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a b s t r a c t

This paper focuses on the analysis of generalized quasivariational inequalities with
non-self map. In Aussel et al., (2016), introduced the concept of the projected
solution to study such problems. Subsequently, in the literature, this concept
has attracted great attention and has been developed from different perspectives.
The main contribution of this paper is to prove new existence results of the
projected solution for generalized quasivariational inequality problems with non-
self map in suitable infinite dimensional spaces. As an application, a quasiconvex
quasioptimization problem is studied through a normal cone approach.
© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under

the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Let (X, ∥ · ∥) be a normed space, (X∗, ∥ · ∥∗) its topological dual, and ⟨·, ·⟩ the duality pairing. The closed
unit balls in X and X∗ are denoted by B and B∗, respectively; x + ηB identifies the closed ball of radius

> 0 around x ∈ X. Let Φ : X ⇒ X∗ be a set-valued map and C ⊆ X be a nonempty set: a generalized
ariational inequality GV I(Φ, C) consists in finding

x̄ ∈ C such that ∃x∗ ∈ Φ(x̄) with ⟨x∗, x − x̄⟩ ≥ 0, ∀x ∈ C.

his problem has its origins with Stampacchia and Fichera and it provides a broad unifying setting for the
tudy of optimization and complementarity problems and more in general equilibrium problems. In 1982,
han and Pang [1] introduced the generalized quasivariational inequality: it is a generalized variational
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inequality where the constraint set is subject to modifications depending on the considered point. In
particular, let K : C ⇒ X be a set-valued map, the generalized quasivariational inequality GQV I(Φ, K)
onsists in finding

x̄ ∈ K(x̄) such that ∃x∗ ∈ Φ(x̄) with ⟨x∗, x − x̄⟩ ≥ 0, ∀x ∈ K(x̄).

he classical way to get the existence of solutions consists in requiring that the feasibility set-valued map
is a self map, that is, it maps C to itself. However, the condition K(C) ⊆ C is quite strong and it is not

atisfied by some applications. The study of GQV I(Φ, K) with K(C) ⊈ C was firstly investigated in [1] and,
ubsequently, in [2]. Anyway, in this situation, it may then be asking too much to expect that the solution

¯ is a fixed point of K. For this reason, following the approach recently introduced in [3], we focus on the
tudy of the existence of the so-called projected solution of a generalized quasivariational inequality with
on-self map: a vector x̄ ∈ C is said to be a projected solution of GQV I(Φ, K) if there exists ȳ ∈ X such
hat

▷ x̄ is a metric projection of ȳ on C,
▷ ȳ is a solution of GV I(Φ, K(x̄)).

Clearly, each solution of GQV I(Φ, K) is a projected solution and the two concepts coincide if K is a self
map. When K is a non-self map, two different scenarios occur: either K(C) ∩ C = ∅ or K(C) ∩ C ̸= ∅.

Example 1.1. Let X be a Hilbert space, with X∗ = X (Riesz representation theorem), and C = B ⊆ X.
Fixed u ∈ X with ∥u∥ = 1, let K : C ⇒ X and Φ : X ⇒ X∗ be defined as

K(x) = 4u + (2 − ∥x∥)B and Φ(x) = [−x, −u] ,

where [−x, −u] is the segment joining −x and −u. Clearly, K(C) ∩ C = ∅ and GQV I(Φ, K) has no classic
solution; instead, x̄ = u is the projected solution associated to ȳ = 5u.

When K(C)∩C ̸= ∅, the following example shows two different cases: either the classical does not exist or
the classical solutions set is nonempty but, in general, it does not coincide with the set of projected solutions.

Example 1.2. Let X be a Hilbert space and C = B ⊆ X. Fixed u ∈ X with ∥u∥ = 1, let Φ be defined as
in Example 1.1.

(i) If K : C ⇒ X is defined as
K(x) = 3u + (2 − 2∥x∥)B ,

K(C) ∩ C ̸= ∅, but fix K = ∅. In this case, GQV I(Φ, K) has no classic solution; instead, x̄ = u is the
projected solution associated to ȳ = 3u.

ii) If K : C ⇒ X is defined as
K(x) = 3u + (3 − ∥x∥)B ,

K(C) ∩ C ̸= ∅ and fix K = [0, u]. In this case, x̄c = 0 is the classical solution to GQV I(Φ, K); instead,
x̄p = u is the projected solution associated to ȳ = 5u.

In [3], the existence of a projected solution was proved by using techniques inspired by [2]. Thereafter,
the study of the existence of the projected solutions has been extended to general Ky Fan quasiequilibrium
problems ([4,5] in a finite dimensional setting and [6] in Banach spaces) and to multistage stochastic
quasivariational inequality problems [7].

Here, our main contribution is to prove new existence results for projected solutions of GQV I(Φ, K)

xploiting suitable approximation techniques and continuous selection results. In particular, no monotonicity
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assumptions are required on the principal operator Φ which is assumed to be norm-to-weak∗ upper
semicontinuous with nonempty weak∗-compact convex values. This fact paves the way to a wide range
of applications. Indeed, several optimization and equilibrium problems (for instance, generalized Nash
equilibrium problems and economic equilibrium problems) are studied through operators having the quoted
properties. In this light, we show the applicability of our techniques proposing the study of a quasiconvex
quasioptimization problem by using a normal cone approach.

The paper is organized as follows. Section 2 is devoted to the introduction of some preliminary notations
and definitions that we will be used in the work. On this basis, in Section 3, our main results are proved: the
existence of the projected solutions of GQV I(Φ, K) is get under different assumptions and a comparison
with the results available in the literature is provided. In order to support such results, in Section 4, a
quasiconvex quasioptimization problem is analyzed. Finally, a section with the conclusions is given.

2. Notations and definitions

For the convenience of the reader, we recall some preliminary notations, definitions, and tools of set-valued
analysis.1

Given any nonempty A ⊆ X and y ∈ X, we denote by dist(y, A) = inf{∥y − x∥ : x ∈ A} the distance
of y from A. Moreover, we denote by co A, cl A, and int A the convex hull, the closure, and the topological
interior of A, respectively. The set A is relatively compact if its closure is compact.

Let Γ : X ⇒ Y be a set-valued map with X and Y two Hausdorff topological spaces. The domain of Γ
s domΓ = {x ∈ X : Γ (x) ̸= ∅} and its graph is gphΓ = {(x, y) ∈ domΓ × Y : y ∈ Γ (x)}. Moreover,
e denote by coΓ : X ⇒ Y the convex hull of Γ such that, for all x ∈ X, coΓ (x) = co(Γ (x)). Given the

et-valued maps Γ1 : X ⇒ Y and Γ2 : Y ⇒ Z, the composition Γ2 ◦ Γ1 : X ⇒ Z is defined as

(Γ2 ◦ Γ1)(x) =
⋃

y∈Γ1(x)

Γ2(y).

he map Γ is lower semicontinuous at x if for each open set Ω such that Γ (x) ∩ Ω ̸= ∅ there exists a
eighborhood Ux of x such that Γ (x′) ∩Ω ̸= ∅ for every x′ ∈ Ux; instead, it is upper semicontinuous at x if
or each open set Ω such that Γ (x) ⊆ Ω there exists a neighborhood Ux of x such that Γ (x′) ⊆ Ω for every
′ ∈ Ux. The map Γ is continuous at x if it is both upper and lower semicontinuous at x. If X and Y are two
etric spaces the upper and lower semicontinuity at x ∈ X may be characterized by means of sequences:

▷ Γ is upper semicontinuous at x and Γ (x) is compact if and only if for each sequence {(xn, yn)} ⊆ gphΓ

with xn → x, then {yn} has a limit point in Γ (x);
▷ Γ is lower semicontinuous at x if and only if for each xn → x and y ∈ Γ (x) there exist a subsequence

{xnk
} and elements yk ∈ Γ (xnk

) such that yk → y.

he set-valued map Γ is closed if gphΓ is closed in X × Y . We recall that the closed graph theorem affirms
hat, when Γ (X) is relatively compact, Γ is closed if and only if it is upper semicontinuous with closed
alues. A fixed point of a set-valued map Γ : X ⇒ X is a point x ∈ X satisfying x ∈ Γ (x); we denote by
xΓ the set of the fixed points of Γ .

Let A be a closed set: the set-valued map PA : X ⇒ A defined as

PA(y) = {x ∈ A : ∥x − y∥ = dist(y, A)}

s the metric projection onto A. Clearly PA(y) is a closed, eventually empty, set.

1 For further details, the interested reader can refer to [8,9] and the references therein.
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The set A is called approximatively compact if for every y ∈ X and every sequence {xn} ⊆ A such
that ∥y − xn∥ → dist(y, A) there exists a subsequence {xnk

} that converges to an element x ∈ A.
The word “approximatively” is occasionally misspelled “approximately” in the literature and this notion
was introduced by Efimov and Stechkin in [10]. It is worth noting that a compact set is approximatively
compact; instead, the converse may not hold [11, Example 4.1]. One of the reasons for the importance of
approximative compactness in approximation theory is that the limit point x belongs to PA(y) and hence
every approximatively compact set A is a proximinal set, that is, PA(y) ̸= ∅ for every y ∈ X. Moreover the
et-valued map PA is upper semicontinuous. Lastly, the approximative compactness of sets is inherited by
he product.

emma 2.1. Let (Xi, ∥ · ∥i) be normed spaces and Ai ⊆ Xi approximatively compact for each i ∈ I =
1, . . . , I}. Then, A =

∏
i∈I Ai is approximatively compact in X =

∏
i∈I Xi with norm ∥ · ∥ =

∑
i∈I ∥ · ∥i.

roof. Let y = (y1, . . . , yI) ∈ X and {xn} = {(x1,n, . . . , xI,n)} ⊆ A such that

∥xn − y∥ =
∑
i∈I

∥xi,n − yi∥i → dist(y, A).

ince it results

dist(y, A) = inf
x∈A

∥y − x∥ = inf
x1∈A1,...,xI ∈AI

∑
i∈I

∥yi − xi∥i =
∑
i∈I

disti(yi, Ai),

where disti denotes the distance induced by the norm ∥ · ∥i, then ∥xi,n − yi∥i → disti(yi, Ai) for each i ∈ I.
Hence, there exist a subsequence {x1,nk

} and x1 ∈ A1 such that x1,nk
→ x1. Again, there exist a subsequence

{x2,nkh
} of {x2,nk

} and x2 ∈ A2 such that x2,nkh
→ x2. Clearly, {x1,nkh

} converges to x1. Then, continuing
iteratively by repeating the process until the last element, we get a subsequence of {xn} which tends to
x = (x1, . . . , xI) ∈ A as required. □

3. Existence results for GQV I(Φ, K)

In this section, we aim to prove some results on the existence of the projected solution to a generalized
quasivariational inequality with non-self constraint map by using suitable approximating techniques and
opportune continuous selection theorems.

Theorem 3.1. Let X be a Banach space and C ⊆ X approximatively compact convex. Assume that K(C)
is relatively compact. Then, GQV I(Φ, K) admits a projected solution if the following properties hold:

(i) K is lower semicontinuous and closed with nonempty convex values;

(ii) Φ is norm-to-weak∗ upper semicontinuous on K(C) with nonempty weak∗-compact convex values.

Proof. For every n ∈ N, let PC,n : X ⇒ C be defined as

PC,n(y) =
{

x ∈ C : ∥x − y∥ ≤ dist(y, C) + 1
n

}
.

learly PC,n(y) is a nonempty, closed and convex set and PC,n(y) = cl P <
C,n(y) for each y ∈ X, where

P <
C,n(y) =

{
x ∈ C : ∥x − y∥ < dist(y, C) + 1

}
.

n

4
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Moreover, P <
C,n has open graph on X×C and then it is lower semicontinuous [8, Lemma 17.12]. Consequently,

C,n is lower semicontinuous by [8, Lemma 17.22] and, thanks to a famous Michael selection result [12,
heorem 3.2′′], it admits a continuous selection pC,n : X → C.
The set Ĉ = cl co K(C) is compact since X is a Banach space [8, Theorem 5.35]; moreover, since K is

losed and K(C) is relatively compact, it follows that K is upper semicontinuous, that is, K is continuous.
Then, we introduce the set-valued map Kn : Ĉ ⇒ Ĉ defined as Kn(y) = K(pC,n(y)): as composition of two
continuous maps, it is continuous with nonempty, closed, and convex values [8, Theorem 17.23]. So, from the
closed graph theorem the map Kn has closed graph; hence, fix Kn is closed and, since subset of the compact
set Ĉ, it is compact itself.

Let us consider the set-valued map F : fix Kn ⇒ X defined as

F (y) =
⋂

y∗∈Φ(y)

{z ∈ X : ⟨y∗, z − y⟩ < 0} =
{

z ∈ X : max
y∗∈Φ(y)

⟨y∗, z − y⟩ < 0
}

.

Clearly, F is with convex values. To prove that F has open graph, it is sufficient to show that the function
m : fix Kn × X → R defined as

m(y, z) = max
y∗∈Φ(y)

⟨y∗, z − y⟩

s upper semicontinuous. From [8, Lemma 17.8], the subset Φ(fix Kn) is weak∗-compact; hence, it is norm
ounded. Thanks to [8, Corollary 6.40] the duality pairing ⟨·, ·⟩ restricted to Φ(fix Kn) × X is jointly
ontinuous; hence, [8, Lemma 17.30] guarantees the upper semicontinuity of m.

By contradiction, assume that F (y) ∩ Kn(y) ̸= ∅ for all y ∈ fix Kn. From [13, Corollary 1.11.1] F ∩ Kn

admits a continuous selection f : fix Kn → Ĉ. Therefore, the set-valued map Υ : Ĉ ⇒ Ĉ defined as

Υ(y) =
{

Kn(y) if y /∈ fix Kn

{f(y)} if y ∈ fix Kn

is lower semicontinuous [14, Lemma 2.3] with closed convex values. Hence [12, Theorem 3.2′′] guarantees
that f can be extended to a continuous selection φ for Υ . The Brouwer–Schauder–Tychonoff fixed point
theorem guarantees that φ has a fixed point, that is, there exists y ∈ Ĉ such that y = φ(y) ∈ Υ(y). Clearly
y ∈ fix Kn and this implies y = f(y) ∈ F (y) which is absurd.

Therefore, for every n ∈ N, there exists yn ∈ fix Kn such that F (yn) ∩ Kn(yn) = ∅, that is,

max
y∗∈Φ(yn)

⟨y∗, z − yn⟩ ≥ 0, ∀z ∈ Kn(yn). (1)

Since Ĉ is compact, without loss of generality, we may assume that there exists ȳ ∈ Ĉ such that yn → ȳ.
Define xn = pC,n(yn); then, the following chain of inequalities holds

dist(ȳ, C) ≤ ∥xn − ȳ∥
≤ ∥xn − yn∥ + ∥yn − ȳ∥

≤ dist(yn, C) + ∥yn − ȳ∥ + 1
n

.

aking the limit as n → +∞, we have that ∥xn − ȳ∥ → dist(ȳ, C). The approximative compactness
f C ensures the existence of a limit point x̄ ∈ PC(ȳ) of the minimizing sequence {xn}. Again, for
he sake of simplicity, assume that xn → x̄. Since K is upper semicontinuous with compact values and
n ∈ Kn(yn) = K(xn), then ȳ ∈ K(x̄). Now, fix z ∈ K(x̄) arbitrarily. Since K is lower semicontinuous, then
here exist a subsequence {xnk

} and elements zk ∈ K(xnk
) such that zk → z. Therefore, from (1) we have

m(ynk
, zk) = max

∗
⟨y∗, zk − ynk

⟩ ≥ 0.

y ∈Φ(ynk

)

5
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The upper semicontinuity of m and the arbitrariness of z guarantee that

max
y∗∈Φ(ȳ)

⟨y∗, z − ȳ⟩ ≥ 0, ∀z ∈ K(x̄)

hich is equivalent to affirm that
min

z∈K(x̄)
max

y∗∈Φ(ȳ)
⟨y∗, z − ȳ⟩ ≥ 0.

nvoking the Sion’s minimax theorem we deduce that

max
ȳ∗∈Φ(ȳ)

min
z∈K(ȳ)

⟨ȳ∗, z − ȳ⟩ ≥ 0

hich means that x̄ = pC(ȳ) is a projected solution. □

Generalized quasivariational inequality problems over product sets is of great interest in game theory and
conomics. This particular format is when

X =
∏
i∈I

Xi, C =
∏
i∈I

Ci, K =
∏
i∈I

Ki,

here I = {1, . . . , I} is a finite index set and, for each i ∈ I, Xi is a normed space with X∗
i its topological

ual, Ci ⊆ Xi is a nonempty set, and Ki : C ⇒ Xi is a set-valued map. Denote by xi the i-component of an
lement x ∈ X, and by ⟨·, ·⟩i the duality pairing of (X∗

i , Xi). Here, the product map K : C ⇒ X is defined
s K(x) =

∏
i∈I Ki(x).

The problem consists in finding a fixed point x̄ ∈ K(x̄) such that for each i ∈ I there exists x∗
i ∈ Φi(x̄)

ith ∑
i∈I

⟨x∗
i , xi − x̄i⟩i ≥ 0, ∀x ∈ K(x̄),

here Φi : X ⇒ X∗
i . If we denote by Φ : X ⇒

∏
i∈I X∗

i the product map Φ =
∏

i∈I Φi, then the designation
f this problem as GQV I(Φ, K) is a certain abuse of notation due to the fact that the range space of Φ is
he product of the duals instead of the dual of the product X∗ = (

∏
i∈I Xi)∗. However, we stress the fact

hat these two vector spaces are isomorphic taking the bijection

x∗ ↦→
∑
i∈I

x∗
i

nd that this map is an homeomorphism when considering the product of the weak∗ topologies on
∏

i∈I X∗
i

nd the weak∗ topology on X∗.
The study of the existence of solutions to GQV I(Φ, K) by requiring the regularity of the component

et-valued maps Φi and Ki only is not always possible if certain generalized monotonicity and continuity
ssumptions are needed. For a comprehensive analysis of the problem, the interested reader can refer to [15]
nd the references therein. Working without monotonicity conditions, we obtain an existence result for
rojected solutions of product-type generalized quasivariational inequalities as a natural consequence of
heorem 3.1.

orollary 3.1. Let Xi be Banach spaces, Ci ⊆ Xi approximatively compact convex, and Ki(Ci) relatively
ompact. Then, GQV I(Φ, K) admits a projected solution if the following properties hold for each i ∈ I:

i) Ki is lower semicontinuous and closed with nonempty convex values;
∗ ∗
ii) Φi is norm-to-weak upper semicontinuous on Ki(Ci) with nonempty weak -compact convex values.

6
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Proof. Thanks to the Tychonoff’s theorem, K(C) is relatively compact. Moreover, according to [9,
heorems VI.2.4 and VI.2.4′], lower and upper semicontinuity are preserved by the product of set-valued

maps. Hence, assumptions (i) and (ii) of Theorem 3.1 are verified. Finally, the approximative compactness
of C descends from Lemma 2.1 and the conclusion follows from Theorem 3.1. □

In Theorem 3.1, it would be nice if approximatively compact could be replaced by closed, but this is
mpossible since there exists an example of a closed convex body C in the Banach space of sequences
onverging to zero c0 such that PC(y) = ∅, for every y ∈ c0 \ C [11, Remark 4.7]. The reflexivity
f the space X is necessary but not sufficient to guarantee that every nonempty closed convex subset

⊆ X is approximatively compact. Indeed, in a Banach space X, every nonempty closed convex subset
is approximatively compact if and only if X is reflexive and it has the Kadec–Klee property, that is, strong
convergence and weak convergence are equivalent on the unit sphere of the space [11, Theorem 9.1]. Thanks
to this, we can state the following.

Corollary 3.2. Let X be a reflexive Banach space with the Kadec–Klee property and C ⊆ X closed
and convex. Assume that K(C) is relatively compact. Then, GQV I(Φ, K) admits a projected solution if the
ollowing properties hold:

i) K is lower semicontinuous, closed with nonempty convex values;

ii) Φ is norm-to-weak∗ upper semicontinuous on K(C) with nonempty weak∗-compact convex values.

The assumptions of Corollary 3.2 do not ensure the uniqueness of the projection. Instead, if in addition
the norm is strictly convex, then for each C nonempty closed and convex and for each y ∈ X there exists a
nique projection that will be denoted pC(y). Clearly, pC is continuous.

The class of uniformly convex Banach spaces constitutes a well-known subclass of reflexive Banach spaces
ith strictly convex norm and satisfying the Kadec–Klee property: in this setting, as we will prove in
heorem 3.3, the closedness of the map K in Corollary 3.2 can be weakened.
Before proceeding with the statement of our next result we review a notion of relative interior for convex

ets which was introduced by Michael [12]. Let A ⊆ X be convex; a convex set S ⊆ A is a face of A if
1, x2 ∈ A, t ∈ (0, 1) and tx1 + (1 − t)x2 ∈ S imply x1, x2 ∈ S. The collection of all proper closed faces of

cl A is denoted by FA. A point x ∈ A is an inside point of A if it is not in any proper closed face of cl A: the
set of the inside points of A is denoted by I(A). Finally we consider the family of convex sets D(X) defined
as

D(X) = {A ⊆ X : A is convex and I(cl A) ⊆ A}.

This class contains all the convex sets which are either closed, or with nonempty relative interior. In
particular, when X is finite dimensional the class D(X) coincides with the family of all convex sets.

We recall the following selection result, recently proved in [14], which will be crucial for our purposes.

Theorem 3.2. Let X be a metric space, Y be a normed space, and Γ : X ⇒ Y be a lower semicontinuous
set-valued map with nonempty values in the class D(Y ) such that Γ (X) is relatively compact. Then, Γ admits
a continuous selection.

In particular, Theorem 3.2, with respect to the classical Michael selection result [12, Theorem 3.2′′] used
in the proof of Theorem 3.1, does not require the closedness of the values of the set-valued map Γ .

Theorem 3.3. Let X be a uniformly convex Banach space and C ⊆ X closed and convex. Assume that
K(C) is relatively compact. Then, GQV I(Φ, K) admits a projected solution if the following properties hold:
7
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(i) K is lower semicontinuous with nonempty convex values in the class D(X) and fix(K ◦ pC) is closed;

(ii) Φ is norm-to-weak∗ upper semicontinuous on K(C) with nonempty weak∗-compact convex values.

Proof. In outline, the proof follows the same line of reasoning as in Theorem 3.1. Now, the projection
function pC : X → C is well defined and continuous and there is no need to approximate it with pC,n. We
introduce the set-valued map K̂ : Ĉ ⇒ Ĉ defined as K̂(y) = K(pC(y)): it is lower semicontinuous with
nonempty values in the class D(X). Thanks to the closedness of fix K̂, we get that F : fix K̂ ⇒ X is convex
valued with open graph. Assuming by contradiction that F (y) ∩ K̂(y) ̸= ∅ for all y ∈ fix K̂, as deduced in
Theorem 3.1, there exists a continuous selection f : fix K̂ → Ĉ of F ∩ K̂ and the set-valued map Υ : Ĉ ⇒ Ĉ

defined as

Υ(y) =
{

K̂(y) if y /∈ fix K̂

{f(y)} if y ∈ fix K̂

is lower semicontinuous with convex values in the class D(X). Hence, according to Theorem 3.2, there exists a
continuous selection of Υ and, arguing as before, we obtain a contradiction. Therefore, there exists ȳ ∈ fix K̂

such that
max

y∗∈Φ(ȳ)
⟨y∗, z − ȳ⟩ ≥ 0, ∀z ∈ K(x̄)

where x̄ = pC(ȳ). The proof ends with the application of the Sion’s minimax theorem. □

When K(C) is relatively compact, the closedness of the set-valued map K is sufficient (but not necessary)
to guarantee that fix(K ◦ pC) is closed. Moreover, if X is a Hilbert space, the Kolmogorov’s criterion for
the best approximation provides a way to characterize the closedness of fix(K ◦ pC). We recall that, given a
nonempty closed convex set C ⊆ X and y ∈ X,

x = pC(y) ⇔ x ∈ C and ⟨y − x, z − x⟩ ≤ 0 ∀z ∈ C;

this is equivalent to affirms that y ∈ x + NC(x) where NC(x) is the normal cone of C at x defined as

NC(x) = {x∗ ∈ X∗ : ⟨x∗, z − x⟩ ≤ 0, ∀z ∈ C}.

Hence, defining T : C ⇒ Rn as
T (x) = K(x) ∩ (x + NC(x)), (2)

it follows that T (C) = fix(K ◦ pC). This characterization is the core of the next result.

Corollary 3.3. Let X be a Hilbert space and C ⊆ X closed and convex. Assume that K(C) is relatively
compact. Then, GQV I(Φ, K) admits a projected solution if the following properties hold:

(i) K is lower semicontinuous with nonempty convex values in the class D(X) and T is closed;

(ii) Φ is norm-to-weak∗ upper semicontinuous on K(C) with nonempty weak∗-compact convex values.

Proof. Thanks to Theorem 3.3 and the fact that fix(K ◦pC) = T (C), it is sufficient to verify the closedness
of T (C). Take {yn} ⊆ T (C) with yn → y ∈ X. Hence, the sequence {(pC(yn), yn)} ⊆ gph T and it converges
to (pC(y), y) since pC is continuous. According to the closedness of T , it results that (pC(y), y) ∈ gph T ,
that is, y ∈ T (pC(y)) ⊆ T (C). □

Remark 3.1. In the proof of Corollary 3.3, we have seen that the closedness of the set-valued map T is
sufficient to guarantee the closedness of T (C). Also the converse implication holds. Indeed, fix {(xn, yn)} ⊆

gph T with (xn, yn) → (x, y) ∈ C×X; hence, xn = pC(yn) and yn ∈ T (xn) ⊆ T (C). Thanks to the continuity

8
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of pC and the closedness of T (C) we have x = pC(y) and y ∈ T (C); from the uniqueness of the projection
e have (x, y) ∈ gph T . In other words, the equivalence

fix(K ◦ pC) is closed ⇔ T (C) is closed ⇔ T is closed

olds true.

Now, we provide a comparison with related results in the literature. The first existence result for projected
olution of a generalized quasivariational inequality was established in [3, Theorem 3.2] for finite dimensional
paces and under a pseudomonotonicity assumption. The authors underline that their result cannot be
roved in an arbitrary infinite dimensional topological vector space due to the assumptions int K(x) ̸= ∅
nd K(x) compact, for all x ∈ C. Notice that, when X is finite dimensional, our result require the convexity
f the values of K only. Subsequently, without any monotonicity assumption, the existence of a projected
olution was proved in [5] requiring the compactness of C ⊆ Rn. Recently, an analogous result has been
stablished in [4] avoiding the compactness of C: Corollary 3.3 extends this result to Hilbert spaces.

Existence results in the infinite dimensional case have been proved in [6,7]. Our results hold under weaker
ssumptions: adapting opportunely the notations to our setting, we point out the following facts.

▷ Theorem 4.2 in [6] requires Φ norm-to-norm upper semicontinuous with norm-compact values and
Φ(X) relatively compact. Instead, we require that Φ is norm-to-weak∗ upper semicontinuous with
weak∗-compact values. Moreover, we do not require the compactness of C but only its approximative
compactness in Theorem 3.1 and its closedness in Corollary 3.2, Theorem 3.3, and Corollary 3.3.

▷ Theorem 4 in [7] requires the pseudomonotonicity of Φ that we do not need, the norm-to-norm upper
semicontinuity and the norm-compact valuedness of Φ. As previously pointed out, we only assume that
Φ is norm-to-weak∗ upper semicontinuous with weak∗-compact values.

In addition, with respect to the quoted results, Theorem 3.3 and Corollary 3.3 provide further improvements
in terms of requirements on K as observed above. Anyway, in order to support these statements, we propose
the following counter-examples.

Example 3.1. Let X be a Hilbert space, with X∗ = X, and C = B ⊆ X. Fixed u ∈ X with ∥u∥ = 1, let
K : C ⇒ X and Φ : X ⇒ X be defined as

K(x) =
{

(2u, (3 + ∥x∥)u] if x ̸= u
[2u, 4u] if x = u

and
Φ(x) = −2(x − 2u) + (x − 2u)B,

where K(C) = [2u, 4u] = fix(K ◦ pC). Clearly, K(C) ∩ C = ∅ and GQV I(Φ, K) has no classic solution.
Instead, x̄ = u is a projected solution associated to ȳ = 2u: all the requirements of Theorem 3.3 are satisfied
but not the ones of Theorem 4.2 in [6] and Theorem 4 in [7]. Indeed, Theorem 4.2 in [6] cannot be applied
as C is not compact, K is not closed, and clΦ(X) is not compact; the same holds for Theorem 4 in [7] as
K is not closed and Φ is neither with norm-compact values nor pseudomonotone on K(C), for instance in
the points 2u and 4u where Φ(2u) = {0} but −2u ∈ Φ(4u) and ⟨−2u, 2u⟩ < 0.

Example 3.2. Let X = l2 be the Hilbert space of the 2-summable sequences of real numbers, with (l2)∗ = l2,
and C = B ⊆ l2. Fixed u =

( 1
n

)
∈ l2 with ∥u∥ = π√

6 , let K : C ⇒ X and Φ : X ⇒ X be defined as

K(x) =
{

z ∈ l2 : 0 ≤ zn ≤ 4 − ∥x∥
}

n

9
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and
Φ(x) =

{
10B if x ∈

∏
n∈N

[ 3
n , 4

n

]
−x + u otherwise

where K(C) =
∏

n∈N
[
0, 4

n

]
is a Hilbert cube. Clearly, K(C) ∩ C ̸= ∅ but K(C) ⊈ C. Notice that x̄ = u

∥u∥
s a projected solution associated to ȳ = u: all the requirements of Theorem 3.1 are satisfied but not the
ones of Theorem 4.2 in [6] and Theorem 4 in [7]. Indeed, Theorem 4.2 in [6] cannot be applied as C is not
compact; the same holds for Theorem 4 in [7] as Φ is neither with norm-compact values nor pseudomonotone
on K(C), for instance in the points u and 2u where Φ(u) = {0} but −u ∈ Φ(2u) and ⟨−u, u⟩ < 0.

. Projected solution for quasioptimization problems

The requirement that Φ is norm-to-weak∗ upper semicontinuous with nonempty weak∗-compact convex
alues allows us to study applications involving optimization problems in the formulation under no too
estrictive assumptions. In this section, we focus on the study of a quasioptimization problem: it is an
ptimization problem in which the constraint set is subject to modifications depending on the considered
oint. Given C ⊆ X nonempty, K : C ⇒ X and f : X → R, a quasioptimization problem QOP (f, K)
onsists in finding

x̄ ∈ K(x̄) such that min{f(y) : y ∈ K(x̄)} = f(x̄).

learly, if K(x) = C for all x ∈ C, QOP (f, K) reduces to a classical optimization problem.
In [3], the authors introduced the concept of projected solution when K is a non-self map. A vector x̄ ∈ C

s called projected solution of QOP (f, K) if there exists ȳ ∈ X such that

▷ x̄ is a metric projection of ȳ on C,
▷ ȳ solves the problem min{f(y) : y ∈ K(x̄)}.

s in [3], we study QOP (f, K) by using a normal cone approach under the assumption of quasiconvexity
f f . We need some concepts. We denote by Sα = {y ∈ X : f(y) ≤ α} and S<

α = {y ∈ X : f(y) < α} the
ublevel and the strict sublevel set at α ∈ R, respectively. The function f is quasiconvex if and only if Sα is
onvex for any α ∈ R. Following [16], the adjusted sublevel set of f can be associated at any x ∈ X:

Sa
f (x) =

{
Sf(x) if x ∈ argmin f
Sf(x) ∩ B(S<

f(x)) if x /∈ argmin f

here
B(S<

f(x)) = {y ∈ X : dist(y, S<
f(x)) ≤ dist(x, S<

f(x))}.

he quasiconvexity of f is characterized by the convexity of the adjusted sublevel sets Sa
f (x). In this way,

he set-valued map Na : X ⇒ X∗ is the normal cone operator to the adjusted sublevel set defined as

Na(x) = {x∗ ∈ X∗ : ⟨x∗, y − x⟩ ≤ 0, ∀y ∈ Sa
f (x)}.

n [16], continuity properties of Na in relation with continuity of f were investigated. We recall that a convex
ubset A of a convex cone H in X∗ is called base of H if 0 does not belong to the weak∗-closure of A and

=
⋃

t≥0 tA. The authors proved in [16, Proposition 3.5] that for each x /∈ argmin f there exists a norm-to-
eak∗ upper semicontinuous base-valued submap of the normal operator Na defined on a neighborhood of
. When the space X is finite-dimensional, a globally defined upper semicontinuous base-valued submap is
btained taking the intersection of the unit sphere, which is compact, with the normal operator Na, which
s closed [17]. Unfortunately, this technique does not work in the infinite dimensional case since the sphere
s not compact. Nevertheless, a partition of unity technique has been recently used in establishing global

xistence from local existence in Banach spaces [18]. The quoted result is the following.

10
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Theorem 4.1. Let X be a Banach space and f : X → R be a quasiconvex continuous function. Then, there
exists a norm-to-weak∗ upper semicontinuous set-valued map A : X \ argmin f ⇒ B∗ such that A(x) is a
weak∗-compact base of Na(x) for all x.

Having a base-valued operator defined globally finds an interesting use in variational inequalities, and we
are in a position to prove the following result.

Theorem 4.2. Let X be a Banach space and C ⊆ X approximatively compact convex. Assume that K(C)
is relatively compact. Then, QOP (f, K) admits a projected solution if the following properties hold:

(i) K is lower semicontinuous and closed with nonempty convex values;

(ii) f is continuous and quasiconvex.

Proof. Let Φ : X ⇒ X∗ be defined as

Φ(x) =
{

B∗ if x ∈ argmin f
A(x) if x /∈ argmin f

where A is the norm-to-weak∗ upper semicontinuous set-valued map obtained in Theorem 4.1. Since argmin f

is closed and A(x) ⊆ B∗, then Φ is upper semicontinuous. In this way, thanks to Theorem 3.1, it follows
that GQV I(Φ, K) admits a projected solution x̄ ∈ C, that is, there exists ȳ ∈ X so that x̄ ∈ PC(ȳ) and

ȳ ∈ K(x̄) such that ∃y∗ ∈ Φ(ȳ) with ⟨y∗, y − ȳ⟩ ≥ 0, ∀y ∈ K(x̄).

learly, if ȳ ∈ argmin f , then f(ȳ) ≤ f(y) for all y ∈ K(x̄). Instead, if ȳ /∈ argmin f , then it results that

y∗ ∈ Φ(ȳ) = A(ȳ) ⊆ Na(ȳ) \ {0}.

ence, ȳ is a solution to GV I(Na \ {0}, K(x̄)) and, thanks to [19, Proposition 3.2], the thesis follows. □

To the best of our knowledge, all the existence results of projected solutions for quasioptimization
problems work in a finite dimensional setting [3–5].

5. Conclusions

In this paper, we make use of suitable approximating techniques and continuous selection theorems to
get the existence of projected solutions for GQV I(Φ, K) with non-self map. In particular, the proposed
existence results work under different assumptions in suitable infinite dimensional spaces. In doing this,
our main motivation is to use assumptions that allow us to capture the study of as broader as possible
range of applications arising from game theory, economics, finance, etc. With this spirit, we analyze a
quasioptimization problem under minimal assumptions: the considered problem is central in the study of
several real-world phenomena.

On this basis, our future developments go in two directions: from a theoretical viewpoint, we aim to
weaken the relative compactness of K(C); at the same time, to support our investigation, we propose to
rovide further applications that take advantage of the refinements studied in this paper.
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