered free-noise synthetic
signal when they are properly implemented. The exact value of the
natural frequencies is retrieved by applying the EFD technique. A neg-
ligible error is obtained by estimating the natural frequencies through
the VMD technique, provided that the value of 𝛼 is properly optimized
(very large errors can occur for lower modes otherwise). Remarkably,
Table 2 also demonstrates that the way by which the signal is decom-
posed has significant effects on the accuracy of the modal damping ratio
identification, even through noiseless data are considered. As regards
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Fig. 8. Synthetic free vibration response with closely spaced modes: modal components extracted by means of the VMD technique using free-noise data for the default value
𝛼 = 103 (left) and 𝛼 = 5.7 ⋅ 105 as estimated automatically according to Mazzeo et al. [32] (right).
Table 1
Synthetic free vibration response with closely spaced modes: identification of the natural frequencies using free-noise data by applying the
VMD technique (with both default and optimal values of 𝛼 and 𝐾) and the EFD technique (with 𝑁 calculated automatically according to the
proposed procedure).
Mode VMD (default 𝛼) VMD (𝛼 = 5.7 ⋅ 105) EFD (proposed)

Estimated
frequency [Hz]

Relative
error [%]

Estimated
frequency [Hz]

Relative
error [%]

Estimated
frequency [Hz]

Relative
error [%]

1 1.76 17.33 1.4988 0.08 1.5 0
2 2.54 20.63 3.1988 0.04 3.2 0
3 3.57 0.83 3.5993 0.02 3.6 0
4 9.98 0.20 9.9882 0.12 10 0
Table 2
Synthetic free vibration response with closely spaced modes: identification of the modal damping ratios using free-noise data by applying the
VMD technique (with both default and optimal values of 𝛼 and 𝐾) and the EFD technique (with 𝑁 calculated automatically according to the
proposed procedure).
Mode VMD (default 𝛼) VMD (𝛼 = 5.7 ⋅ 105) EFD (proposed)

Estimated
damping [%]

Relative
error [%]

Estimated
damping [%]

Relative
error [%]

Estimated
damping [%]

Relative
error [%]

1 3.4 13.33 3 0 3 0
2 1.7 41.67 1.19 0.83 1.21 0.83
3 0.43 46.25 0.86 7.5 0.8 0
4 2 0 1.98 1 2 0
the application of the VMD technique, average and maximum value of
the relative error in modal damping ratios identification are equal to
2.33% and 7.5%, respectively, after a suitable calibration of 𝛼 (unac-
ceptable errors are obtained otherwise). Average and maximum value
of the relative error in modal damping ratios identification are equal to
0.20% and 0.83% when the EFD technique is applied. The maximum
error in modal damping ratio identification is achieved when closely
spaced signal components are processed, regardless the way by which
the free-noise signal is decomposed. Hence, although the identification
of the modal damping ratios from free-noise data via VMD technique is
still very good, the corresponding average and maximum value of the
relative error are about ten times those obtained by applying the EFD,
which thus results more accurate.

The robustness against the noise of the identification is now as-
sessed. Fig. 9 shows some sample noisy signals generated according to
different noise levels as well as the frequency spectrum corresponding
to the sample noisy signal with highest noise level. Fig. 9 confirms
the feasibility of the proposed procedure (see Fig. 4) for the automatic
definition of the 𝑁 components to be extracted by means of the EFD
technique even in case of noisy data. It is noted that the segmentation
procedure detects and removes most of the noise from the partitions
in the high-frequency region of the signal spectrum. The comparison
between Fig. 9 and Fig. 6 highlights that the segmentation process
reduces the width of the last partition.
9

It has been found that the identification of the natural frequencies
is not influenced significantly by the decomposition technique even
in case of external disturbances. Therefore, natural frequencies can be
properly identified from noisy data for all values of the SNR by using
either the VMD technique or the EFD technique. The estimation of
the modal damping ratio is instead more sensitive to the measurement
noise, as it emerges from the results listed into Tables 3–4.

The results in Table 3 demonstrate that the application of the EFD
technique based on the proposed automatic segmentation of the signal
spectrum provides very good estimates of the modal damping ratios
even in case of noisy signals. As expected, the larger is the noise
level, the larger is the error. This confirms that the proposed automatic
implementation of the EFD technique provides a very good and robust
frequency spectrum decomposition for modal damping ratio identifi-
cation. Once again, the accuracy of the automatic procedure based
on the VMD technique proposed by Mazzeo et al. [32] is satisfactory,
but slightly larger errors are found. In fact, the highest average and
maximum value of the relative errors in damping ratios identification
by means of the EFD technique are equal to 5.80% and 38.40%,
respectively, for the highest noise level. The corresponding values of the
relative errors obtained via the VMD technique are 6.25% and 40.01%,
respectively.

The use of the area-based approach for modal damping ratios as pro-
posed in the present study also plays an important role in this regard.
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Fig. 9. Synthetic free vibration acceleration response with closely spaced modes: noisy synthetic signals for different values of the SNR (left); frequency spectrum segmentation of
the synthetic signal with the highest noise level by means of the proposed automatic implementation of the EFD technique (right).
Table 3
Synthetic free vibration response with closely spaced modes: identification of the modal damping ratios using noisy data by applying the EFD technique (with 𝑁 calculated
utomatically according to the proposed procedure). Average value and standard deviation of the estimated modal damping ratio are reported. Moreover, mean and maximum
alue (within brackets) of the relative error are provided.
Mode SNR = 15 dB SNR = 5 dB SNR = 0 dB

Estimated
damping
[%]

Standard
deviation
[–]

Relative
error
[%]

Estimated
damping
[%]

Standard
deviation
[–]

Relative
error
[%]

Estimated
damping
[%]

Standard
deviation
[–]

Relative
error
[%]

1 2.99 1.96E−2 0.08
(2.11)

2.98 6.08E−2 0.50
(6.51)

2.97 1.22E−1 0.77
(9.37)

2 1.21 1.17E−2 0.56
(3.82)

1.22 3.81E−2 1.56
(10.21)

1.24 6.83E−2 3.15
(15.77)

3 0.82 9.36E−3 2.55
(5.67)

0.84 3.13E−2 4.89
(15.08)

0.85 5.78E−2 5.80
(23.45)

4 2.01 1.89E−2 0.50
(3.10)

2.04 3.34E−1 2.21
(17.66)

1.94 4.59E−1 3.00
(38.40)
Table 4
Synthetic free vibration response with closely spaced modes: identification of the modal damping ratios using noisy data by applying the VMD technique (with 𝛼 and 𝐾 calculated
automatically according to the procedure proposed by Mazzeo et al. [32]). Average value and standard deviation of the estimated modal damping ratio are reported. Moreover,
mean and maximum value (within brackets) of the relative error are provided.

Mode SNR = 15 dB SNR = 5 dB SNR = 0 dB

Estimated
damping
[%]

Standard
deviation
[–]

Relative
error
[%]

Estimated
damping
[%]

Standard
deviation
[–]

Relative
error
[%]

Estimated
damping
[%]

Standard
deviation
[–]

Relative
error
[%]

1 2.99 2.20E−2 0.33
(2.20)

2.98 8.31E−2 0.60
(9.26)

2.93 1.51E−1 2.33
(15.88)

2 1.17 2.13E−2 2.41
(6.61)

1.16 6.74E−2 2.50
(15.78)

1.15 1.46E−1 4.17
(35.02)

3 0.85 1.32E−2 6.29
(9.49)

0.84 4.18E−2 5.59
(15.66)

0.75 7.42E−2 6.25
(21.99)

4 1.95 2.58E−2 2.79
(6.33)

1.94 8.17E−2 2.86
(14.01)

1.93 4.70E−1 3.50
(40.01)
In fact, if the standard logarithmic decrement method is applied after
signal decomposition as proposed by He et al. [43], then the accuracy of
the modal damping ratios identification reduces significantly. It can be
noted in Table 5 that, if the EFD technique is employed in combination
with the standard decrement logarithmic method to identify the rele-
vant modes, then the highest relative error for the highest noise level
is about 12.93% whereas the maximum relative error is 81.28%. This
confirms that the EFD technique should be implemented together with
a suitable modal damping ratio identification procedure in order to
obtain the best estimates of the modal characteristics of the structures.

3.3. Synthetic signal with minor mode

It is now considered the free response of a multi-degree-of-freedom
system simulated according to Eq. (16) and consisting of three su-
perimposed vibrations modes (i.e., 𝑁 = 3). The natural frequencies
are equal to 𝜈1 = 1.5 Hz, 𝜈2 = 3.5 Hz and 𝜈3 = 7 Hz whereas
modal damping ratios are equal to 𝜉1 = 3%, 𝜉2 = 5%, 𝜉3 = 3%. The
amplitudes of the three signal components are equal to 𝐴1 = 1.5,
𝐴 = 0.95 and 𝐴 = 4. All components are in phase (i.e., 𝜑 = 0
10

2 3 𝑛
∀𝑛). Different noise levels are considered, and a sampling frequency
𝐹𝑠 = 1 kHz is adopted. Fig. 10 shows some sample noisy signals
generated according to different noise levels as well as the frequency
spectrum corresponding to the sample noisy signal with the highest
noise level. The dynamic identification in case of a minor vibration
mode is the main issue that the present benchmark aims at dealing
with. In fact, it is evident from the frequency spectrum in Fig. 10 that
the peak corresponding to the second mode is much lower than the
peaks related to the first and third mode. This condition can occur when
the free vibrations are due to a force or displacement applied close to
a nodal point of a highly damped vibration mode. As a consequence,
such vibration mode is lowly excited and its accurate identification can
be challenging.

Once again, natural frequencies are well identified by means of
either the EFD technique or the VMD technique. The performances
of the two approaches diverge significantly when the modal damping
ratios identification is examined, as it can be observed by comparing
the results listed in Tables 6–7.

On average, Tables 6–7 demonstrate that the implemented identifi-

cation approaches based on the EFD technique and the VMD technique
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Fig. 10. Synthetic free vibration acceleration response with minor mode: noisy synthetic signals for different values of the SNR (left); frequency spectrum segmentation of the
synthetic signal with the highest noise level by means of the proposed automatic implementation of the EFD technique (right).
Table 5
Synthetic free vibration response with closely spaced modes: identification of the modal damping ratios using noisy data by applying the EFD technique (with 𝑁 calculated
utomatically according to the proposed procedure) in combination with the standard decrement logarithmic method. Average value and standard deviation of the estimated modal
amping ratio are reported. Moreover, mean and maximum value (within brackets) of the relative error are provided.
Mode SNR = 15 dB SNR = 5 dB SNR = 0 dB

Estimated
damping
[%]

Standard
deviation
[–]

Relative
error
[%]

Estimated
damping
[%]

Standard
deviation
[–]

Relative
error
[%]

Estimated
damping
[%]

Standard
deviation
[–]

Relative
error
[%]

1 2.94 4.71E−2 1.85
(5.87)

2.96 1.50E−1 1.16
(13.63)

3.14 2.73E−1 4.66
(22.55)

2 1.33 1.81E−2 11.05
(15.00)

1.32 5.81E−2 10.35
(23.77)

1.33 1.07E−1 10.71
(47.53)

3 0.89 3.47E−2 11.49
(21.72)

0.88 1.04E−1 10.05
(43.98)

0.90 2.26E−1 12.93
(81.28)

4 2.05 3.38E−2 2.25
(5.77)

2.11 2.78E−1 5.29
(18.13)

2.16 9.58E−1 8.18
(57.94)
Table 6
Synthetic free vibration response with minor mode: identification of the modal damping ratios using noisy data by applying the EFD technique (with 𝑁 calculated automatically
according to the proposed procedure). Average value and standard deviation of the estimated modal damping ratio are reported. Moreover, mean and maximum value (within
brackets) of the relative error are provided.

Mode SNR = 15 dB SNR = 5 dB SNR = 0 dB

Estimated
damping
[%]

Standard
deviation
[–]

Relative
error
[%]

Estimated
damping
[%]

Standard
deviation
[–]

Relative
error
[%]

Estimated
damping
[%]

Standard
deviation
[–]

Relative
error
[%]

1 2.99 2.27E−2 0.03
(1.86)

2.98 7.15E−2 0.31
(5.55)

2.97 1.25E−1 0.81
(9.64)

2 5.03 1.08E−1 0.59
(6.38)

5.09 3.09E−1 1.77
(14.17)

4.90 5.41E−1 1.99
(25.10)

3 3.00 1.78E−2 0.08
(1.44)

3.01 5.08E−2 0.36
(4.48)

2.98 9.37E−2 0.55
(7.92)
Table 7
Synthetic free vibration response with minor mode: identification of the modal damping ratios using noisy data by applying the VMD technique (with 𝛼 and 𝐾 calculated
utomatically according to the procedure proposed by Mazzeo et al. [32]). Average value and standard deviation of the estimated modal damping ratio are reported. Moreover,
ean and maximum value (within brackets) of the relative error are provided.
Mode SNR = 15 dB SNR = 5 dB SNR = 0 dB

Estimated
damping
[%]

Standard
deviation
[–]

Relative
error
[%]

Estimated
damping
[%]

Standard
deviation
[–]

Relative
error
[%]

Estimated
damping
[%]

Standard
deviation
[–]

Relative
error
[%]

1 2.99 3.05E−2 0.08
(3.24)

2.94 1.07E−1 1.95
(12.60)

2.89 2.04E−1 3.63
(17.80)

2 5.10 9.40E−2 1.94
(16.14)

4.83 8.54E−1 3.46
(47.39)

4.43 12.49E−1 11.47
(54.04)

3 2.97 1.84E−2 0.89
(12.38)

2.84 4.51E−1 5.36
(53.83)

2.55 6.89E−1 14.92
(55.75)
exhibit almost similar performance in terms of modal damping ratio
identification for a low noise level. The accuracy of the VMD technique
is still satisfactory on average for mid-high noise levels, but a significant
degradation is evident with respect to the EFD technique. In fact, the
largest value of the average relative error is less than 2% for both
signal decomposition techniques at SNR = 15 dB, but it is almost
equal 15% for SNR = 0 dB if the modal damping ratios are obtained
11
through the VMD technique while is still less than 2% if the EFD
technique is employed instead. The critical analysis of the results in
Tables 6–7 especially highlights the different robustness between the
two approaches. Standard deviations of the modal damping ratios esti-
mated according to the proposed automatic implementation of the EFD
technique are lower than the corresponding values obtained through
the VMD technique. Furthermore, a deeper inspection of the maximum
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Fig. 11. Overview of stay-cabled bridge over the Garigliano river investigated in the present work.
relative errors demonstrates that the VMD technique sometimes fails to
provide satisfactory estimates of the modal damping ratios (i.e., a rela-
tive error larger than 25% occurred for the second and the third modal
damping ratio in 1%, 5% and 18% of the simulations at SNR = 15 dB,
SNR = 5 dB and SNR = 0 dB, respectively). Conversely, the automatic
implementation of the EFD technique presented in the current study
dramatically reduces the number of failed identifications and is really
effective in alleviating the maximum value of the relative error, thereby
ensuring a more consistent estimation of the modal damping ratios
than the VMD technique. The identification of the minor mode is
especially challenging for both signal decomposition techniques. It can
be deduced from Table 7 that the inaccurate identification of the minor
mode can affect, to a large extent, the reliable identification of higher
modes if the VMD technique is employed. Indeed, it can be inferred
from Table 7 that the identification of the vibration mode following
the minor mode is less accurate than the first vibration mode when
the VMD technique is adopted. Conversely, it is noteworthy to observe
that the proposed implementation of the EFD technique prevents the
propagation of the larger errors associated with the identification of
the minor mode. This is deduced from the results in Table 6, which
show that the first and the third modal damping ratios are identified
with a similar accuracy level when the EFD technique is adopted.

4. Experimental application on a roadway bridge

The first experimental application deals with a roadway bridge.
The bridge over the Garigliano river (Italy) is here examined, which
is a cable-stayed structure completed in 1993 as part of the highway
network that connects Rome and Naples (Fig. 11). The bridge is made
up of two 90 m long spans, which are simply supported at one end and
framed to the central pylon at the other end. The precast prestressed
concrete box girders are sustained by 9 couples of cables per span with
variable length ranging from 23 m to 87.5 m. The cables are connected
at different elevations to a central pylon with variable cross-section and
whose height is 30 m with respect to the bridge deck level.

The experimental dynamic assessment of deck and cables was al-
ready performed in previous studies by exploiting the ambient exci-
tation [44,45]. Another monitoring campaign has been designed to
further check the cables’ condition. To this end, free vibration tests
were performed in order to optimize both cost and time of the mon-
itoring campaign. The dynamic response has been monitored by means
of a couple of uniaxial accelerometers with sensitivity equal to 10 V/g,
which were mounted on the two faces of a steel angular element in
such a way to record both vertical and horizontal accelerations with
respect to the longitudinal axis of each cable. This angular element
equipped with two accelerometers has been fixed to the bridge cable
at an average height equal to 3.8 m by means of nylon straps (Fig. 12).
The excitation on the cables was induced by applying an impulsive load
12
along two distinct directions (i.e., longitudinal and transversal direction
with respect to the longitudinal axis of the cables). The acceleration
response has been recorded with a sampling frequency equal to 𝐹𝑠 =
200 Hz. In this study, only the signals recorded on the west side of the
bridge (for both traffic directions) are analyzed.

Natural frequencies and damping ratios have been identified from
the free vibration response of each cable by means of the EFD technique
assisted by the proposed procedure for the optimal automatic tuning of
the control parameter 𝑁 .

As an example, Fig. 13 shows the free vibration response of the
shortest bridge cable (Rome direction) due to a vertical impulse load
and the corresponding frequency spectrum. The proposed procedure
illustrated in Fig. 4 provides the correct value of 𝑁 for the analyzed
signal, as it is shown in Fig. 14. A total of 𝑁 = 4 frequency partitions
has been identified and the corresponding extracted modes are plotted
into Fig. 15. For the considered signal, the estimated natural frequen-
cies are 𝜈1 = 6.42 Hz, 𝜈2 = 13.16 Hz, 𝜈3 = 20.52 Hz, and 𝜈4 = 28.52 Hz,
while the modal damping ratios are equal to 𝜉1 = 0.12%, 𝜉2 = 0.16%,
𝜉3 = 0.22%, 𝜉4 = 0.29%.

The proposed identification procedure has been applied automat-
ically (i.e., without any external feedback) to all the available ex-
perimental data. For both roadway directions, four recordings were
obtained for each cable depending on the orientation of the sensor
and the specific direction of the applied impulsive excitation (for a
total of 72 signals). On the one hand, missing results for a cable are
due to the fact that the corresponding recording file was corrupted.
On the other hand, the unsuccessful identification of the highest mode
in a few cables is attributable to the fact that the magnitude of the
corresponding response was not large enough to allow its identification.
The identified modal frequencies for the first four modes of the bridge
cables are listed in Table 8 (natural frequency values are averaged
over all the available signals for the examined cable). It can be ob-
served in Table 8 that the natural frequencies of the higher modes
are approximately integer multiples of the fundamental frequency, in
agreement with classical theoretical results about the cable dynamics.
These results are also in agreement with previous studies that have
exploited ambient vibrations [44,45].

The natural frequencies of the cables have been also calculated
numerically in order to evaluate the general correctness of the exper-
imental estimates obtained by means of the proposed identification
procedure. Therefore, the following relationship proposed by Fang
et al. [46] is considered to evaluate the natural frequencies of the cables
from the tensile force:

𝑇 = 4𝜋2𝑚𝑙2
𝜈𝑛
𝛾𝑛

− 𝐸𝐼
𝑙2
𝛾2𝑛 , (18)

where 𝑚 is the density of the cable, 𝑙 is its length, 𝐸𝐼 is the flexural
stiffness of the cable, 𝑛 is the mode number, 𝛾 = 𝑛𝜋 +𝐴𝜓 +𝐵𝜓2 with
𝑛 𝑛 𝑛
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Fig. 12. Layout of the stay-cabled bridge over the Garigliano river and details about the sensors position for monitoring the dynamic response of the cables.
Fig. 13. Dynamic response of the shortest bridge cable (Rome direction): free vibration acceleration signal due to a vertical impulse load (left); frequency spectrum of the considered
signal (right).
Fig. 14. Dynamic response of the shortest bridge cable (Rome direction): comparison between original and smoothed frequency spectrum of the considered signal (left); frequency
spectrum segmentation of the considered signal (right).
Table 8
Natural frequencies for the first four vibration modes of the bridge cables estimated by means of the proposed procedure based on the EFD
technique.
Cable Rome direction Naples direction

𝜈1 [Hz] 𝜈2 [Hz] 𝜈3 [Hz] 𝜈4 [Hz] 𝜈1 [Hz] 𝜈2 [Hz] 𝜈3 [Hz] 𝜈4 [Hz]

A 6.41 13.14 20.48 28.54 6.13 12.57 19.60 –
B 4.21 8.52 13.04 – 4.19 8.48 13.00 17.81
C 3.23 6.51 9.88 13.38 3.21 6.48 9.83 13.32
D – – – – 2.53 5.06 7.66 10.33
E 2.16 4.34 6.55 8.79 2.16 4.34 6.54 8.78
F 1.87 3.76 5.68 7.61 1.90 3.80 5.72 7.69
G 1.65 3.32 5.00 6.70 1.67 3.37 5.05 6.77
H 1.50 3.00 4.51 6.03 1.49 2.99 4.50 6.02
I 1.26 2.51 3.78 5.06 1.28 2.54 3.83 5.14
𝜓𝑛 =
√

𝐸𝐼∕𝑚𝜔2
𝑛𝑙4, 𝐴 = −18.9 + 26.2𝑛 + 15.1𝑛2 and 𝐵 = 290 for 𝑛 = 1,

0 otherwise. The elastic modulus 𝐸 for harmonic steel was assumed
equal to 198,000 MPa, while the moment of inertia 𝐼 ranges between
0.015 m4 and 0.019 m4 depending on the specific cross-section of each
cable. The cable tensile force 𝑇 in Eq. (18) is determined according to
the original design and includes possible variations due to traffic loads
and thermal gradients. Moreover, the actual tensile force of the cables
is properly reduced (as compared to the initial value) to also account
13
for tension losses due to steel relaxation according to Eurocode 2 [47].
Relaxation losses are calculated using the following expression:
𝛥𝜎𝑝𝑟
𝜎𝑝𝑖

= 5.39𝜌1000e6.7𝜂
( 𝜏
1000

)0.75(1−𝜂)
10−5, (19)

where 𝜎𝑝𝑖 is the initial prestress level, 𝛥𝜎𝑝𝑟 is the tensile loss due
to relaxation, 𝜏 is the time elapsed after tensioning, 𝜂 = 𝜎𝑝𝑖∕𝑓𝑝𝑘 is
the initial prestress level normalized with respect to the characteristic
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Fig. 15. Dynamic response of the shortest bridge cable (Rome direction): components extracted from the considered acceleration signal via EFD technique.
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value of tensile strength of the prestressing steel and 𝜌1000 = 8 is
the relaxation loss at 1000 h after tensioning for ordinary tendons
at a mean temperature equal to 20 ◦C. In this study, it is assumed
𝑝𝑘 = 1700 MPa and 𝜏 = 13 years (which is time elapsed between
he initial cable tensioning and the monitoring campaign). Geometrical
nd mechanical data for the stay cables have been reported by Mazzeo
t al. [32]. Figs. 16–17 show the ratio between the natural frequency of
he cables estimated by means of the proposed identification procedure
𝑛,EFD and the corresponding reference numerical values predicted by
eans of Eqs. (18)–(19) 𝜈𝑛,num. These plots demonstrate a very good

greement between experimental values and numerical predictions.
he maximum relative difference is about 5%, and a small scattering

s observed by processing different records. For almost all the cables,
umerical predictions of the natural frequencies are slightly larger than
he experimental values.

To further confirm the accuracy of the identified natural frequency
alues, all records have been also processed through the VMD tech-
ique by implementing the procedure proposed by Mazzeo et al. [32]
the corresponding natural frequency values are denoted as 𝜈𝑛,VMD).
esults in Fig. 18 demonstrates that there exist an excellent agreement
n average between the two approaches, as the points settle down
lose to the quadrant bisector line for both roadway directions and for
ll the cables. Nonetheless, a more comprehensive statistical analysis
erformed on the natural frequencies obtained for each cable from all
vailable records confirms that the proposed identification approach
ased on the EFD technique is more robust. In fact, the maximum
oefficient of variation of the natural frequencies identified by means
f the EMD technique and the VMD technique is equal to 7.72 ⋅10−3 and
.47 ⋅ 10−2, respectively.

The application of the proposed identification approach on the
ree vibration response of the bridge cables also allowed the modal
amping ratios identification up to the fourth vibration mode. The
stimated values of the modal damping ratios are listed in Table 9
modal damping ratio values are averaged over all the available signals
or the examined cable), and they are in line with typical values found
n other studies about stay-cabled structures [48].

Two alternative approaches are implemented in the attempt to
alidate the experimental estimates of the modal damping ratios ob-
ained by means of the proposed procedure. Particularly, free vibration
esponses are elaborated by means of the VMD technique following
14

he procedure proposed by Mazzeo et al. [32]. Moreover, the cables c
esponse due to ambient vibrations are also considered to estimate
heir modal damping ratios using the Natural Excitation Technique
NExT) [49] combined with the area-based approach. Figs. 19–20
llustrate the modal damping ratios estimated by means of all these
ethods. It is remarked that it would be ideal to compare the results

btained by means of the proposed approach with those carried out
rom forced vibrations induced by gauged impact hammers or shakers.
owever, it was not possible to perform none of such vibration tests.
ince the ground truth of the modal parameters is not known in real
tructures, the comparison of alternative approaches makes it possible
o evaluate qualitatively the confidence level about the final estimates.
he reasonable agreement among the modal damping ratio values that
an be inferred from Figs. 19–20 substantiates the general correctness
f the proposed procedure based on the EFD technique. Furthermore,
t can be noted that the experimental estimates of the modal damping
atios obtained under ambient vibrations are, in most cases, slightly
arger than those calculated from free vibration tests (both using the
FD technique or the VMD technique). The variability of the modal
amping ratios estimated for each cable from all available records
urther confirms the superior robustness of the proposed identification
pproach based on the EFD technique for free vibrations-based dynamic
dentification. In fact, the maximum coefficient of variation of the
odal damping ratios estimated by means of the EMD technique and

he VMD technique is equal to 0.40 and 0.70, respectively.

. Experimental application on a railway bridge

The last experimental application of the proposed identification
ramework deals with a typical steel bridge of the Italian railway
etwork (Fig. 21). It is a symmetric simply supported truss bridge
ade up of two lateral spans, each one having length 28.54 m, and
central span whose length is 34.72 m. The bridge consists of two

ongitudinal truss girders spaced at 5 m, with transverse frame at the
eck. Each truss girder consists of riveted longitudinal parallel top and
ottom chords, struts and diagonals. Lower chords are inverse T-shaped
ections, diagonals and upper chords are C-shaped built-up elements
ith stiffening brackets, while the struts have I-section. At the lower

hords, the trusses are connected by transverse elements and cross
racing systems.

This experimental application aims at identifying natural frequen-

ies, modal damping ratios and mode shapes of one of the lateral
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Fig. 16. Ratio between the natural frequencies of the bridge cables (Rome direction) estimated by means of the proposed identification procedure based on the EFD technique
and the corresponding reference numerical values predicted by taking into account the tension losses due to steel relaxation.
Fig. 17. Ratio between the natural frequencies of the bridge cables (Naples direction) estimated by means of the proposed identification procedure based on the EFD technique
and the corresponding reference numerical values predicted by taking into account the tension losses due to steel relaxation.
spans of the investigated railway bridge from its dynamic response.
Six triaxial accelerometers with sensitivity of 1000 mV/g have been
installed on the deck. The accelerometers have been placed on both
sides of the deck at 1/4, 1/2 and 3/4 of the span (Fig. 22). The
signal acquisition was performed considering a sampling frequency
𝐹𝑠 = 1.6 kHz.

The dynamic identification of the bridge is performed by exploiting
its free vibrations after the passage of the train. Notably, one dataset
consisting of six recordings, one for each sensor installed on the bridge
deck, has been exploited to carry out the dynamic identification of
15
the deck. Furthermore, the excitation for the present experimental
application has been produced by a high-speed Frecciarossa train with
a total length of 317.84 m and a gross weight of 6086.6 kN marching
at an average speed equal to 163 km/h. Each recorded signal has been
filtered by means of a 3rd order Butterworth band-pass filter in order
to limit the analysis of the frequency range of interest, namely 3–
30 Hz. The free vibration part of each signal is employed for the present
analysis (Fig. 23), and it is extracted automatically according to the
guidelines proposed by Yang et al. [14].
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Table 9
Modal damping ratios for the first four vibration modes of the bridge cables estimated by means of the proposed procedure based on the EFD
technique.
Cable Rome direction Naples direction

𝜉1 [%] 𝜉2 [%] 𝜉3 [%] 𝜉4 [%] 𝜉1 [%] 𝜉2 [%] 𝜉3 [%] 𝜉4 [%]

A 0.12 0.15 0.21 0.22 0.23 0.27 0.30 –
B 0.19 0.17 0.23 – 0.16 0.33 0.28 0.32
C 0.12 0.14 0.12 0.18 0.19 0.11 0.10 0.13
D – – – – 0.28 0.11 0.10 0.13
E 0.26 0.14 0.14 0.13 0.1 0.08 0.09 0.08
F 0.22 0.08 0.07 0.17 0.29 0.17 0.13 0.14
G 0.22 0.09 0.14 0.11 0.12 0.13 0.11 0.09
H 0.11 0.21 0.15 0.12 0.12 0.60 0.07 0.15
I 0.17 0.18 0.09 0.1 0.09 0.09 0.14 0.10
d
a
f
d

d
p
p

Fig. 18. Comparison of the natural frequencies of the bridge cables estimated by means
of the VMD technique and EFD technique.

The modal characteristics of the monitored span of the railway
bridge have been estimated by means of the proposed procedure based
on the EFD technique. For the validation of these results, two further
methods have been adopted to estimate the modal properties of the
railway bridge. Once again, the VMD technique has been employed
following the procedure described by Mazzeo et al. [32]. Moreover,
the covariance-based stochastic subspace identification (SSI-COV) is
adopted1 [50,51] since the free vibration responses are proportional
to the correlations of the responses to a white noise excitation [52].
Three vibration modes have been identified using all the considered
techniques. The natural frequencies (average values over all the avail-
able signals) are shown Fig. 24 and demonstrate a very good agreement
among the considered techniques. The statistical analysis performed
on the natural frequencies obtained from each measurement point
demonstrates that the proposed identification approach based on the
EFD technique turns out to be more robust than that based on the VMD
technique. In fact, the maximum coefficient of variation of the natural
frequencies identified by means of the EMD technique and the VMD
technique is 4.2 ⋅10−3 and 1.3 ⋅10−2, respectively. It is worth noting that

1 The identification by means of the SSI-COV technique is performed us-
ng the open-source toolkit available at https://code.vt.edu/vibes-lab/modal-
nalysis.
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the first and the second natural frequency are close to each other. This
is an impediment to an accurate modal identification based on signal
components extraction through a bank of band-pass filters with user-
defined cut-off frequencies, as usual in common practice. The identified
mode shapes are illustrated in Fig. 25. First and third vibration modes
are representative of vertical flexural mode shapes (first and second
bending mode, respectively) whereas the second vibration mode corre-
sponds to a torsional mode shape. Fig. 25 also provides a comparison
between the mode shapes identified through the proposed approach
based on the EFD technique and those obtained through the SSI-COV
method. The Modal Assurance Criterion (MAC) can be employed to
assess quantitatively the agreement between the mode shapes carried
out by means of these two alternative approaches (i.e., the closer MAC
is to 1, the higher the similarity between the mode shapes carried out
via EFD technique and the SSI-COV method). As regards the considered
railway bridge deck, a MAC value equal to 0.95, 0.97 and 0.94 for the
first, second and third mode has been found, respectively. Therefore,
the mode shapes obtained by means of the procedure proposed in the
present work agree very well with those estimated through the SSI-
COV technique. This confirms that the proposed procedure based on
the EFD technique identifies accurately the mode shapes, with a much
lower computational effort than the SSI-COV technique. Indeed, some
operations invoked into the SSI-COV technique (such as the preparation
of the block Toeplitz matrix of covariances and the singular value
decomposition) need a high elaboration time and a large memory usage
while the implementation of the proposed approach requires basic
operations and a minimum computational effort.

Fig. 26 is meant at comparing the modal damping ratios obtained by
means of the considered alternative identification methods. The results
in Fig. 26 demonstrate a general good agreement between the estimates
obtained by means of the proposed approach and those carried out via
the VMD technique. There is, however, a rather significant difference
about the modal damping ratio value for the third vibration mode, as
estimated at some measurement points. The statistical elaboration of
the modal damping ratios obtained from different measurement points
further confirms the large robustness of the dynamic identification per-
formed according to the approach presented in the current study. While
the maximum coefficient of variation of the modal damping ratios iden-
tified by means of the proposed approach is 0.36, the corresponding
value obtained via VMD technique is equal to 0.42.

For the sake of completeness, it is pointed that the modal damping
ratios estimated via SSI-COV technique are 𝜉1 = 2.3%, 𝜉2 = 2.5% and
𝜉3 = 1.4%. Hence, the first and the third modal damping ratio values
iffer significantly from those calculated through the EFD technique
nd the VMD technique. Actually, this difference is attributable to the
act that SSI methods are not always able to identify accurately the
amping ratios in case of strongly non-stationary signals [53].

For a critical examination of the obtained estimates of the modal
amping ratios, reference values from relevant technical codes and re-
orts are considered. In this regard, Eurocode 1- Part 2 §6.4.6.3.1 [54]
rovides the lower bound value of the modal damping ratio, which
s assumed constant for all modes and is based on the construction

https://code.vt.edu/vibes-lab/modal-analysis
https://code.vt.edu/vibes-lab/modal-analysis
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Fig. 19. Modal damping ratios for the first four vibration modes of the bridge cables (Rome direction) estimated by means of the proposed procedure based on the EFD technique
nd two alternative methods.
Fig. 20. Modal damping ratios for the first four vibration modes of the bridge cables (Naples direction) estimated by means of the proposed procedure based on the EFD technique
and two alternative methods.
Table 10
Lower limit of the modal damping ratio proposed in EC1 – Part 2 [54].
Bridge type Lower limit of percentage of critical damping [%]

Span 𝐿 < 20 m Span 𝐿 > 20 m

Steel and composite 𝜉 = 0.5 + 0.125(20 − 𝐿) 𝜉 = 0.5
Prestressed concrete 𝜉 = 1 + 0.07(20 − 𝐿) 𝜉 = 1
Filler beam and reinforced concrete 𝜉 = 1.5 + 0.07(20 − 𝐿) 𝜉 = 1.5
17
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Fig. 21. Overview of steel railway bridge investigated in the present work.
Fig. 22. Layout of the steel railway bridge and details about the sensors position for monitoring the dynamic response of one lateral span.
Fig. 23. Free vibration part extracted from a recorded acceleration signal of the steel
railway bridge.

material of the bridge as well as on the span length, as reported in
Table 10.

Another estimation of the damping ratio is provided by the Euro-
pean Commission in the ‘‘Guideline for estimating structural damping
of railway bridges’’ D5.2-S2 [55]. In this case, the constant modal
damping ratio can be calculated as the sum of three different contri-
butions depending on the specifics of the structure, namely material,
structural type and bearings type. Table 11 lists the contributions as
named in such guideline for this specific case.
18
Fig. 24. Natural frequencies of the railway bridge span estimated according to different
identification methods.

Table 11
Modal damping ratio value proposed in D5.2-S2 [55].

Damping ratio [%]

Material damping: steel 0.08
Nonmaterial structural damping: steel riveted bridge 0.32
Interaction damping: standard sliding bearings 0.24

For the examined case study, a constant minimum value of the
modal damping ratio equal to 𝜉 = 0.5% is recommended by Eurocode
1 – Part 2 [54] while a constant modal damping ratio 𝜉 = 0.64% is
calculated following the guidelines into D5.2-S2 [55]. It can be thus
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Fig. 25. Estimated mode shapes of the railway bridge span: identification by means of the proposed approach based on EFD technique (left); identification by means of the
SSI-COV technique (right).
concluded that the lower bound recommended by Eurocode 1 – Part 2
as well as the constant modal damping ratio value suggested by D5.2-
S2 agree well with the minimum estimates of the modal damping ratio
found in the present study, which occur for the third vibration mode
as shown in Fig. 26. These reference values underestimate the modal
damping ratios for the first and the second vibration mode as plotted
in Fig. 26, being conservative towards the actual overall dissipation
capacity of the structure. Finally, it is pointed out that the estimated
modal damping ratios are in reasonable agreement with the values
reported in other studies [56–58] on steel truss railway bridges with
similar materials and static configuration.

6. Conclusions

A novel implementation of the EFD technique has been proposed
in the present work for the automatic identification of the modal
parameters of structures from their free vibration response. The de-
composition method has been enhanced by introducing an automatic
procedure for the selection of the number of frequency partitions.
The robustness of the segmentation procedure has been improved
by means of a zero-phase moving average smoothing filtering of the
frequency spectrum that mitigates the negative effects of noise. An
19
area-based approach is adopted to identify the modal damping ratio for
each extracted component. A time-domain method based on the phase
shift of the free vibration response peaks is employed to identify the
mode shapes. The proposed identification framework has been tested
on numerical benchmark signals representative of the free vibration
response of multi-degree-of-freedom structural systems. The proposed
approach is finally applied to two real bridges, where a comparative
assessment with alternative approaches is presented to further validate
the proposed identification framework. The following conclusions can
be drawn from the results reported within the present study.

• The statistical comparative assessment between the EFD tech-
nique and the VMD technique based on the analysis of synthetic
signals demonstrates that both methods lead to very good results
on average, provided that the involved control parameters are
properly defined. Particularly, both techniques are able to provide
an accurate identification in the case of closely spaced modes. The
performance of the EFD technique and that of the VMD technique
are instead dramatically different from each other when dealing
with a lowly excited vibration mode. In such circumstance, it
is found that the identification via VMD technique is prone to
errors propagation and sometimes fails. Conversely, the proposed
approach based on the implementation of the EFD technique
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Fig. 26. Modal damping ratios of the railway bridge span estimated according to different identification methods.
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exhibits much greater robustness and is able to provide satis-
factory results every time. Furthermore, the implementation of
the automatic procedure developed in the current work for the
dynamic identification of structures via EFD technique is more
straightforward than the one based on the VMD technique.

• The analysis of synthetic signals contaminated by noise
also showed that the use of the standard logarithmic decrement
method is not able to ensure the accurate identification of the
modal damping ratios while the robust area-based approach
herein implemented is crucial. Hence, regardless the adopted
signal decomposition technique and its reliability, it is essential
to use appropriate strategies to obtain reliable estimates of the
modal damping ratio.

• The automatic procedure developed in the current work for the
dynamic identification of structures via EFD technique has been
successfully applied to the experimental characterization of two
existing bridges. This further demonstrates its general correctness
and its feasibility for practical applications. The comparison with
the results obtained by means of the VMD technique also demon-
strates that the proposed methodology based on the EFD tech-
nique leads to more consistent estimates of the modal parameters,
thereby confirming its robustness.
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