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Abstract: Mixed quantum-classical dynamics provides an efficient way of simulating the dynamics
of quantum subsystems coupled to many-body environments. Many processes, including proton-
transfer reactions, electron-transfer reactions, and vibrational energy transport, for example, take
place in such open systems. The most accurate algorithms for performing mixed quantum-classical
simulations require very large ensembles of trajectories to obtain converged expectation values, which
is computationally prohibitive for quantum subsystems containing even a few degrees of freedom.
The recently developed “Deterministic evolution of coordinates with initial decoupled equations”
(DECIDE) method has demonstrated high accuracy and low computational cost for a host of model
systems; however, these applications relied on representing the equations of motion in subsystem
and adiabatic energy bases. While these representations are convenient for certain systems, the
position representation is convenient for many other systems, including systems undergoing proton-
and electron-transfer reactions. Thus, in this review, we provide a step-by-step derivation of the
DECIDE approach and demonstrate how to cast the DECIDE equations in a quantum harmonic
oscillator position basis for a simple one-dimensional (1D) hydrogen bond model. After integrating
the DECIDE equations of motion on this basis, we show that the total energy of the system is
conserved for this model and calculate various quantities of interest. Limitations of casting the
equations in an incomplete basis are also discussed.

Keywords: mixed quantum-classical dynamics; hydrogen bonding; proton transfer; DECIDE

1. Introduction

Most systems of interest in chemistry and biology contain very large numbers of
degrees of freedom (DOF). An exact simulation of the dynamics of such a system requires
a fully quantum mechanical treatment of the entire system, which is computationally
prohibitive due to the exponential scaling with the number of DOF. One approach to
overcoming this issue is to treat a few DOF of interest quantum mechanically (i.e., subsys-
tem) and the remainder classically (i.e., environment or bath) [1–4]. Within this approach,
the quantum subsystem is described in terms of a Hilbert space and the classical envi-
ronment in terms of a phase space of positions and momenta. Situations in which the
quantum subsystem is described by a non-Hermitian Hamiltonian have also been consid-
ered [5]. Previously, these mixed quantum-classical techniques have been applied to a wide
range of phenomena, e.g., proton transfer reactions [6,7], electron transfer reactions [8,9],
proton-coupled electron transfer reactions [10–16], exciton transport in photosynthetic
complexes [17–19], heat transport in molecular junctions [20–24], metamolecules [25],
and magnetic molecules [26,27].

The quantum-classical Liouville equation (QCLE) has served as a starting point for sim-
ulating the dynamics of mixed quantum-classical systems [2,28,29]. Over the years, a host
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of techniques have been developed based on approximate solutions of the QCLE [3,30].
The most accurate of these techniques are the stochastic surface-hopping solutions [6,31–36],
but they require extremely large ensembles of trajectories to obtain converged results and,
as a result, will be computationally prohibitive for many systems. On the other hand,
the Poisson Bracket Mapping Equation (PBME) approach provides a highly computation-
ally efficient approximate solution of the QCLE, but its applicability is mainly restricted to
systems with weak subsystem-bath couplings [8,37–39]. Recently, the “Deterministic evolu-
tion of coordinates with initial decoupled equations” (DECIDE) method was developed,
which offers a favourable balance between computational economy and accuracy [40]. DE-
CIDE has two main advantages compared to the stochastic QCLE-based methods: (i) It is a
deterministic method that requires the integration of L2(L2 − 2 + 2N) coupled differential
equations (where L is the number of basis functions used to represent the subsystem and
N is the number of environmental DOF). Typically, only a few thousand trajectories are
required to obtain converged results, in contrast to several orders of magnitude more trajec-
tories in the case of the stochastic QCLE-based methods; (ii) There is no need to diagonalize
the Hamiltonian matrix on-the-fly. DECIDE has demonstrated great promise in solving the
QCLE with high accuracy and low computational cost for a number of model systems, in-
cluding the spin-boson model [40,41], Fenna–Matthews–Olson model [40,41], a three-state
photo-induced electron transfer model [40], nonequilibrium spin-boson model [21,22,42],
and a quantum battery model [43].

To date, the DECIDE equations have been represented in complete spin, subsystem,
and adiabatic energy bases and successfully applied to simulate the dynamics of Hamilto-
nians expressed in these bases. However, the feasibility of solving the DECIDE equations
in an incomplete position basis has yet to be explored. In this review, we explore this by
first considering a one-dimensional, quadratic model of a hydrogen bond coupled to a
solvent coordinate.

The review is organized as follows. In Section 2, we first discuss the Wigner–Weyl
transform, which has been widely used in mixed quantum-classical dynamics, as it pro-
vides an invertible mapping between Hilbert space operators and phase space functions. In
Section 3, we derive the DECIDE equations of motion and briefly discuss their underlying
approximations and energy conservation. In Section 4, we provide a practical demonstra-
tion of how to implement the DECIDE approach using an incomplete position basis by
considering a simple one-dimensional hydrogen bond model. We also briefly discuss issues
that may arise when representing the DECIDE equations of motion for an arbitrary system
in an incomplete basis. Finally, we summarize the main points of this review and discuss a
future direction in Section 5.

2. Wigner-Weyl Transform

Before deriving the DECIDE equations of motion, we present an overview of the
Wigner–Weyl transform and its properties. The Wigner–Weyl transform, which was first
introduced by Wigner in 1932 [44], is a starting point for deriving mixed quantum-classical
dynamics methods. Wigner’s original goal was to find correction terms that would bridge
quantum and classical mechanics [44,45].

The transform can be understood in terms of probability functions. For a wave function
expressed in position space, ψ(x), the probability density is |ψ(x)|2. The wave function can
also be expressed in momentum space as

φ(p) =
1√
h

∫
e−ixp/h̄ψ(x) dx ≡ 〈p|ψ〉, (1)

and its associated probability density is |φ(p)|2 (h̄ = h/2π and h is Planck’s constant). Each
probability density above depends on either x or p. The Wigner–Weyl transform provides a
way to represent the probability distribution in terms of both position (x) and momentum
(p). By definition, the Wigner–Weyl transform of an operator Â is
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AW(x, p) =
∫

e−ipy/h̄ψ∗(x +
y
2
)Âψ(x− y

2
) dy,

≡
∫

e−ipy/h̄
〈

x +
y
2
|Â|x− y

2

〉
dy, (2)

where x and p are vectors containing the positions and momenta of all DOF in the system
and y is an arbitrary integration variable.

Using the above definition, one can obtain several properties of this transform. First,
the identity operator 1̂ is given by

1W =
∫

e−ipy/h̄
〈

x +
y
2
|1̂|x− y

2

〉
dy

=
∫

e−ipy/h̄δ(x +
y
2
− x +

y
2
) dy = 1. (3)

Second, for an operator Â that is only a function of the position operator x̂, the Wigner–Weyl
transform is∫

e−ipy/h̄
〈

x +
y
2
|Â|x− y

2

〉
dy =

∫
e−ipy/h̄ A(x− y

2
)δ(y) dy = A(x). (4)

Similarly, for an operator Â that is only a function of p̂, its Wigner–Weyl transform is A(p).
Third, the trace of the product of two operators Â and B̂ is

Tr(ÂB̂) =
1
h

∫ ∫
AW(x, p)BW(x, p) dxdp. (5)

The Wigner function W(x, p), which corresponds to the probability density of x and p,
is defined in terms of the Wigner transform of the density operator ρ̂ = |ψ〉〈ψ| as

ρW(x, p)
h

=
1
h

∫ ∫
e−ipyh̄|x +

y
2
〉〈x− y

2
| dxdy ≡W(x, p). (6)

For example, the Wigner functions for the ground and first-excited states of the quantum
harmonic oscillator are shown in Figure 1.

(a) (b)

Figure 1. Wigner functions for the (a) ground state, W0(x, p) = 2 exp(−p2 − x2), and (b) excited
state, W1(x, p) = 2(−1 + 2p2 + 2x2) exp(−p2 − x2), of the quantum harmonic oscillator whose
dimensionless Hamiltonian is Ĥ = − 1

2
d2

dx2 +
1
2 x2. The expressions for the Wigner functions are taken

from Ref. [45].
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In the Wigner–Weyl representation, the expectation value of an operator Â is given by

〈Â〉 = Tr(ρ̂Â) =
∫ ∫

W(x, p)AW(x, p) dxdp, (7)

where W(x, p) is normalized, i.e.,∫ ∫
W(x, p) dxdp = Tr(ρ) = 1. (8)

The Wigner–Weyl transform of the product of two operators is [46]

(ÂB̂)W = AW(x, p) exp (h̄Λ/2i)BW(x, p) ≡ AW(x, p) ∗ BW(x, p). (9)

In the above equation, ∗ denotes the Moyal star product [47,48] and Λ is the Poisson
bracket operator,

Λ =

←−
∂

∂p
·
−→
∂

∂x
−
←−
∂

∂x
·
−→
∂

∂p
, (10)

where an arrow denotes the direction of the operation. (The derivation of Equation (9)
may be found in Ref. [46].) The exponential in Equation (9) may be expanded in the
following series,

eh̄Λ/2i = 1 +
h̄
2i

Λ +

(
h̄
2i

Λ
)2

/2! + . . . . (11)

3. DECIDE Mixed Quantum-Classical Dynamics

In this section, we derive the DECIDE equations of motion [40]. Let us start by
considering a fully quantum system with a time-independent Hamiltonian Ĥ = ĤS(x̂) +
ĤB(X̂) + ĤC(x̂, X̂), where ĤS is the subsystem Hamiltonian, ĤB is the bath Hamiltonian,
ĤC is the subsystem-bath coupling Hamiltonian, x̂ denotes a set of generalized coordinates
that provides a complete description of the state of the subsystem, and X̂ = (R̂, P̂) denotes
the set of position and momentum operators of the bath. In the Heisenberg picture,
the dynamics of the subsystem and bath coordinates are given by the quantum Liouville
equation, namely

d
dt

x̂(t) =
i
h̄
[
Ĥ, x̂(t)

]
=

i
h̄

eiL̂t[Ĥ, x̂
]
≡ i

h̄
([

Ĥ, x̂
])
(t)

d
dt

X̂(t) =
i
h̄
[
Ĥ, X̂(t)

]
=

i
h̄

eiL̂t[Ĥ, X̂
]
≡ i

h̄
([

Ĥ, X̂
])
(t), (12)

where eiL̂t Â = eiĤt/h̄ Âe−iĤt/h̄. In the above equations, the time arguments outside the
brackets indicate that one should first evaluate the commutator, then apply the time
dependence. Taking a partial Wigner transform over the bath DOF (defined in terms of the
bath DOF at t = 0) of the above equations and retaining only zero-order terms in h̄ in the
resulting Moyal product expansion yields,

d
dt
(x̂(t))W =

i
h̄

(
eiL̂t
)

W
eh̄Λ/2i([Ĥ, x̂

])
W ≈

i
h̄

eiL̂W t([Ĥ, x̂
])

W

d
dt
(X̂(t))W ≈ i

h̄
eiL̂W t([Ĥ, X̂

])
W , (13)

Assuming that the subsystem and bath coordinates are initially decoupled, evaluating
the partial Wigner transform of the commutators in the above equations, and retaining
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only first-order terms in h̄ in the resulting Moyal product expansion leads to the DECIDE
equations of motion,

d
dt
(x̂(t))W ≈ i

h̄
eiL̂W t([ĤW , x̂

])
=

i
h̄
([

ĤW , x̂
])
(t)

d
dt
(X̂(t))W ≈ −eiL̂W t({ĤW , X

}
a

)
= −

({
ĤW , X

}
a

)
(t), (14)

where the antisymmetrized Poisson bracket is given by {ĤW , ÂW}a = 1
2{ĤW , ÂW} −

1
2{ÂW , ĤW}. (N.B.: The assumption that the subsystem and bath are initially decoupled
leads to ([Ĥ, x̂])W = [ĤW , x̂] and ([Ĥ, X̂])W = − h̄

i {ĤW , X̂}a.) It should be noted that
the partially Wigner-transformed Hamiltonian retains an operator character because the
transform was not performed on the subsystem DOF. In addition, to account for noncom-
mutativity in the above equations, one has to replace any coupling terms in HC with their
Weyl-ordered symmetric forms, e.g., x̂X would be replaced by 1

2 (x̂X + Xx̂). The errors
caused by the approximations above become significant when the subsystem dynamics
is highly non-Markovian, namely when the dependence on the initial bath coordinates is
important [40]. This can be the case for very low bath temperatures, very strong subsystem-
bath coupling, and very slow baths, i.e., when memory effects are very pronounced [22,40].

The general form of the partially Wigner-transformed Hamiltonian considered in the
next section is given by

ĤW(R, P) =
P2

2M
+

p̂2

2m
+ V̂W(r̂, R), (15)

where r̂ and p̂ are vectors containing the subsystem position and momentum operators,
respectively, and m and M are vectors containing the masses of the subsystem and bath
DOF, respectively. For this form of Hamiltonian, the DECIDE equations of motion for the
subsystem and bath DOF are

dr̂
dt

=
i
h̄
[
ĤW , r̂

]
=

p̂
m

,

dp̂
dt

=
i
h̄
[
ĤW , p̂

]
= −∂V̂W

∂r̂
.

dR
dt

= −
{

ĤW , R
}
=

∂ĤW
∂P
· ∂R

∂R
− ∂ĤW

∂R
· ∂R

∂P
=

P
m

,

dP
dt

= −
{

ĤW , P
}
= −∂V̂W

∂R
. (16)

Finally, one must select a convenient basis for the quantum subsystem to solve these equations.
To show that the total energy of the system is conserved over the course of the

dynamics, we start by taking the time derivative of a matrix element (in any basis) of the
Hamiltonian, i.e.,

dHαα′
W

dt
=

[
∂ĤW

∂r̂
dr̂
dt

+
∂ĤW

∂ p̂
dp̂
dt

+
∂ĤW
∂R

dR
dt

+
∂ĤW
∂P

dP
dt

]αα′

, (17)

where Hαα′ = 〈α|ĤW |α′〉. Substituting the expressions for the time derivatives of the
subsystem and bath DOFs in Equation (16) into Equation (17), we find that

dHαα′
W

dt
= 0, (18)

thereby proving that the energy of the total system is conserved.
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4. Hydrogen Bond Model

We now demonstrate how to implement the DECIDE approach using an incomplete
position basis by considering a simple, quadratic, 1D hydrogen bond model.

4.1. Model

The Weyl-ordered, partially Wigner-transformed Hamiltonian of the hydrogen bond
model is given by

ĤW =
p̂2

2m
+

P2

2M
+ A0 x̂2 +

1
2

k1Xx̂ +
1
2

k1 x̂X, (19)

where x̂/ p̂ is the position/momentum operator of the proton, X/P is the position/momentum
of the solvent coordinate, and A0 and k1 are constants. Plots of the protonic potential for
two values of X are shown in Figure 2.

Figure 2. Plots of the protonic potential along the proton coordinate x. The blue and red curves
represent the potential for two different values of the solvent coordinate X, which modulates the
position and depth of the protonic potential. The dashed line corresponds to the ground state energy
for a particular value of the solvent coordinate.

A convenient basis for solving this proton transfer problem is a set of quantum
harmonic oscillator wave functions, i.e.,

φn(x) = 〈x|φn〉 = (2nn!
√

π)−1/2b1/2Hn(bx) exp[−b2x2/2], (20)

where Hn is the nth Hermite polynomial, b is an arbitrary constant, and n = 0, 1, 2, . . ..
Note that if X = 0 in Equation (19), then the exact solution of the time-independent

Schrödinger equation for this model is φn(x) with b =
(

2mA0/h̄2
)1/4

. In our simulations,

we take b =
(

8mA0/h̄2
)1/4

. The eigenfunctions of ĤW may be expanded in this basis as

|ψi〉 = ∑n ci
n|φn〉, where ci

n is the coefficient of the nth basis function. For this expansion,
we use 12 basis functions (n = 0, . . . , 11). Substituting the eigenfunction expansion into
the time-independent Schrödinger equation, we obtain an eigenvalue problem of the
form Hc = cE, where H is the Hamiltonian matrix expressed in the chosen basis, c is a
matrix containing the ci

n’s of the ith eigenfunction, and E is a diagonal matrix containing
the eigenvalues Ei(X). The Hamiltonian matrix elements are calculated by numerical
integration, and the eigenvalue problem is solved (to obtain the ci

n’s and eigenvalues) using
built-in functions in MATLAB. Figure 3 shows the ground- and first-excited state adiabatic
potential energy surfaces [E0(X) and E1(X), respectively] calculated using this method.

It turns out that the time-independent Schrödinger equation for the Hamiltonian in
Equation (19) can be solved analytically (and exactly) by first rewriting the potential energy

as A0(x + k1
2A0 Xx)2 − k2

1
4A0 X2. The resulting adiabatic energies are

En(X) =

√
2A0

m
(n +

1
2
)h̄−

k2
1

4A0 X2, n = 0, 1, 2, 3, . . . (21)
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where n labels the energy level. Comparing our variational results to the exact ones, we
find that good agreement is obtained when X is close to 0, but differences emerge when
|X| > 0.25 (see Figure 3). The convergence of the variational result can be improved by
increasing the number of basis functions; however, the level of accuracy achieved with
12 basis functions is sufficient for our purposes.

−0.5 −0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5
X [Å]

−5000

−4000

−3000

−2000

−1000

0

1000
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tic
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ot
en

tia
l E

ne
 g

y 
[c

m
−1

] 

G ound State (V)
Fi st Excited State (V)
G ound State (A)
Fi st Excited State (A)

Figure 3. Ground- and first-excited state adiabatic potential energy surfaces of the 1D quadratic
proton transfer model. V denotes a variational result, and A denotes an analytical result.
The following parameter values were used to obtain these surfaces: A0 = 3367.6 cm−1 Å−2,
k1 = 1.7× 104 cm−1 Å−2, and m = 1 amu.

4.2. Dynamics Simulation Details

Using Equation (16) and the Hamiltonian in Equation (19), one may obtain the DECIDE
equations of motion for the proton transfer model in the quantum harmonic oscillator
basis, viz.,

d
dt

xαα′(t) =
i
h̄
[ĤW , x̂]αα′ =

pαα′

m
d
dt

pαα′(t) =
i
h̄
[ĤW , p̂]αα′ = −A0xαα′ − k1Xαα′

d
dt

Xαα′(t) = −{ĤW , X}αα′ =
Pαα′

m
d
dt

Pαα′(t) = −{ĤW , P}αα′ = −k1xαα′ , (22)

where, for example, xαα′ = 〈α|x̂|α′〉 and |α〉 is the αth harmonic oscillator state. Given that
the basis set is composed of 12 functions, the total number of coupled differential equations
is 122 × 4.

We assume the initial state of the composite system to be factorized, i.e.,
ρ̂(0) = ρ̂S(0)ρB,W(0), where ρ̂S(0) is the initial density operator of the subsystem (viz.,
the proton) and ρB,W(0) is the initial Wigner distribution of the bath (viz., the solvent
coordinate). In our simulations, the system is initialized in the adiabatic ground state |ψ0〉
of the Hamiltonian in Equation (19), such that ρ̂S(t) = |ψ0〉〈ψ0|. In the harmonic oscillator
basis, the initial values of the matrix elements of the subsystem coordinates are given by
the following analytical expressions:

xαα′(0) =
1
2

(
h̄2/2mA0

)1/4(√
α + 1δα+1,α′ +

√
α′ + 1δα,α′+1

)
,

pαα′(0) = i
(

2h̄2mA0
)1/4(√

α + 1δα+1,α′ −
√

α′ + 1δα,α′+1

)
. (23)
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The initial values of the matrix elements of the bath coordinates are given by

Xαα′(0) = X(0)δα,α′ , Pαα′(0) = P(0)δα,α′ , (24)

where X(0)/P(0) is the initial value of the bath position/momentum. In practice, X(0)
and P(0) may be sampled from Wigner distributions corresponding to thermal equilibrium
states. However, in this study, we choose X(0) = −0.2 Å and P(0) = 50 a.u., since we
only generate a single trajectory for demonstration purposes. Starting from these initial
conditions, the DECIDE equations of motion in Equation (22) are integrated using the
Runge Kutta fourth-order method [49] with a time step of 1 a.u. to simulate the dynamics
of the system. In general, a particular integrator is chosen to achieve an optimal balance
between efficiency and accuracy for a given system.

The expectation value of a property Â(t) may be calculated according to

〈Â(t)〉 = ∑
ββ′

∫
dX(0)dP(0) Aββ′(t)ρβ′β

S (0)ρB,W(0). (25)

However, since we only consider single trajectories for this demonstration, we take
ρB,W(0) = 1. In particular, we are interested in the conservation of the total energy
along a trajectory, which is calculated according to

〈Ĥ(t)〉 = ∑
αα′

Hαα′(t)ρα′α
S (0). (26)

4.3. Results

Figure 4 shows the values of X, adiabatic energy, bath kinetic energy, and total energy
along a representative trajectory. For a positive initial momentum P(0), we see that X
increases up to about 4000 time steps and then starts to decrease. The adiabatic energy
increases while the bath kinetic energy decreases over the course of this trajectory. Finally,
as seen in Figure 4d, the total energy of the system is well-conserved along this trajectory.

0 1000 2000 3000 4000 5000
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Figure 4. Results for the 1D quadratic proton transfer model obtained with a time step of 1 a.u. and
the following parameter values: A0 = 3367.6 cm−1 Å−2, k1 = 1.7× 104 cm−1 Å−2, m = 1 amu,
M = 200 amu, X(0) = −0.2 Å, and P(0) = 50 au. (a) Bath position, X(t), (b) Adiabatic energy,

〈 p̂2

2m + A0 x̂2 + 1
2 k1Xx̂ + 1

2 k1 x̂X〉, (c) Bath kinetic energy, P2

2M , (d) Total system energy, 〈Ĥ〉(t).
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4.4. Limitations of Position Representation

Although the DECIDE method is capable of accurately solving the 1D quadratic
hydrogen bond model, problems in energy conservation may arise when integrating
the DECIDE equations of motion for more complex models. A detailed analysis has
revealed (results not shown) that a breakdown in energy conservation could occur due to a
combination of basis set incompleteness (inherent to the position representation) and the
presence of higher-order (i.e., cubic, quartic, etc.) terms in the Hamiltonian. In the DECIDE
equations of motion, matrix elements of second or higher powers of the coordinates [e.g.,
(x2)αα′ ] are not evolved directly. Since only matrix elements of the first powers of the
coordinates are evolved directly, the matrix elements of higher-order terms are evaluated
by first inserting complete sets of states between each linear term in the product (e.g.,
(x2)αα′ = ∑β xαβxβα′ ). Therefore, if the position basis is incomplete, such terms can be
evaluated inaccurately, which leads to an accumulation of numerical errors and, in turn, a
breakdown in energy conservation. In this connection, even in the 1D quadratic hydrogen
bond model, there will be small numerical errors when calculating energies due to the
presence of x2 and p2 terms in the Hamiltonian [see Equation (19)].

5. Conclusions

Mixed quantum-classical dynamics is a useful approach for simulating the dynamics
of quantum processes occurring in chemical and biological systems with large numbers of
DOF. Among the various mixed quantum-classical dynamics methods, the DECIDE method
has exhibited a highly favourable balance between computational cost and accuracy for
treating model Hamiltonians expressed in complete energy bases.

In this review, we explained the DECIDE method and demonstrated it on a 1D
quadratic model of a proton in a hydrogen bond. This required casting the DECIDE
equations of motion in an incomplete quantum harmonic oscillator position basis. We
showed that with a sufficiently large basis, it is possible to generate trajectories that con-
serve the total energy of the system well. However, for higher-order models expressed in
an incomplete position basis, energy conservation may break down and thus, it would be
necessary to re-express the Hamiltonian in an energy basis. This approach will be explored
in a future study.
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