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Abstract: This paper provides an epistemological and methodological analysis of the recent practice
of using neural language models to simulate brain language processing. It is argued that, on the one
hand, this practice can be understood as an instance of the traditional simulative method in artificial
intelligence, following a mechanistic understanding of the mind; on the other hand, that it modifies
the simulative method significantly. Firstly, neural language models are introduced; a study case
showing how neural language models are being applied in cognitive neuroscience for simulative
purposes is then presented; after recalling the main epistemological features of the simulative method
in artificial intelligence, it is finally highlighted how the epistemic opacity of neural language models
is tackled by using the brain itself to simulate the neural language model and to test hypotheses
about it, in what is called here a co-simulation.

Keywords: simulative artificial intelligence; synthetic method; mechanism; neural language models;
brain language processing; deep learning

1. Introduction

The use of machines to predict and explain the intelligent and adaptive behaviours
of biological systems traces back to the birth, in the middle of the twentieth century, of
cybernetics, due to the groundbreaking work of Norbert Wiener [1]. Cybernetics was
also conceived as an attempt to promote a mechanistic view of living systems in apparent
contrast with the vitalism of Henri Bergson and the use of the “vital force” principle to
explain natural evolution and adaptation [2]. The epistemological setting of cybernetics
has been fully inherited by Artificial Intelligence (AI), especially in the simulative approach
of the pioneers Hallen Newell and Herbert Symon. The so-called simulative, or synthetic,
method in AI amounts to using computational systems to test cognitive hypotheses about
some natural cognitive system [3]. The synthetic method influenced research in AI, under
both the symbolic and sub-symbolic paradigm, and in robotics.1

AI is now living what has been a called a Renaissance era [4], thanks to the unexpected
success of Deep Learning (DL). Roughly speaking, two main paths can be identified along
which the resurgence of AI has unfolded in the last ten years. In the first five years, the
most successful path was vision, leading for the first time to artificial systems with a visual
recognition ability similar to that of humans [5–9], arousing surprise and interest in the
science of vision [10–12]. Five years later, it was the turn of language, a path opened by
the Transformer model [13], quickly followed by various evolutions and variants [14–17],
generically called here Neural Language Models (NLMs). In this case too, the sudden and
unexpected availability of artificial systems with linguistic performances not so far from
human ones has deeply shaken the scientific community of language scholars [18–22].

The success of DL in crucial cognitive tasks such as vision and language has prompted
different reactions from the cognitive neuroscience community, ranging from acknowledg-
ment [11], to curiosity [12], to refusal [23]. One main reason for such different attitudes
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towards DL is that whereas traditional Artificial Neural Networks (ANNs) were explicitly
inspired by the functioning of the brain, the development of the Transformer architecture
has not been influenced by the functional or structural organization of the brain. And
nonetheless, a new line of research in cognitive neuroscience uses Transformer-based mod-
els to simulate brain activities. More specifically, NLMs are being used to predict cortex
activations while processing language [24–26].

This paper intends to show how the application of DL networks in the study of brain
language processing can be understood, from an epistemological and methodological point
of view, as an instance of the simulative method as considered in [3], in continuity with the
mechanistic approaches in the philosophy of cognitive science. In particular, it is examined
how NLMs are used to simulate human agents involved in linguistic tasks, providing
predictions about the human cognitive system.

The main aim of this paper is, nonetheless, highlighting significant methodological
differences that arise when DL is involved in simulative tasks. In traditional simulative
AI, cognitive hypotheses are tested by experimenting on the simulative system, as long
as one cannot directly experiment on the simulated system, due to ethical concerns or
when the simulated system is epistemically opaque. However, epistemic opacity and non-
interpretability is one essential feature of DL models as well [27]; this marks a significant
difference between NLMs and the simulative programs of symbolic AI or the ANN of the
connectionist approach. It is argued here that, in order to overcome the limited intepretabil-
ity of NLMs when used to simulate brain language processing, the brain itself is used as
a model of the NLM in what is called here a co-simulation. The idea of using a natural
cognitive system to simulate an artificial computational one strengthens even more the
mechanistic view of the human mind.

This paper is organized as follows. Section 2 introduces NLMs and the Transformer
architecture; Section 3 shows how NLMs are being used in cognitive neuroscience for
simulative purposes in the context of brain language processing; Section 4 underlines the
main epistemological features of the simulative method in AI and bio-robotics; Section 5
analyses how the simulative method is applied and modified in NLM simulations; finally,
Section 6 concludes the paper.

2. Neural Language Models

The conquest of natural language has been one of the most difficult challenges for
AI, and for a long time, ANNs have played a secondary role compared to conventional
Natural Language Processing. The first attempt to integrate ANNs into natural language
processing was undertaken by [28], concentrating on inflectional morphology. Their aim
was to show, through an artificial model, that learning the morphology of the past tense of
English verbs does not necessitate explicit or innate rules, but it is instead acquired from
experience. Their model succeeded and was able to replicate the typical learning curves
observed in young children. However, Rumelhart and McClelland faced a significant
challenge in employing ANNs for language processing due to a seemingly irreconcilable
discrepancy between the two formats. Language is an ordered sequence of auditory signals
(in the case of spoken language) or symbols (in the case of written language), whereas a
neural layer is a real vector with a fixed dimension. This creates a problem in encoding an
arbitrary length datum (the word) with a fixed-dimension vector (the neural layer), even
for models restricted to the processing of single words.

A second challenge in applying ANNs to natural language processing is that represent-
ing words with neural vectors becomes more problematic when moving from single-word
morphology to syntax. Feedforward ANNs are static, making it difficult to establish a sense
of order for multiple words in a sentence.

An additional challenge for traditional ANNs arises from the very technique that
determined their success in the ’90s: backpropagation learning [29]. Efficient backpropa-
gation requires tasks where inputs and outputs are clearly identifiable, and examples of
these input-output pairs must be available, i.e., supervised training. However, the ability
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to understand language, and even more so to produce it, extends beyond tasks where the
necessary inputs and outputs for supervised training can be distinctly identified.

Fueling the confidence in those who, despite these negative premises, have persevered,
is the fact that the symbolic nature of language seems antithetical even to the neurons of
our brain, which apparently have solved these problems very well. This confidence was
well placed, and finally crowned by the Transformer architecture [13] combining several
effective strategies to cope with the symbolic nature of natural language. The first strategy
is word embedding, which learns from examples to optimally convert words into vectors
of neural activity. Introduced by [30], its key feature is that the vector representation
is semantically meaningful. These numerical vectors can be manipulated in ways that
respect lexical semantics. For instance, let vector w⃗(·) represent the word embedding
transformation and let w⃗(king) be the vector for the word ‘king’; by subtracting from it
the vector w⃗(male) for ‘male’ and adding the vector w⃗(female) for ‘female’, one obtains
vector q⃗:

q⃗ = w⃗(king)− w⃗(male) + w⃗(female)

which is closer to the vector w⃗(queen) for the word ‘queen’ than to any other word embed-
ding vector.

The second strategy is the attention mechanism, firstly introduced by [31] in the
framework of patter recognition and later on, in the context of language generation, by [13].
This method dynamically identifies relevant information and relationships among words
in a sentence. The Transformer employs these strategies in an innovative way. Firstly,
word embedding is learned as the entire neural model processes corpora. Secondly, the
attention mechanism completely replaces recursion, allowing all words, along with their
vector embeddings, to be simultaneously presented as input.

Furthermore, the Transformer incorporates an elegant solution to bypass supervised
learning, as introduced by [32]: the concept of the autoencoder. This deceptively simple
idea involves assigning the ANN the task of reproducing its own input as output. The
architecture implementing this concept is typically organized into two components. The
encoder generates an internal representation of the input, while the decoder reproduces
the output from this representation, which coincides with the input. The popular term
“stochastic parrots” [33] for Transformer models originates from this autoencoder structure.
Although the term accurately reflects the training technique, it becomes irrelevant when
used derogatorily towards NLMs. This exemplifies what [34] have termed a Redescription
Fallacy, where a NLM’s skills and abilities are judged based on irrelevant characteristics,
such as the training strategy in this case.

The remarkable efficiency of the Transformer has led to many variations, including
ViT Vision Transformer [35] and BERT (Bidirectional Encoder Representations from Transformers),
where attention is applied to both the left and right side of the current word [14]. The
original Transformer was designed for translation, so it includes an encoder for the input
text and a decoder for the text generated in a different language. A simplification was later
adopted by GPT (Generative Pre-trained Transformer), which consists only of a decoder
part, primarily for generating text by completing a given prompt [15]. The popular public
interface ChatGPT is based on later models of the GPT family [16]. The autoencoding
strategy during learning is the task of just predicting the next token in a text. In a strictly
mathematical sense, the output of the Transformer is the probability of tokens being
generated at the next time step. It is important to note that often this interpretation—
although entirely correct in itself—is mistakenly regarded as the overall task performed
by the Transformer, thus leading to a misleading underestimation of it. Similarly, it would
not be incorrect to assert that when a person writes a word, it corresponds to the highest
probability in a space of brain neural activations of the entire vocabulary. But if one were
to limit oneself to this to account, for example, for the words we authors put one after the
other in this sentence, it would be a truly disappointing explanation.

The subsequent description pertains to the streamlined GPT architecture, with an
overall scheme shown in Figure 1. The input text consists of tokensti, where each token is an
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integer index into the vocabulary, which comprises words, punctuation marks, and parts
of words. The vocabulary size N typically includes several tens of thousands of entries. A
crucial operation on the input token is embedding, performed with the embedding matrix
WE ∈ RD×N , where D is the embedding dimension. For a token ti in the input stream, the
embedded vector is computed as follows:

x⃗i = W(ti)
E + p(i) (1)

where W(j)
E is the j-th column of WE and p(·) : N → Rd is a function that encodes the

position of the token inside the stream of text.

Σ

pos WE

.............

a1

feed−forward net

layer 1
+

WU

.............
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Q,K,V
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z

t3 t2 1t

1x
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Figure 1. A simplified scheme of the overall Transformer architecture. All components are described
in the text.

The model consists of a chain of L layers, with each layer comprising an attention
block followed by a feedforward neural network, and each block reading from and writing
to the same residual stream. Figure 1 details only one layer for a single token, although
all tokens are processed in parallel. The output of the last layer is mapped back to the
vocabulary space by the unembedding matrix WU ∈ RN×D and then fed into a softmax
layer. Each element in the output vector z⃗i represents the probability of a token being the
successor to t⃗i.
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A zoom into the attention mechanism is provided in Figure 2. It is based on linear
algebra operations using the following matrices:

• WK ∈ RA×D—the “key” matrix;
• WQ ∈ RA×D—the “query” matrix;
• WV ∈ RA×D—the “value” matrix;
• WO ∈ RD×A—the “output” matrix.

A is the dimension of the vector used in the attention computation, in most current
NLMs is equal to D. The matrices WK,Q,V map an embedded token into the vectors
“query” q⃗; “key” k⃗; and “value” v⃗. The scalars si in Figure 2, called “score”, result from
the multiplication of the “query” and “key” vectors, and modulate the amount of the
“value” vectors.

. .

.
.

Σ

a a

s s

q k v

x x

2 2 2

23

1,3 1,2

3 x1

q k v1 1 1q k v3 3 3

a1

W W W

2

VK

WO

Q

Figure 2. Detail of the attention mechanism, for the current embedded token x⃗1 with respect to the
previous tokens x⃗2 and x⃗3.

In a discursive manner, the attention mechanism generates a vector where information
from all preceding words is combined, weighted by the relevance of each previous word
to the current one. This mechanism synergizes with the other fundamental component of
the Transformer: word embedding. The ability to encapsulate all relevant information of a
word into a numerical vector for any context of use enables simple linear algebra operations
to effectively capture the syntactic and semantic relationships within a text. Now here is
the mathematical expression of the operations carried out by the attention:

a⃗i = WOWV


x⃗i

x⃗i+1
· · ·

x⃗i+T


 1√

D


x⃗i

x⃗i+1
· · ·

x⃗i+T


⊤

W⊤
K WQ x⃗i

 (2)

where T is the span of tokens preceding the current token x⃗i.
The scientific community has been profoundly impacted by the sudden and un-

foreseen emergence of artificial systems, enabled by Transformer-based models, which
exhibit linguistic performances approaching those of humans [20–22,36,37]. For sure, no
Transformer-based system matches humans in mastering language in all its possible uses,2

but the leap made in approaching human performance has been extraordinary. Currently,
NLMs continue to progress, whether this means surpassing humans in the near future, or
continuing to approach them at an increasingly slower pace [38], is not a matter addressed
in this article.

The crucial philosophical issue has become that of providing explanations for the kind
of mind that emerges in NLMs and allows its performance, its “alien intelligence” using
the words of [39]. Explanations that are currently largely lacking, although some initial
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attempts can be seen. The almost total absence of explanations for the linguistic abilities
of the NLMs contrasts with the relative simplicity of their computational architecture
and their way of learning. Again, there is a vast technical literature that computationally
illustrates the implementations of the various NLMs [40,41], but there is a huge gap from
here to identifying what in these implementations gives language faculty. One of the best
illustrative texts on Transformer architectures ([42], p. 71) underscores the issue well: “It
has to be emphasized again that there’s no ultimate theoretical reason why anything like
this should work. And in fact, as we’ll discuss, I think we have to view this as a—potentially
surprising—scientific discovery: that somehow in a neural net like ChatGPT it’s possible to
capture the essence of what human brains manage to do in generating language”.

Such an explanatory request concerns how the relatively simple algorithmic com-
ponents of the Transformer provide it with the ability to express itself linguistically and
to reason at a level comparable to humans. It’s worth noting that while linguistics has
generated highly sophisticated and detailed descriptions of language, how it is understood
and generated by the brain remains essentially a mystery, much like in NLMs. At the
same time, one of the ambitions of simulative AI has been to explain aspects of natural
cognition by designing their equivalents. However, the presupposition was that these
artificial equivalents would be understandable, which is not the case with NLMs.

Before examining how this challenges the traditional epistemology of simulative AI,
let us preliminarily see how NLMs are being used in simulative studies of the brain.

3. Using NLMs to Simulate the Brain

There is a current line of research which investigates the relationships between NLM
structures and brain structures, through functional magnetic resonance imaging (fMRI),
when engaged in the same linguistic task. It is a surprising inquiry, unexpected even for
its own protagonists. Indeed, apart from the generic inspiration from biological neurons
for artificial neurons, there is nothing specific in the Transformer mechanisms that has
been designed with the brain language processing in mind. However, early results show
surprising correlations between activation patterns measured in the models and in the
brain, and some analogies in the hierarchical organizations in models and cortex.

Ref. [24] aim at explaining one main difference occurring between NLMs and brain
language processing, namely that while NLMs are trained to guess the most probable next
word, the brain is able to predict sensibly longer-range words.

Ref. [24], in collaboration with Meta AI, did several experiments to examine cor-
relations between NLMs and brain activities using a collection of fMRI recordings of
304 subjects listening to short stories, and prompting the GPT-2 model with the same sto-
ries. Individuals were tested using 27 stories between 7 and 56 min, on average 26 min for
each subject, and a total of 4.6 brain recording hours for the 304 subjects. The GPT-2 model
involved a pre-trained, 12 layer, Transformer, trained using the Narratives dataset [43].

The first experiment was turned to correlate activations in the Transformer to fMRI
brain activation signals for each brain voxel and each individual. Correlations were quanti-
fied in terms of a “brain score”, determined through a linear ridge regression. In particular,
GPT-2 activations linearly mapped on such brain areas as the auditory cortex, the anterior
temporal area, and the superior temporal area.3

In a second set of experiments, the authors evaluated whether considering longer-
range word predictions in the Transformer produces higher brain scores. Longer-range
predictions were obtained by concatenating the Transformer activation for the current word
with what the authors named a “forecast window”, that is, a set of w embedded future words,
where w is called the width of the window, and where each word is parameterised by
a number d, designating the distance of the word in the window with the current word.
The experiment yielded higher predictions scores, in this case called “forecast score” (on
average +23%) for a range of up to 10 words (w = 10), with a peak for a 8 word-range
(d = 8). Again, forecast score picks correlate model activations with brain activation in
cortex areas that are associated with language processing.
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In the third, most revealing, experiment, ref. [24] started by the consideration that
the cortex is structured into anatomical hierarchies and asked whether different layers in
the cortex predict different forecast windows w. In particular, they aimed at evaluating
the hypothesis that the prefrontal area is involved in longer-range word predictions than
temporal areas. Similarly, the authors considered the different Transformer layers and
looked for correlations between activations of the cortex layer and activations of GPT-2
layers. Subsequently, they computed, for each layer and each brain voxel, the highest
forecast score, that is, the highest prediction from Transformer layer activations to brain
activations. The experiment results were in support of the initial hypothesis.4

As stated at the beginning of this section, the work of [24] belongs to a whole line of
research looking for correlations between brain structures and NLM structures. To quickly
give another example, Kumar and coworkers at the Princeton Neuroscience Institute [26]
investigated possible correlations between the individual attention heads5 in the Trans-
former, and brain areas when listening to stories. They used the simple model BERT, with
12 layers and 12 attention heads, and applied Principle Component Analysis to the 144
model activations along the story, correlating them with brain areas obtained through fMRI.

What emerges from this line of research, is that Transformer based NLMs are used
to model and predict activation patterns in the brain, usually observed through fMRI, in
order to collect additional evidence on the brain areas involved in specific linguistic tasks.
Schematically, both systems, the NLM and the brain, are given the same task, namely
elaborating acoustic signals (the listened story) to process language understanding. The
artificial system is then used to predict behaviours (brain activations) of the natural one.
This method can be preliminarily considered an instance of the simulative method in AI,
that we now turn to analyse.

4. The Simulative Method in Cognitive Science

The simulative method in science [45,46] consists in representing a target, natural, system
by a means of a mathematical model, usually a set of differential equations, implementing
the model in a computational one, typically a simulative program, and executing the
latter to provide predictions of the target system behaviours. One characterising feature
of computer simulations in science is that they are required to mimic the evolution of the
target system in order to provide faithful predictions.

In the realm of cognitive science, the simulative method amounts to implementing
an artificial system, either a robot or a computer program, aimed at testing some given
hypothesis on a natural cognitive system [47,48]. That is, the main aim of simulations in
cognitive science is epistemological: their characterising feature is that they are involved
in advancing and testing cognitive hypotheses over the simulated system by building an
artificial system and experimenting on it. Experimental strategies are thus performed on
the artificial system in place of the natural one. Given a cognitive function, hypotheses
usually concern the mechanism implementing that function in the natural cognitive system.6

The simulative or, as it is often called, the “synthetic” method in cognitive science develops
an artificial cognitive system implementing that mechanism for the given function and
compares the behaviours of artificial and natural systems. Hypothesised mechanisms play
the epistemic role of program specifications for artificial computational systems.7 In case the
displayed function of the simulative system matches with the behaviours of the simulated
system, the initial hypothesis concerning how the function under interest is realised in
terms of the implemented mechanisms is corroborated. Once corroboration is achieved,
simulations on the artificial system are used to predict, and explain, the future behaviours
of the natural system. Additionally, new mechanisms identified in the artificial system for
some displayed function are used as hypotheses for explaining similar behaviours in the
natural system.

The synthetic method in cognitive science finds in the Information Processing Psychology
(IPP) of [52] one important pioneering application. In the approach of Newell and Symon,
a human agent is given a problem solving task, typically a logic exercise or the choice
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of moves in a chess game, asking him to think aloud, thus obtaining a verbal account of
her mental processes while carrying out the task. Verbal reports are analyzed in order to
identify the solution strategies adopted by the agent and the specific operations performed
while carrying out the task. The analysed verbal reports are then used to develop a program
that simulates the behaviour of the human agent. Subsequently, new problem solving tasks
are given to both the program and the human agent, and verbal reports of the latter are
compared with the execution traces of the simulative program to ascertain that the two
systems use the same solution strategies. Finally, the program execution traces for new
tasks are used for predicting the strategies and mental operations that the human agent
performs when given the same tasks.

In the IPP approach, human agents’ verbal reports are used to hypothesise the mecha-
nism used by the agents to profitably solve the administered cognitive task. The solution
strategies hypothesised by Newell and Symon typically consisted in research mechanisms
in decision trees. Research mechanisms of this sort are used as program specifications to
develop computer programs, using such programming languages as Information Processing
Language and List Processor (LISP), being able to realise those solution strategies. The Logic
Theorist and the General Problem Solver are well-known examples of such programs. Com-
puter programs are then used to test the initial hypothesis, namely the solution strategy
advanced on the basis of the verbal reports. The hypothesis is tested by administering
new cognitive task to the program, such as proving logic theorems from Russel and White-
head’s Principia Mathematica. In case the solution strategies adopted by the simulative
program are the same used by the tested human agent, the initial hypothesis is considered
as corroborated.

The synthetic method has been also, and more recently applied, to biorobotics. For
instance, ref. [53] argue that the synthetic method in simulative AI is the method applied,
among others, to the robotic simulation of chemiotaxis in lobsters [54].8 Ref. [54] hypothe-
sise the biological mechanism implementing lobster chemiotaxis, namely the ability to trace
back the source of food, leaving chemical traces in the sea, through chemical receptors put
on the two antennae. The very simple advanced mechanism is that the receptor stimulation
activates, in a proportional manner, the motor organs of the side opposite to that of the
antenna. In other words, the stimulation of receptors of the right antenna activates the
left motor organs and the stimulation of receptors of the left antenna activates the right
motor organs. The higher the receptor stimulus, the higher the motor organ activation.
This simple mechanism would, according to [54], allow lobsters to constantly steer towards
the food source following the chemical trail.

Such a hypothesis is tested by building a small robot lobster, named RoboLobster,
provided with two chemical receptors, put on the left and right side, and wheels in place
of legs. RoboLobster implements the hypothesised mechanism: the left artificial receptor
causes, upon stimulation, a directly proportional activation of the right wheel, the right
receptor activates the left wheel. RoboLobster was tested in an aquarium containing a pipe
releasing a chemical trail. However, the robot was able to trace back the pipe only when
put within a 60 cm distance from the pipe; while when put 100 cm away from the chemical
source the robot was unable to locate the pipe. The synthetic experiments led the authors
to falsify and reject the hypothesis.

Ref. [53] are very careful to notice that when the initial hypothesis gets falsified while
testing the artificial system, researchers still use the simulation to understand why the hy-
pothesis was falsified and whether the problem was the hypothesis itself or rather other side
phenomena. In other words, they look for an explanation concerning why the supposed
mechanism is not able to implement the interested cognitive function. Researchers usually
evaluate whether the developed artificial system is a faithful implementation of the hypoth-
esised mechanism. Another source of mistake may be that the mechanism implemented by
the developed system is not a faithful description of the biological mechanism.9

Ref. [54] suppose that RoboLobster was unable to trace the chemical source because
of a wrong distance between the two receptors or of the initial orientation of the robot in
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the aquarium. However, even modifying the receptor distance and the robot orientation,
RoboLobster is still unable to find the pipe when put 100 cm away from it. The authors
conclusion is that RoboLobster fails since from a certain distance the chemical trail is
scattered and is not informative enough for the robot about the direction to take.

In this third case, the artificial system is used to discover new hypothesis about the
natural cognitive system and its environment. It is indeed hypothesised that chemical
trails are informative with respect to the food location for real lobsters only at a certain
distance, the reason being that lobster receptors at a certain distance are not able to detect a
difference in chemical concentrations.

To sum up, the synthetic method in cognitive science is a simulative approach applied
in all those cases in which testing a cognitive hypothesis directly on the natural system
is not feasible. An artificial system is built, in the form of a computer program or robot,
and the hypothesis is tested on the artificial system instead. This is done by implement-
ing the hypothesis, in the form of a mechanism for the given cognitive function, in the
artificial system and comparing the behaviours of the simulative system with those of the
simulated one. In case the artificial system performs the same cognitive function of the
natural simulated system, the initial hypothesis is corroborated, otherwise the hypothesis is
falsified. In both cases, artificial systems can be used to advance new hypotheses about the
behaviours of artificial and natural systems which are tested again on the artificial one. The
epistemological relations entertained by the natural cognitive system and the simuative
model are depicted in Figure 3.
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Figure 3. The epistemological framework of simulative AI. The incoming arrow indicates where the
process starts.

5. Co-Simulations of Neural Activations Using NLMs

Even though NLMs have been developed with engineering purposes only, namely
for developing language processing systems, the early work of [24] and of [26] shows how
they are being fruitfully applied to simulative AI as well.10 However, the way NLMs are
used to predict and explain brain activations in the cortex puts significant methodological
challenges for the synthetic method in simulative AI.

One first main difference between the simulative method in AI and the application of
NLMs in neuroscience is that NLMs are not developed so as to implement mechanisms
corresponding to hypotheses about linguistic functions of the brain. The aim of NLMs is
not that of corroborating any such hypotheses, as it happens with the simulative method in
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traditional AI. From an epistemological and methodological point of view, NLMs seem not
to be simulative models. And nonetheless, NLMs are used to simulate the brain, that is, to
obtain predictions of cortex activations. It is astonishing how, as the work of [24] shows,
even though NLMs were developed without considering structural properties of the cortex,
once trained they bear structural similarities with language processing areas of brain. An
astonishment one also feels while considering DL models involved in vision.11

In the synthetic method, hypothesised mechanisms are used as specifications to develop
simulative systems and, as stated above, it is required that simulative programs or robots
be correct implementations of those mechanisms. As it is in software development, the
specification set determines a blueprint of the system to be developed and both correct and
incorrect behaviours of the implemented system are defined and evaluated by looking at the
specifications [61]. In the case of a correctly implemented system, the specification set pro-
vides a means to represent and explain the behaviours of the systems [62]. The opportunity to
understand and explain machine behaviours allows scientists to use computational artificial
systems for simulating natural ones which, by contrast, are not known and explained.

ANNs in general, and DL models in particular, do not fall under this epistemological
framework. DL systems are not developed so as to comply with a set of specifications, that
is, functions are not declared and then implemented in a DL network, as it is for traditional
software. Functions do not depend only from the network architectural choices, but they
rather emerge from the model during training and depend much more on the training
dataset [63]. Again NLMs are not developed as implementing neurological mechanisms
one supposes realise linguistic functions. The absence of a specification set for NLMs is at
the basis of the known epistemic opacity of those models: except from some architectural
choices (i.e., kind of DL models or the number of models) and hyper-parameters (such as
the number of neuron layers or the size of the layers) one is unaware of the inner structure
of a trained model. In particular, one cannot come to know how the model parameters are
updated at each backpropagation of the network.

In the synthetic method, simulative systems are used as some sort of proxy for the
simulated cognitive system: since one cannot directly experiment on the cognitive system, as
long as it is opaque to the scientist, an artificial system is built and hypotheses are evaluated
over it. In the case of Newell and Symon’s IPP, since one does not know whether the
hypothesised solution strategies for a given task are the ones actually implemented in the
brain, the identified research mechanisms for decision trees are implemented in a computer
program, the program is subsequently executed to test the hypothesised solution strategies.

The second main epistemological difference of simulations using NLMs is that that they
are opaque systems as well and cannot play the epistemic role of proxies for the simulated
systems. As what concerns the language function, one is in the difficult situation in which
both the natural and the AI system need to be explained. Our knowledge about how the brain
processes language is limited in the same way as it is our knowledge about why NLMs show
linguistic abilities close to those of humans. As stated in Section 2, such an explanatory gap has
been recognized and theorised in one of the most recent technical introduction to NLMs [42].

What the work of [24] shows is that, in front of two opaque systems, they are used to
understand each other. As already noted, the simulation starts with no initial hypothesis,
being the NLM developed independently from any previous study of brain language
processing. Subsequently, and in accordance with the standard synthetic method, both
the natural cognitive systems (the 304 tested subjects) and the NLM (GPT-2) are given the
same task, namely listening, and processing, 27 short stories, and it is evaluated whether
behaviours of the artificial system cope with behaviours of the natural system. In this
case, it is tested whether activations in the Transformer can be correlated with fMRI brain
activation signals.

Once obtained a positive answer, new experiments are performed to test whether
considering longer-range word predictions would decrease the correlation score. One should
notice that a hypothesis is involved here, namely that the Transformer differs from the
brain while processing language in that the former is able to predict only short-range words,
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typically the next word in a context. The outcome of the experiment is that the Transformer
correlates to the brain more than expected, viz. while predicting up-to-10-range words.

The third experiment is devoted to understand why this is the case, that is, why
the initial hypothesis was partly falsified. Notice that this is what happens with the
synthetic method too: in case the initial hypothesis gets falsified, further experiments on
the simulative system are carried out to understand why this happened. In the case of
RoboLobster, once the initial hypothesis concerning the mechanism allowing chemiotaxis
was falsified, researches supposed that the inability of the robot to trace back the chemical
source, when put on a 100 cm distance, was due to the distance between the two receptors
or to the initial orientation of the robot, rather than to the falsity of the hypothesis per se.
The robot was tested at different orientations in the aquarium and changing the distance
between antennae: experiments were still carried over the artificial system.

Getting back to the GPT-2 experiment, ref. [24] try to evaluate whether the fact that
the artificial system and the natural one are both able to predict long-range words can be
related to structural similarities between the cortex and the Transformer. This is achieved
by considering the cortex as a model of the Transformer! In particular, it is hypothesised that
the hierarchical organization of the cortex resembles, both structurally and functionally, the
hierarchical organization of the Transformer. The hypothesis is tested by administering again
the same task to both systems and computing the forecast score, obtaining positive evidence.

When NLMs are used for simulation purposes, one is dealing with a system which is
at least as opaque as the natural system about which she would like to acquire knowledge.
In the work of [24] the problem is tackled by modifying the simulative approach in such
a way that the two opaque systems are used to simulate each other, and thus to acquire
knowledge about both in the form of corroborated, or falsified, hypotheses. In what can
be called a co-simulation, the NLM is initially used to simulate the brain by looking for
correlations while involved in the same task. In this case, hypotheses to be tested relate
to the brain (its ability to predict longer-range words) and correlations are Transformer
predictions of brain activations. In case one needs additional information concerning why a
certain hypothesis was corroborated or falsified, the natural system is used to simulate the
artificial one. Hypotheses now concern the Transformer (its hierarchical organization) and
simulations involve brain predictions of Transformer activations. The simulative relations
entertained by the brain and NLM are depicted in Figure 4.
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Figure 4. The epistemological framework of NLM simulations.

6. Conclusions

Contemporary DL applications often feature simulation-based scenarios where a
model exposed to data from a natural system develops internal structures that correspond
to aspects of that system. For instance, ref. [64] utilized a convolutional DL model to
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simulate parton showers, with each layer representing a different angular scale for emis-
sions. Similarly, in the neural model by [65], which simulates the Hénon-Heiles potential,
the autoencoder’s internal layer with four neurons captures the four dimensions of the
Hénon-Heiles system.

This paper examined another crucial field wherein DL simulations are being applied,
namely cognitive neuroscience. NLMs, initially engineered to automatise language transla-
tion and generation, are now applied to the simulative investigations of brain language
processing. Whereas using artificial computational systems to simulate natural ones is a
well-affirmed practice in AI, this paper showed how the applications of NLNs in brain
simulations involves significant epistemological and methodological modifications of the
synthetic method in cognitive science. The epistemic opacity of NLMs implies that, while
they are used to simulate the brain, knowledge is attained about the model as well. This is
achieved by a co-simulation wherein the brain is used as a model of the NLM, providing
predictions of the Transformer behaviours, and corroborating hypotheses about the latter.
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The following abbreviations are used in this manuscript:

AI Artificial Intelligence
ANN Artificial Neural Networks
DL Deep Learning
NLM Neural Language Models

Notes
1 This will be extensively illustrated in Section 4 below.
2 A notable case is that no NLM is able to simulate or explain language acquisition by children.
3 More specifically, the brain score was quantified in the following way. First, a sequence M of words w corresponding to the short

stories in the Narratives dataset was defined. The corresponding fMRI recordings from the Narratives Dataset were then sampled
with time samples t = 1.5 s and preprocessed using the fMRIprep tool [44] to analyse the cortical voxels; the latter were then
projected and morphed onto a brain model, obtaining brain activations Y for each w and having size T × V (where T is the total
number of fMRI samples t and V is the total number of voxels). NLM activations were obtained by tokenising words w in M
for being inputted to the network; each activation X corresponded to a vector of size M × U where U is the number of neurons
per layer (768 for the used GPT2 model); activations were mostly extracted from the eighth layer. Finally, for each individual s,
each word sequence M, and each voxel v, it was evaluated the mapping between Y and X. The brain score R(s,v) was obtained
by using a linear ridge regression to predict a brain activation Y for a given network activation X; the obtained mappings were
evaluated using a Pearson correlation between predicted Y and actual activations Y∗. For further technical details the reader
should refer to [24].
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4 For technical details the reader should refer to [24].
5 Embedded vectors in the Transformer are actually divided into portions, called heads, and the attention mechanism is applied

separately to each head, and only in the end are the various portions re-joined. The idea is that an embedded vector combines
different properties of a word, and that certain categories–for example, the tense of verbs or the gender and number of nouns and
adjectives–always occupy the same portions of the vector, and therefore it is convenient to process separately the network of
relationships between the separate characteristics of the various words in the text.

6 By mechanism it is referred here to biological mechanism as intended in [49], namely as a set of “entities and activities organized
such that they are productive of regular changes from start or set-up to finish or termination condition” (p. 3). See [50] for how
mechanisms of this sort are able to implement cognitive functions.

7 Program specifications in computer science express the behavioural properties that the system to be developed must realise [51],
and their formulation is the first step of most software development methods.

8 Other biorobotic applications of the synthetic method can be found in the simulation of phonotaxis in crickets [55], ants
homing [56], or rats navigation [57].

9 In the context of the epistemology of computer simulations in science, the two problems are known as the verification and
validation problem for simulative models. Verification is about ascertaining that the simulative system is a correct implementation
of the simulative model; validation is about evaluating whether, and the extent to which, the simulative model is a faithful
representation of the target simulated system.

10 It should be indeed recalled that AI has been historically characterised by two main research traditions, an engineering one,
concerning the development of artificial systems showing intelligent behaviour, and a simulative one, using artificial intelligent
systems to study cognition.

11 The neuroscience of vision is another field wherein neural architectures keep some feature of the natural system, and important
similarities have been found between DL models and the visual cortex [58,59]. DL models have been even found to reproduce
structural hallmarks of the visual face network in the inferior temporal cortex [60].
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