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Abstract: The paper presents a self-sensing control technique for a special type of multilevel motor
drive featuring an Open-end Winding Permanent-Magnet Synchronous Motor fed on one side by
a main multilevel inverter (MLI) and on the other side by an auxiliary two-level inverter (TLI). In
order to minimize the power losses, the MLI manages the machine active power operating at a
low-switching frequency. The TLI instead acts as an active power filter and operates at a higher
switching frequency and a lower DC-Bus voltage than the MLI. The current control task is shared
between the two inverters, as a predictive action is exerted by the MLI, while a feedback action
is accomplished by the TLI. Common sensorless rotor position estimation techniques cannot be
straightforwardly applied on such a system, due to the particular drive structure. Therefore, a specific
technique has been carried out, able to ensure satisfactory efficiency and control performance in
all the operating speed ranges by optimally exploiting the different features of the two inverters.
Simulation and experimental results confirm the effectiveness of the proposed approach.

Keywords: multilevel inverter; Open-end Winding; sensorless motor drive; low frequency modulation;
high efficiency

1. Introduction

Multilevel converters, exploiting mature medium-power semiconductor technologies,
represent a viable solution for high power applications such as motor drives, wind and
photovoltaic generators, electric propulsion systems and static VAR compensators [1–5].
They overcome some limitations of conventional three-phase two-level inverters in handling
high voltages, high dv⁄dt levels and high switching frequencies fs > 1 kHz [6–9]. Among
conventional multilevel inverter topologies, the Open-end Winding (OW) configuration has
gained an increasing interest in recent years [10–14]. This configuration features a redundancy
of the space-vector combinations, the absence of neutral point fluctuations, a reduction of the
phase current ripple and an increased maximum stator voltage amplitude [15].

Sensorless operation of MLI motor drives are highly required in low and medium
voltage applications in hostile environment, or where a wide speed range is required
with rated load torque and soft-starting [16,17]. Self-sensing, or sensorless, control of
AC machines has been extensively addressed in the last decades [18–31], due to cost and
reliability advantages resulting from the elimination of cabling and mechanical sensors.
Sensorless techniques able to estimate the rotor position, and speed in AC machines
can be divided into two main groups: those dealing with the back-EMF/linkage flux
estimation [24–30] and those dealing with spatial saliencies [18,26].

Sensorless techniques which rely upon back-EMF estimation can be exploited on
multilevel motor drives even if they are operated at a low switching frequency. However,
these techniques generally fail at low and zero speed, due to an insufficient input signal
amplitude. Spatial saliency tracking methods are based on the addition of one or more
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high frequency stator voltage components (500 Hz ÷ 10 kHz) to the fundamental one.
A suitable demodulation of the stator current and/or voltage signals allows to extract
useful information about the position of the rotor. Sensorless control techniques with
high frequency current signal injection have been extensively studied in the past for AC
motor drives with standard two-level inverters, however, their transposition to drives
based on multilevel inverters is not straightforward. In fact, multilevel inverters operating
at a low switching frequency according to staircase or selected harmonics elimination
techniques are not suitable for implementing this kind of control techniques, because of
current distortion issues. Hence, high switching frequency Pulse Width Modulation (PWM)
operated multilevel inverters must be used, even at the cost of larger switching power
losses and of a reduction of the conversion efficiency. A special multilevel inverter structure,
based on an open winding configuration, the Asymmetrical Hybrid Multilevel Inverter
(AHMLI) has recently demonstrated to be fairly equivalent to a conventional low frequency
switching multilevel inverter with the same amount of power switches in terms of power
losses [32], Figure 1. According to the AHMLI topology, a multilevel inverter manages
the motor active power operating at a low switching frequency, thus featuring a high
efficiency. Phase current shaping is instead obtained through a PWM operated auxiliary
two-level Inverter (TLI) with a floating DC-Bus, working as an active power filter [33,34].
The AHMLI topology allows to implement sensorless control techniques based on high
frequency current signal injection without affecting the efficiency. In fact, high frequency
signal injection can be accomplished through the PWM operated auxiliary inverter, without
changing the switching frequency of the main inverter; moreover, since the DC-Bus voltage
of the auxiliary inverter is only a fraction of that of the main inverter, additional switching
power losses due to signal injection are almost negligible. However, due to the particular
AHMLI asymmetric structure, some specific problems arise when attempting to implement
sensorless control techniques based on high frequency current signal injection. Among
them, a specific current control strategy is required to be developed, managing the two
inverters at a time, having also the task of stabilizing the voltage of the floating DC-Bus of
the auxiliary inverter, and which must be correctly combined with signal injection.
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Figure 1. An AHMLI converter supplying an OWPMSM.

A sensorless OW Permanent-Magnet Synchronous Motor (OWPMSM) drive fed by
an AHMLI is developed in this paper where, a high frequency stator voltage harmonic
component injection is accomplished in the low-speed range. At medium and high speed,
a back-EMF estimation technique is instead used exploiting the MLI voltage references.

Simulation and experimental tests are accomplished to evaluate the efficiency and
control performance all over the entire operating speed range.

Although this paper is focused on a PM synchronous motor drive, the proposed
technique is of general interest, and can be easily exploited also on Open-end Winding
Induction Motor drives.

2. Asymmetrical Hybrid Multilevel Inverter

A schematic of the AHMLI topology is shown in Figure 1. DC-Buses of the main and the
auxiliary inverters are not directly connected between them, in order to prevent the occurrence
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of zero sequence currents. The TLI DC-Bus voltage may consist of a floating capacitor, since
the TLI supplies the Open-end Winding machine with a zero average power.

A distinctive feature of the AHMLI configuration is that the effective switching fre-
quency of the whole system is equal to that of the TLI, and even the MLI is operated at
a much lower frequency [33]. Moreover, the MLI may be optimized for low switching
frequency operations exploiting low conduction losses’ devices. Differently, the TLI may be
equipped with fast power devices in order to minimize switching power losses, Figure 2.
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Figure 2. Block diagram of the AHMLI sensorless current control system. 
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2.1. MLI Step Modulation

The MLI is managed through a high efficiency, low frequency modulation strategy in
order to minimize switching power losses. As in conventional multilevel Step Modulation
(SM) techniques, the amplitude and frequency of the output phase voltage VMLI is controlled
by acting on (n − 1)/2 switching angles θ1, θ2, . . . , θ(n−1)/2 (0 ≤ θ1 < θ2 < θ(n−1)/2 ≤ π/2), as
shown in Figure 3, being n, the voltage levels of the MLI. These angles are selected in order
to obtain the required fundamental voltage reference V∗MLI , while eliminating n− 1, lowest
odd, non-triple harmonics from the harmonic content of the output voltage [33]. Therefore,
θ1, θ2, . . . , θ(n−1)/2, are computed by solving the following set of (n − 1)/2 non-linear tran-
scendental equations:

cos θ1 − cos θ2 + . . . .+ cos θ(n−1)/2 = m
cos 5θ1 − cos 5θ2 + . . . .+ cos 5θ(n−1)/2 = 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
cos kθ1 − cos kθ2 + . . . .+ cos kθ(n−1)/2 = 0

(1)

where k is the order of the highest harmonic that has to be eliminated and m is the modula-
tion index defined as:

m =
π

4

∣∣V∗MLI
∣∣

V′DC
(2)
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The amplitude of the MLI reference voltage vector V∗MLI are obtained by considering
the PMSM voltage and flux equations in the synchronous qd-axes’ frame:

Vqs = Rs iqs + pλqs + ωrλds
Vds = Rs ids + pλds −ωrλqs

λqs = Lqiqs
λds = Ldids + λPM

(3)

being Rs the stator resistance, Lq the q-axis inductance, Ld the d-axis inductance, and λPM
the linkage flux associated to the permanent magnets. By replacing the flux equations into
voltage equations, we achieve:

Vqs = Rs iqs + Lq piqs + ωrLdids + ωrλPM
Vds = Rs ids + Ld pids −ωrLqiqs

(4)

According to the proposed approach, the components of the MLI rotating reference
voltage vector V∗MLI on the qd-axes are set equal to the rotational voltage terms:

V∗qMLI = ωrLdids + ωrλPMV∗dMLI = −ωrLqiqs (5)

These variables are transformed back into the stationary abc reference frame obtaining
the reference voltages V∗MLI_i with i = a, b, c, as shown in the block diagram of the AHMLI
current control structure shown in Figure 2.

2.2. TLI Pulse Width Modulation

While the MLI provides the active power to the motor, the TLI works similarly to an
active filter, eliminating low order voltage harmonics generated by MLI step modulation. It
is also tasked to regulate the motor current, and, as it will be discussed in the next section,
to provide suitable high frequency voltage components to estimate the rotor position at
low and zero speed.

The generic step modulated phase voltage V∗MLI_stepi consists of the fundamental
component and only odd, non-triple, order harmonics [6,31]:

VMLI_stepi = V∗MLIi +
∞

∑
h=1

(n−1)/2

∑
k=1

2(k− n + 1)
(n− 1)(2h + 1)π

V′DC cos((2h + 2)θKi) (6)

In order to eliminate all low order harmonics, the generic TLI voltage reference V∗TLIh_i
is thus determined as:

V∗TLIh_i = V∗MLI_stepi −V∗MLI_i + VO′O′′ (7)

where V∗MLI_stepi is the generic MLI step modulated phase voltage reference, V∗MLIi is the
fundamental harmonic of the step modulated motor phase voltage V∗MLI_stepi, and VO′O′′
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is the voltage between the DC-Bus voltages of both converters. The last term, being the
difference between the MLI common mode voltage and the TLI common mode voltage:

VO′O′′ =
VMLI_a + VMLI_b + VMLI_c

3
−

VTLI_a + VTLI_b + VTLI_c

3
(8)

where VMLI_a, VMLI_b, and VMLI_c are the MLI output voltages, while VTLI_a, VTLI_b, and
VTLI_c are the TLI output voltages.

All these quantities can be easily obtained from power devices driving signals and
DC-Buses’ voltage measurement. The TLI DC-Bus voltage V

′′
DC can be made lower than

the MLI DC-Bus voltage V
′
DC. In particular, it has been demonstrated that the best trade-off

in terms of losses and THD is found by setting: V
′′

DC ' V
′
DC/[(n − 1)] [33,34].

According to Figure 2, a TLI current control subsystem acts as the main closed loop
regulator. It exploits two PI regulators to generate the TLI voltage references V∗TLIr_abc,
whose qd-axes’ components are mainly associated to the resistive and inductive stator
voltage drops, at least when the sensorless control properly operates:

V∗qTLIr = Rsiqs + Lq piqs V∗dTLIr = Rsids + Ld pids (9)

An additional corrective term Vcap_i, is also introduced into TLI and MLI reference
voltages in order to hold constant the TLI DC-Bus voltage V

′′
DC. A suitable amount of

active power must be, in fact, provided to the floating capacitor to compensate the TLI
power losses [30], and to support the high frequency signal injection. Since the TLI provides
only reactive power and the active power required to hold constant the TLI DC bus floating
capacitor voltage, qd-axes’ TLI voltages VdCap and VqCap are given by:

Q = 3
2

(
VqCapid −VdCapiq

)
= 0 VdCap = id

iq VqCap

P = 3
2

(
VqCapiq + VdCapid

)
VqCap = P

3
2

(
iq+

i2d
iq

) (10)

The power P required to keep constant V
′′

DC has been obtained by implementing a
closed loop control in which the error between the reference DC-Bus voltage V

′′
DC* and the

measured V
′′

DC is processed by a standard PI controller, as shown in Figure 2. The voltages
VdCap and VqCap are algebraically added to the q and d axis voltage components and TLI
reference voltages, allowing to establish the additional power flow from the MLI to the
floating capacitor of the TLI. Thus, VdCap and VqCap are then transformed into the stationary
abc reference frame obtaining the reference voltages Vcap_i. Finally, the generic TLI voltage
reference V∗TLI_i is given as the sum of the following terms:

V∗TLI_i = V∗TLIr_i + V∗TLIh_i + Vcap_i (11)

When the motor operates at high speed, the stator inductances are able to filter the low
order voltage harmonics generated by the step modulation of the MLI. Therefore, when in
the field-weakening region, the motor approaches a sufficiently high speed, the DC-Bus
capacitor of the TLI is first discharged and the PWM is then short circuited, holding all six
switches in the on-state. Under these conditions, the open-winding configuration is turned
into a conventional wye once, and only the main inverter is active, thus further reducing
the switching power losses.

3. Sensorless Control Strategy

According to the block diagram of Figure 2, when the PMSM works in the low-speed
range (ωr ≤ ω1), the high frequency injection sensorless technique is activated. Differently,
when the PMSM works at medium and high speed range (ω1 < ωr ≤ ω2), a back-EMF
based estimation algorithm is exploited. Moreover, in the flux-weakening region, (ωr > ω2),
the open winding configuration is transformed into a conventional wye one.
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3.1. High Frequency Injection: 0 < ωr < ω1

The injection of the additional carrier signal Vhf is accomplished through the auxiliary
TLI PWM (by setting I = 1 in the scheme of Figure 2), while the MLI works at low switching
frequency, as shown in Figure 3. The Equation (11) can be rewritten as:

V∗TLI_i = V∗TLIr_i + V∗TLIh_i + Vcap_i + Vh f _i (12)

A persistent excitation Vhf_i is thus provided, allowing a continuous estimation of the
rotor flux angle. The injected qd-axes’ high frequency voltage components are:

Vqh f = Vh f cos
(

ωh f t
)

Vdh f = −Vh f sin
(

ωh f t
)

(13)

where Vhf and ωhf are, respectively, the amplitude and angular frequency of the
injected voltage.

In a conventional PWM-operated MLI, the peak voltage reference must be suitably
reduced in order to generate the additional HF excitation. This does not happen on the con-
sidered configuration, as the HF signal is rather produced by the auxiliary TLI. Moreover,
in this case, the TLI DC-Bus voltage can be easily increased during sensorless low-speed
operations in order to provide the extra voltage required by HF injection, thus making the
current shaping unaffected by the HF additional excitation. The interaction between the
high frequency voltage and the machine saliency produces a current component at the
carrier frequency containing information about the position of the rotor θ̂r [17,26]. This
position can be extracted through the algorithm described in Figure 4. Stator currents isqds
consist of the fundamental component (ωet) and two further components at the angular
frequency of the injected signal, respectively, featuring a positive (ωhft) and a negative
(2θr − ωhft) sequence. The current negative sequence component contains spatial infor-
mation in its phase and is proportional to the differential stator transient inductance. The
current positive sequence component contains no spatial information and is proportional
to the average stator transient inductance. The fundamental and the positive sequence
components of the HF current vector are first isolated from the stator current by using a
synchronous filter, extracting the negative sequence component. The rotor position and
speed are then obtained by exploiting a heterodyne demodulation algorithm, as shown
in Figure 4.
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3.2. Back-EMF Estimation: ω1 < ωr < ω2

Application of back-EMF-based methods to surface-mounted PMSM is quite straight-
forward. More complex mathematical formulations are required whenever salient ma-
chines, such as the interior PMSM (IPMSM), are considered [27–31]. According to the
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proposed approach, a saliency-based back-EMF model was developed in the stationary
reference frame. Figure 5 shows the block diagram of the back-EMF estimation algorithm,
where Eqds_sal represents the back-EMF produced by the saliency.
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Observer input quantities are measured phase currents and voltages at the stator
winding terminals. Phase voltages are obtained by suitably scaling the reference voltages
generated by the current controllers, according to the actual DC-Bus voltage. In the
considered OWPMSM configuration, the fundamental component of the phase motor
voltages Vm_i are defined as the difference between the fundamental components of the
MLI output voltages V∗MLI_i and the fundamental components of the TLI output voltages.

Vm_i = V∗MLI_i −
(

V∗TLIr_i + Vcap_i

)
(14)

The back-EMF components are sent to a motion observer to extract the estimated rotor
position [32].

3.3. Flux Weakening: ωr > ω2

Whenever the drive operates in the flux-weakening region, the auxiliary TLI is deacti-
vated, and all the six switches are held in the on-state in order to obtain a wye configuration.
In this condition only the MLI is active providing the current control through a step modu-
lation of the stator voltage. As a result, the MLI is entirely charged of the current control
task, as shown in Figure 6.
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Although the stator voltage in this condition is distorted, the stator current is quite
sinusoidal, due to the stator winding, low-pass filtering action. As in the previous case,
the stator voltage fundamental component can be obtained from the current controllers,
leading to a back-EMF estimation through an observer as that schematized in Figure 5.



Energies 2022, 15, 3166 8 of 16

A simulation dealing with the PMSM motor, whose data are summarized in Table 1,
accomplishing a speed transient from the extreme low-speed region (ω1 < ωr) to the low-
speed region (ω1 < ωr < ω2), and then to the high speed region (ωr > ω2), is shown in
Figure 7. At the beginning, the motor speed is 10 rpm (below ω1 = 286 rpm) and the current
injection (700 Hz) is performed to estimate the rotor position θe. At t = 4 s, the motor speed
reference is changed from 10 rpm to 500 rpm and the back-EMF estimation technique is
activated when ωr exceeds 286 rpm. Finally, the reference speed is set to 3000 rpm in the
flux-weakening area.

Table 1. OWPMSM Technical Specifications.

Rated power 2 kW λPM 0.4 Wb

Rated torque 10.8 Nm Ld 3.5 mH

Maximum speed 5000 rpm Lq 3.5 mH

Pole pairs 3 Rs 1.85 Ω

Rated voltage 400 V J 0.01 kgm2

Base speed 1000 rpm
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4. Performance Evaluation

Experimental tests have been carried out on a scaled system tailored around a 2 kW,
three-phase, 6 poles Open-end Winding PMSM, whose technical specifications are listed in
Table 1. The AHMLI system has been tested using an IGBTs 3LI Neutral Point Clamped
(NPC) inverter as the main unit with V

′
DC = 300 V, and a two-level MOSFETs inverter

operating at 10 kHz with a dead time of 1 µs. Power devices’ technical specifications
are shown in Tables 2 and 3. The TLI DC-Bus is built around a 450 µF floating capacitor,
whose voltage is controlled according to (10), while the voltage across the MLI DC-Bus
capacitors is kept constant by an actively controlled power supply system. Both the main
and auxiliary inverter are controlled through a dSpace 1103 development control board.
Sensorless rotor position estimation from HF signal injection is first investigated. Maximum
possible value of the fundamental component of the TLI output voltage V∗TLIh_i at half the
rated load is shown in Figure 8a as a function of the rotor speed. As it is possible to observe,
V∗TLIh_i drops as the speed increases, because the fraction of the DC-Bus voltage required
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by the HF signal injection increases with the motor speed. This can be faced by suitably
increasing V

′′
DC. It has been shown by many authors, in particular by R.D. Lorenz, that at

extreme low speed, the induced back-EMF estimation does not allow to estimate the rotor
position with sufficient precision. The estimation of the rotor position is also affected by the
bandwidth of the Band Pass Filters (BPF) used in the heterodyne demodulator, as shown
in Figure 4. In fact, the filter time delay and attenuation decrease when increasing the
difference between the fundamental frequency and the injected signal frequency, achieving
a higher precision in determining the rotor position. In order to set ω1 in the extreme
low-speed range, rotor position error has been evaluated versus rotor speed. According to
Figure 8b, ω1 can be set to 285 rpm. Hence, from 285 rpm to maximum speed of 5000 rpm,
a back-EMF-based estimation algorithm is exploited. In detail, from ω1 = 285 rpm to the
base speed 1000 rpm, the motor is OW configurated while, in the flux-weakening region
(from 1000 rpm to 5000 rpm), the motor windings are wye connected.

Table 2. IGBT STGP30H60DF Technical Specifications.

Rated voltage 600 V

Rated current 30 A

Collector-emitter saturation voltage 2 V

Turn-on switching losses 0.35 mJ

Turn-off switching losses 0.4 mJ

Table 3. MOSFET STW46NF30 Technical Specifications.

Rated voltage 300 V

Rated current 42 A

Static drain-source on-resistance 75 mΩ

Rise time 38 ns

Fall time 46 ns
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A test dealing with the motor phase voltage THD, is reported in Figure 9. The THD is
computed up to the 90th harmonic as function of the motor speed and V

′′
DC.
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The a-phase MLI output stepped voltage VMLIstep_a, the a-phase TLI reference voltage
V∗TLI_a, the a-phase motor voltage Vam and the TLI DC-Bus voltage V

′′
DC are shown in

Figure 10a. The TLI reference voltage V∗TLI_a also includes the high frequency voltage
component Vhf. Figure 10b shows the estimated rotor electrical position θ̂re, the a-phase
current iam and the qd-axes’ current components ihf

qhf and ihf
dhf. The a-phase current

consists of the fundamental and high frequency (700 Hz) component ihf. A zoomed view of
the previous test is reported in Figure 11, highlighting the presence of the high frequency
injection on the phase motor current and TLI reference voltage. Figure 12 shows the
estimated mechanical speed during a 47 to −47 rpm speed reversal, the estimated rotor
position θ̂re, the rotor speed error eωr and rotor position error eθr with the drive operating
with a 50% of rated load torque, and V

′′
DC = 150 V. The rotor speed error is lower than

4.7 rpm, while the rotor position error is lower than 2 deg. Sensorless rotor position
estimation based from back- EMF detection is then considered. Figure 13 shows the
estimated back-EMF’s Es

qds_sal and the qd-axes’ stator currents iqd, when the motor runs at
763 rpm. Figure 14 shows the estimated rotor position, the estimated mechanical speed, the
rotor speed error eωr, and rotor position error eθr during a speed variation from 190 rpm
to 763 rpm with a 50% of rated load torque. Figure 15 shows the qd-axes’ stator currents,
the estimated rotor position, and the estimated mechanical speed during a load current
variation from 2A to 4A. In detail, in Figure 15a, the rotor speed is below the base value
while Figure 15b deals with field-weakening operation with wye motor winding connection.
Figure 16 shows the voltages and current waveforms when the PMSM spins at 763 rpm.
Note that for higher rotor speed, the TLI DC-Bus voltage can be reduced from V

′
DC/2 as in

Figure 10a to V
′
DC/4 as made in the test of Figure 1.
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′
DC = 300 V, V
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DC = 75 V: iam, V∗TLI_a, and TLI DC-Bus voltage V

′ ′
DC.

5. Power Losses Assessment

An investigation has been accomplished about the efficiency of an AHMLI-supplied
OWPMSM, exploiting the proposed sensorless control approach. The MLI topology is
equipped with 600 V IGBTs, while in the TLI, the 300 V MOSFETs, whose data are listed in
Table 2, are used. The experimental system built for efficiency measurement is shown in
Figure 17. It consists of three power analyzers placed on the DC-Bus of the MLI, on the
OWPMSM, and on the DC-Bus of the TLI. Such a system detecting the input DC power
PDC, input motor power Pem, and TLI DC power Pcap is able to separately evaluate the MLI
efficiency and TLI efficiency. Exploitation of modern power analyzers permits to take into
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account all current and voltage harmonic components in efficiency estimation. A torque
sensor, connected between the motor and the mechanical load, is used to compute the
motor output mechanical power Pm and efficiency. The MLI and TLI power losses can be
written as:

PMLI = PDC − Pem = PMLI−cond + PMLI−sw PTLI = Pem − Pm − Pcap = PTLI−cond + PTLI−sw (15)

being PMLI-cond, the MLI conduction losses; PMLI-sw, the MLI switching losses; PTLI-cond, the
TLI conduction losses, and PTLI-sw, the TLI switching losses. The power analyzer measures
the total power losses, so to evaluate separately conduction losses and switching losses, the
following equations are considered:

PMLI−cond = Vceoniδ
PMLI−sw = 0.5Vcei fsw−MLI(tr−IGBT + t f−IGBT)

PTLI−cond = RDSoni2

PTLI−sw = 0.5VDSi fsw−TLI(tr−MOSF + t f−MOSF)
(16)

where Vceon is the IGBT on-state emitter-collector voltage; δ is the duty cycle obtained by
MLI step modulation; fsw-MLI is the switching frequency of MLI; tr-IGBT and tf-IGBT are the
rise time and fall time of the IGBTs; RDSon is the on-state drain-source resistance of the
MOSFETs; VDS is the drain-source voltage; fsw-TLI is the switching frequency of TLI while
tr-MOSF and tf-MOSF are the rise time and fall time of the MOSFETs.
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Obtained results have been compared with those of more conventional, sensorless
controlled MLI motor drives with similar features, and equipped with the same kind of
IGBT devices. Three different drive configurations have been considered for power losses’
analysis, namely: AHMLI (5LI + TLI), 5LI, and 7LI. In the last two cases (5LI and 7LI), a
conventional multicarrier 10 kHz PWM is adopted in normal operations, and a step voltage
modulation is exploited in flux weakening, in order to obtain straightforwardly comparable
results. As shown in Figure 18, three operating conditions are considered, namely:

• low-speed (47 rpm) operation with HF injection and PWM voltage modulation,
• medium-speed (954 rpm) operation with back-EMF estimation and PWM

voltage modulation,
• flux-weakening (2387 rpm) operations with back-EMF estimation and step

voltage modulation.
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conduction losses PTLI-cond, TLI switching losses PTLI-sw: (a) AHMLI—2387 rpm, flux weakening; (b)
AHMLI—954 rpm, back-EMF estimation; (c) AHMLI—47 rpm, HF injection; (d) 5LI—2387 rpm, flux
weakening; (e) 5LI—954 rpm, back-EMF estimation; (f) 5LI—47 rpm, HF injection; (g) 7LI—2387 rpm,
flux weakening; (h) 7LI—954 rpm, back-EMF estimation; (i) 7LI—47 rpm, HF injection.

Compared to the other two configurations, exploiting the AHMLI shows, in general,
lower total switching power losses. In fact, the PWM voltage modulation is accomplished by
the auxiliary TLI, which, in comparison with conventional PWM-operated MLI is equipped
with faster power MOSFET devices, and works at a lower DC-Bus voltage. The advantage
is particularly noticeable on low-speed operation, due to the additional workload required
by the HF signal injection. Lower motor losses are also obtained, as more clean current
and voltage waveforms are produced [32]. Conduction power losses are quite equivalent
among AHMLI and MLI configurations, as the multilevel inverters are equipped with the
same devices. However, the MLI of the AHMLI configuration is always step-operated,
thus, it can be equipped with slower power devices featuring lower conduction losses,
leading to a further efficiency improvement. In flux-weakening operations, the AHMLI
configuration is marginally less efficient, due to TLI conduction losses. In this case, in fact,
the wye configuration is obtained by holding on all the six switches.

6. Conclusions

A self-sensing control approach has been proposed for a particular type of multilevel
inverter motor drive. In such a kind of system, an Open-end Winding AC Motor is fed
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on one side by a main multilevel inverter, and on the other side, by an auxiliary two-level
inverter. Current control is shared between the two inverters, whose operational modes
are selected in order to take full advantage from their specific features. According to the
proposed approach, a high frequency injection technique is exploited to estimate the rotor
position at low speed. Differently from more conventional drive configurations, the HF
signal injection does not affect the operation of the MLI, as it is accomplished through the
auxiliary TLI. Moreover, as the last is equipped with a floating bus capacitor, its DC-Bus
voltage can be easily increased in low-speed operations, in order to provide the extra
voltage required by HF injection. Finally, additional switching power losses caused by HF
signal excitation are quite lower than in equivalent multilevel motor drives. At medium
and high speed, a back-EMF-based rotor position estimation technique is used. In this case,
a greater efficiency is obtained in comparison with conventional multilevel inverters. In
fact, the MLI is step-operated, thus minimizing switching power losses. The PWM voltage
modulation is accomplished by the auxiliary TLI, which in comparison with conventional
PWM-operated MLI is equipped with faster power devices, and works at a lower DC-Bus
voltage. The paper deals with a PM synchronous motor drive, however, the proposed
technique can be also used on induction motor drives. It provides a viable alternative on
pumps, fans, compressors, extruders, mixers, and conveyor drives in hostile environment,
or where a wide-speed range is required with rated load torque and soft-starting, in mining,
transports, cement, and metal processing plants, petrochemical, and gas industries.
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