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IMPLICIT HIGHLY DISCONTINUOUS BOUNDARY VALUE
PROBLEMS INVOLVING THE P-LAPLACIAN

PAOLO CUBIOTTI ∗

ABSTRACT. Let n∈N, with n≥ 2, and let p∈]n,+∞[. Let Ω⊆Rn be a bounded connected
open set, with smooth boundary ∂Ω, and let Y ⊆ R be a closed interval. We study the
existence of solutions u ∈ W 1,p

0 (Ω) of the implicit equation ψ(−∆pu) = f (x,u), where
f : Ω×R → R and ψ : Y → R are two given functions. We establish some existence results
where f is allowed to be highly discontinuous in both variables. In particular, a function
f (x,z) satisfying the assumptions of our results can be discontinuous, with respect to the
second variable, even at all points z ∈ R. As regard ψ , we only require that it is continuous
and locally nonconstant.

1. Introduction

Let n ≥ 2, and let Ω ⊆ Rn be a nonempty bounded and connected open set, with smooth
boundary ∂Ω. Let p ∈ ]1,+∞[ , and let Y ⊆ R be a closed interval. In this paper we are
concerned with the boundary value problem{︄

ψ(−∆pu) = f (x,u) in Ω,
u|∂Ω = 0,

(1)

where ψ : Y → R and f : Ω×R → R are given functions and ∆p is the p-Laplace operator.
More precisely, we deal with the existence of functions u ∈W 1,p

0 (Ω) such that ∆pu ∈ Lr(Ω)
(for suitable r ∈ [1,+∞]) and

−∆pu(x) ∈ Y and ψ(−∆pu(x)) = f (x,u(x)) for a.e. x ∈ Ω.

Up to our knowledge, there is not much literature on this implicit problem (see Cabada and
Heikkilä 2002; Heikkilä and Seikkala 2005; Shah et al. 2018; Ahmad, Zada, and Alzabut
2019, and the references therein). A typical assumption on f , even in the particular explicit
case where ψ(t) = t, is that f is a Carathéodory function (see, for instance, Chabrowski
1997; Peral 1997; Dinca, Jebelean, and Mawhin 2001; Carl, Le, and Motreanu 2007;
Bonanno and Molica Bisci 2010, and the references therein). When one goes out from this
assumption, assuming that f can admit some points of discontinuity in the second variable,
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A2-2 P. CUBIOTTI

the study of the problem (1) becomes more difficult. Very recently, Marino and Paratore
(2021) have obtained some existence results by considering separately the case where f is a
Carathéodory function and the case where f may admit, with respect to the second variable,
points of discontinuity. It is interesting to observe that, in this latter case, it is required that
the set of the discontinuity points of f (as a function of two variables) is a zero-measure set
in Ω×R, with a suitable geometry. In particular, when f does not depend on x ∈ Ω, it is
required that the set of the points of discontinuity of f has null measure in R.

Our aim in this paper is to prove an existence result for the above problem (Theorem
3.1 below), where f can be highly discontinuous in both variables, admitting a set of
discontinuity points significantly larger than in the results obtained by Marino and Paratore
(2021). In particular, a function f satisfying the assumptions of Theorem 3.1 below can be
discontinuous, with respect to the second variable, even at each point z ∈ R. As regards the
function ψ , we only require that it is continuous and locally nonconstant.

As a matter of fact, the kind of discontinuity allowed for f is the main peculiarity of
our results. Therefore, we now briefly illustrate in detail the difference between the results
of Marino and Paratore (2021) and our results. Firstly, let π0 and π1 be the projections of
Ω×R over Ω and R, respectively. That is, for each (x,z) ∈ Ω×R, we put π0(x,z) = x and
π1(x,z) = z. Moreover, put

FΩ :=
{︁

A ⊆ Ω×R : mn(π0(A)) = 0 or m1(π1(A)) = 0
}︁
,

where mn and m1 denote the n-dimensional and the 1-dimensional Lebesgue measure in Rn

and R, respectively. The continuity assumption required in the main result of Marino and
Paratore (2021, Theorem 4.1) is as follows:

(i1) f is essentially bounded and the set

D f := {(x,z) ∈ Ω×R : f is discontinuous at (x,z) }

belongs to the family FΩ.

Hence, the set of discontinuity points of f can be quite large (Marino and Paratore 2021),
but in any case it must be a null-measure set in Rn+1, with a suitable geometry. In particular,
when f does not depend explicitly on x ∈ Ω (that is, f : R → R), assumption (i1) implies
that the set

D∗
f := {z ∈ R : f is discontinuous at z }

has null Lebesgue measure.
In our main result and in its consequences, conversely, the regularity assumption on f is

the following:

(i2) there exists a set E ⊆ R, with m1(E) = 0, such that for all z ∈ R\E, the function
f ( · ,z) is measurable, and for a.e. x ∈ Ω the function f (x, ·)|R\E is continuous.

It is immediate to check that if a function f : Ω×R → R satisfies condition (i1), then it
satisfies condition (i2), while the converse is not true in general. Moreover, a function f
satisfying (i2) can be discontinuous, with respect to the second variable, even at each point
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z ∈ R. To see this, it is enough to consider the function f : Ω×R → R defined by

f (x,z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if x ∈C and z ∈ Q,
2 if x ∈C and z ∈ R\Q,
3 if x ∈ Ω\C and z ∈ Q,
4 if x ∈ Ω\C and z ∈ R\Q,

(2)

where C ⊆ Ω is any nonempty measurable set, with C ̸= Ω, and Q denotes the set of rational
real numbers. It is immediate to check that such a function f satisfies condition (i2), by
taking E = Q. Moreover, for each x ∈ Ω, the function f (x, ·) is discontinuous at all points
z ∈ R. Finally, we observe that such a function f does not satisfy condition (i1), since in
this case we have D f = Ω×R.

Similarly, in the particular case where f does not depend on x ∈ Ω, a function f : R → R
satisfying condition (i2) can be discontinuous even at all points z ∈ R. To see this, it suffices
to take

f (z) =

{︄
1 if z ∈ Q,
2 if z ∈ R\Q.

(3)

As before, condition (i2) is satisfied by taking E = Q, and, of course, f is discontinuous at
all points z ∈ R. Hence, condition (i1) is not satisfied since in this case we have D∗

f = R.
Even if our results allow a higher discontinuity for f , we point out that our results and the
ones obtained by Marino and Paratore (2021) are formally independent. For a more detailed
comparison between these results, we refer the reader to Remark 3.12 below.

In the proof of our results, the framework is that of set-valued analysis, and the main tools
are a recent selection theorem (Theorem 2.1 below) and a result on differential inclusions
by Marano (2012, Theorem 2.2). Our main result will be stated and proved in Section 3,
together with some consequences and corollaries, while in Section 2 we shall fix some
notations and give some preliminaries.

2. Preliminaries

In what follows, n ≥ 2 is a natural number, and Ω ⊆ Rn is a nonempty bounded and
connected open set, with smooth boundary ∂Ω. Moreover, p ∈ ]n,+∞[ is a fixed real
number, and p′ = p/(p− 1) is the conjugate exponent of p. For every q ∈ [1,+∞], we
denote by ∥ · ∥Lq(Ω) the usual norm of the space Lq(Ω). As usual, we denote by W 1,p(Ω)

the space of all functions u ∈ Lp(Ω) whose weak derivatives ∂u
∂xi

, with i = 1, . . . ,n, belong
to Lp(Ω) (see Adams and Fournier 2003). The space W 1,p(Ω) is endowed with the norm

∥u∥W 1,p(Ω) = ∥u∥Lp(Ω)+
n

∑
i=1

∥ ∂u
∂xi

∥Lp(Ω).

We also denote by W 1,p
0 (Ω) the closure of C∞

0 (Ω) in W 1,p(Ω). The space W 1,p
0 (Ω) will be

considered with the norm

∥u∥∗ := ∥|∇u|∥Lp(Ω) =
(︂∫︂

Ω

|∇u(x)|p dx
)︂1/p

,
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which, by the Poincaré inequality, is equivalent (on W 1,p
0 (Ω)) to the norm ∥ · ∥W 1,p(Ω)

(Brezis 2011, see Corollary 9.19). We shall denote be W−1,p′(Ω) the topological dual of the
space (W 1,p

0 (Ω),∥ · ∥∗), with corresponding norm ∥ · ∥W−1,p′ (Ω)
. As known, the p-Laplacian

is the operator

∆pu := div(|∇u|p−2
∇u).

A weak formulation of this operator consists in regarding ∆p as an operator acting from
W 1,p

0 (Ω) into its dual space W−1,p′(Ω), by

⟨∆pu,w⟩ := −
∫︂

Ω

|∇u|p−2
∇u ·∇wdx for all u,w ∈W 1,p

0 (Ω) (4)

(see, for instance, Dinca, Jebelean, and Mawhin 2001). In what follows, we assume (4) as the
definition of p-Laplacian. Of course, if for some u∈W 1,p

0 (Ω) the operator ∆pu∈W−1,p′(Ω)
admits a representation of the type

⟨∆pu,w⟩=
∫︂

Ω

gwdx for all w ∈W 1,p
0 (Ω),

then, as usual, we can identify ∆pu with g.
Now, we observe that, by the Rellich-Kondrachov theorem (see Adams and Fournier

2003, Theorem 6.3), or even Theorem 9.16 and Remark 20 at p. 290 of Brezis (2011), the
space W 1,p

0 (Ω) is compactly imbedded in Lp(Ω). Hence, by Theorem 6.4 of Brezis (2011),
it follows that Lp′(Ω) is compactly imbedded in W−1,p′(Ω). Consequently, there exists a
constant λ > 0 such that

∥v∥W−1,p′ (Ω)
:= sup

u∈W 1,p
0 (Ω),∥u∥∗≤1

⃓⃓⃓∫︂
Ω

v(x)u(x)dx
⃓⃓⃓
≤ λ ∥v∥Lp′ (Ω)

for all v ∈ Lp′(Ω). (5)

Moreover, since p > n, we have that W 1,p
0 (Ω) is continuously imbedded in L∞(Ω) (again,

see Adams and Fournier 2003; Brezis 2011); hence, there exists σ > 0 such that

∥u∥L∞(Ω) ≤ σ ∥u∥∗ for all v ∈W 1,p
0 (Ω). (6)

Explicit estimates of the constants λ and σ have been obtained by Marano (2012) and
Talenti (1987) (see Remark 3.4 below for more details). In the case where Ω is convex, the
constant σ has been estimated in Theorem 1 of Burenkov and Gusakov (1987).

In the following, “measurable function” and “measurable set” will mean “Lebesgue
measurable function” and “Lebesgue measurable set”, respectively. Moreover, if k ∈ N, we
shall denote by mk the k-dimensional Lebesgue measure in Rk. If A ⊆ Rk is a Lebesgue
measurable set, we shall denote by L (A) the family of all Lebesgue measurable subsets of
A. Finally, for any set A ⊆ Rk, we shall denote by conv(A) the closed convex hull of the set
A.

For what concerns the basic definitions and facts on multifunctions, we refer to Denkowski,
Migórski, and Papageorgiou (2003) and to Klein and Thompson (1984). As regards mea-
surable multifunctions, we also refer the reader to Himmelberg (1975). Here, we only
recall that if X is a topological space and (T,G ) is a measurable space, then we say that a
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multifunction F : T → 2X is G -measurable (resp., G -weakly measurable) in T if for any
closed (resp., open) set V ⊆ X one has

F−(V ) := {x ∈ T : F(x)∩V ̸= /0} ∈ G

(see Himmelberg 1975). If X is a metric space, then G -measurability implies G -weak
measurability. If F has closed values and X is a σ -compact and separable metric space,
then the two notions of measurability are equivalent (see Himmelberg 1975, Theorem 3.5).
If X is a topological space, we denote by B(X) the Borel family of X . For what concerns
the definition and the properties of Souslin sets, we refer to Chapter 6 of Bogachev (2007).
For the reader’s convenience, we now briefly recall some results that will be fundamental in
the sequel. We begin with the following selection result, where Tµ denotes the completion
of B(T ) with respect to the measure µ .

Theorem 2.1. (Cubiotti and Yao 2015, Theorem 2.1). Let T and X1,X2, . . .Xk be complete
separable metric spaces, with k ∈ N, and let X := ∏

k
j=1 X j (endowed with the product topol-

ogy). Let µ,ψ1, . . . ,ψk be positive regular Borel measures over T,X1,X2, . . .Xk, respectively,
with µ finite and ψ1, . . . ,ψk σ -finite.

Let S be a separable metric space, W ⊆ X a Souslin set, and let F : T ×W → 2S be a
multifunction with nonempty complete values. Let E ⊆W be a given set. Finally, for all
i ∈ {1, . . . ,k}, let P∗,i : X → Xi be the projection over Xi. Assume that:

(i) the multifunction F is Tµ ⊗B(W )-weakly measurable;
(ii) for a.e. t ∈ T , one has{︁

x = (x1, . . . ,xk) ∈W : F(t, ·) is not lower semicontinuous at x
}︁
⊆ E.

Then, there exist sets Q1, . . . ,Qk, with Qi ∈ B(Xi) and ψi(Qi) = 0 for all i = 1, . . . ,k, and a
function φ : T ×W → S such that:

(a) φ(t,x) ∈ F(t,x) for all (t,x) ∈ T ×W;

(b) for all x := (x1,x2, . . . ,xk) ∈ W \
[︂(︁⋃︁k

i=1 P−1
∗,i (Qi)

)︁
∪E

]︂
, the function φ( · ,x) is

Tµ -measurable over T ;
(c) for a.e. t ∈ T , one has{︁

x = (x1,x2, . . . ,xk) ∈W : φ( t, ·) is discontinuous at x
}︁
⊆

⊆ E ∪
[︂
W ∩

(︂ k⋃︂
i=1

P−1
∗,i (Qi)

)︂]︂
.

The following result will be also a key tool in the sequel.

Theorem 2.2. (Marano 2012, Theorem 2.2). Let U be a nonempty set, and let Φ : U →
W 1,p

0 (Ω) and Ψ : U → Lp′(Ω) be two operators. Let F : Ω×R → 2R be a multifunction,
with nonempty closed convex values, and let ϕ : [0,+∞[→ [0,+∞] be a non-decreasing
function. Assume that:

(i) Ψ is bijective and for any sequence {vh}, weakly convergent to v in Lp′(Ω), there is
a subsequence of {Φ(Ψ−1(vh))} which converges to Φ(Ψ−1(v)) almost everywhere
in Ω;
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(ii) one has

∥Φ(u)∥L∞(Ω) ≤ ϕ(∥Ψ(u)∥Lp′ (Ω)
) for all u ∈U ;

(iii) for all z ∈ R, the multifunction F( ·,z) is L (Ω)-measurable;
(iv) for a.e. x ∈ Ω, the multifunction F(x, ·) has closed graph;
(v) there exists r > 0 such that the function γ(x) := sup|z|≤ϕ(r) inf{|y| : y ∈ F(x,z)},

with x ∈ Ω, belongs to Lp′(Ω) and ∥γ∥Lp′ (Ω)
≤ r.

Then, there exists u ∈U such that Ψ(u)(x)∈ F(x,Φ(u)(x)) and |Ψ(u)(x)| ≤ γ(x) for almost
every x ∈ Ω.

The next proposition follows by exactly the same proof of Proposition 2.6 of Cubiotti
and Yao (2015).

Proposition 2.3. Let h,k ∈ N be two natural numbers, A ⊆ Rn a measurable set, ϕ :
A×Rh → Rk a given function, S ⊆ Rh a Lebesgue measurable set, with mh(S) = 0, and let
D0 be a countable dense subset of Rh, with D0 ∩S = /0. Assume that:

(i) for all x ∈ A, the function ϕ(x, ·) is bounded;
(ii) for all z ∈ D0, the function ϕ( · ,z) is measurable.

Let Φ : A×Rh → 2Rk
be the multifunction defined by setting, for each (x,z) ∈ A×Rh,

Φ(x,z) :=
⋂︂

m∈N
conv

(︂ ⋃︂
v∈D0

|v−z|≤ 1
m

{ϕ(x,y)}
)︂
.

Then, one has:
(a) Φ has nonempty closed convex values;
(b) for all z ∈ Rh, the multifunction Φ( · ,z) is L (A)-measurable;
(c) for all x ∈ A, the multifunction Φ(x, ·) has closed graph;
(d) if x ∈ A, and ϕ(x, ·)|Rh\S is continuous at z ∈ Rh \S, then one has

Φ(x,z) = {ϕ(x,z)}.

3. Existence results

The following is our main result.

Theorem 3.1. Let Y ⊆ R be a closed interval, with 0 ̸∈ Y , and let ψ : Y → R and f :
Ω×R → R be two given functions. Moreover, assume that there exist ξ ∈ L2(Ω) and a
measurable set E ⊆ R, with m1(E) = 0, such that:

(i) the function ψ is continuous in Y , and int(ψ−1(r)) = /0 for every r ∈ int(ψ(Y ));
(ii) for a.e. x ∈ Ω, the function f (x, ·)|R\E is continuous;

(iii) for all z ∈ R\E, the function f ( · ,z) is measurable;
(iv) for a.e. x ∈ Ω, one has f (x,R\E)⊆ ψ(Y );
(v) for a.e. x ∈ Ω and for all z ∈ R\E, one has

sup {|y| : y ∈ Y and ψ(y) = f (x,z) } ≤ ξ (x).

Then, there exists u ∈W 1,p
0 (Ω) such that −∆pu ∈ L2(Ω), and one also has:
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(a) −∆pu(x) ∈ Y and ψ(−∆pu(x)) = f (x,u(x)) for a.e. x ∈ Ω;
(b) u(x) ∈ R\E for a.e. x ∈ Ω;
(c) |∆pu(x)| ≤ ξ (x) for a.e. x ∈ Ω.

Proof. Without loss of generality, we can assume that assumptions (ii), (iv) and (v) are
satisfied for all x ∈ Ω. Since m1(E) = 0, there exist a set U0 ∈ B(R) such that E ⊆U0 and
m1(U0) = 0. By assumption (i) and Theorem 2.4 of Ricceri (1982), there exists a set Y0 ⊆Y
such that ψ(Y0) = ψ(Y ) and the function ψ|Y0 : Y0 → ψ(Y ) is open (it maps open subsets
of Y0 onto open subsets of ψ(Y ) = ψ(Y0)).

Let G : ψ(Y )→ 2Y0 be the multifunction defined by putting, for each t ∈ ψ(Y ),

G(t) := ψ
−1(t)∩Y0.

It is a routine matter to check that the openness of the function ψ|Y0 : Y0 → ψ(Y ) implies that
G is lower semicontinuous in ψ(Y ), with nonempty values. Now, let Λ : Ω× (R\U0)→ 2Y0

be the multifunction defined by setting, for each (x,z) ∈ Ω× (R\U0),

Λ(x,z) := G( f (x,z)).

By assumption (iv), we get that the multifunction Λ is well-defined, with nonempty values.
By the lower semicontinuity of G, by assumption (ii) and by Theorem 7.3.11 of Klein
and Thompson (1984), we have that for each x ∈ Ω the multifunction Λ(x, ·) is lower
semicontinuous in R \U0. Let Λ : Ω× (R \U0) → 2Y be defined by putting, for each
(x,z) ∈ Ω× (R\U0),

Λ(x,z) := Λ(x,z) = (G( f (x,z))) = (ψ−1( f (x,z))∩Y0)

(here and in the sequel, the closures of subsets of R are taken with respect to the space
R). By Proposition 7.3.3 of Klein and Thompson (1984), we have that for every x ∈ Ω the
multifunction Λ(x, ·) is lower semicontinuous in R\U0, with nonempty and closed (in R)
values.

Now, observe that by the Lemma at p.198 of Kucia (1991), taking into account assump-
tions (ii) and (iii), the function f |Ω×(R\U0) is L (Ω)⊗B(R\U0)-measurable. Therefore,
by the lower semicontinuity of G and by Proposition 2.6 of Himmelberg (1975), the multi-
functions Λ and Λ are L (Ω)⊗B(R\U0)-weakly measurable. Moreover, by assumption
(v) we have that

Λ(x,z)⊆ [−ξ (x),ξ (x)]∩Y for all (x,z) ∈ Ω× (R\U0). (7)

Let V : Ω× (R\U0)→ 2Y be defined by setting, for each (x,z) ∈ Ω× (R\U0),

V (x,z) =

{︄
Λ(x,z) if x ∈ Ω and z ∈ (R\U0),
Y if x ∈ ∂Ω and z ∈ (R\U0).

Of course, by the above construction, the multifunction V is L (Ω)⊗B(R\U0)-weakly
measurable. We now observe that by Corollary 6.6.7 of Bogachev (2007) the set R \U0
is a Souslin set. Consequently, by Theorem 2.1, there exist two sets Ω0 ∈ L (Ω) and
U1 ∈ B(R), with mn(Ω0) = 0 and m1(U1) = 0, and a function g0 : Ω× (R\U0)→ Y such
that:

(a1) g0(x,z) ∈V (x,z) for all (x,z) ∈ Ω× (R\U0);
(a2) for every z ∈ R\ (U0 ∪U1), the function g0( · ,z) is measurable on Ω;
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A2-8 P. CUBIOTTI

(a3) for every x ∈ Ω\Ω0, one has

{z ∈ (R\U0) : g0(x, ·) is discontinuous at z} ⊆U1 \U0.

Let Ω1 := Ω0 ∩Ω and g1 := g0|Ω×(R\U0). Of course, we have that g1 : Ω× (R\U0)→Y
satisfies the following conditions, that we explictly state for a clearer further exposition:

(b1) g1(x,z) ∈ Λ(x,z) for all (x,z) ∈ Ω× (R\U0);
(b2) for every z ∈ R\ (U0 ∪U1), the function g1( · ,z) is measurable in Ω;
(b3) for every x ∈ Ω\Ω1, one has 5

{z ∈ R\U0 : g1(x, ·) is discontinuous at z} ⊆U1 \U0.

By (7) we immediately get

|g1(x,z)| ≤ ξ (x) for all (x,z) ∈ Ω× (R\U0). (8)

Let g∗ : Ω×R → R by putting

g∗(x,z) =

{︄
g1(x,z) if x ∈ Ω and z ∈ (R\U0)

0 if x ∈ Ω and z ∈U0.

By (8) we get
|g∗(x,z)| ≤ ξ (x) for all (x,z) ∈ Ω×R. (9)

Since m1(U0 ∪U1) = 0, there exists a countable set D1 ⊆ R \ (U0 ∪U1) such that D1 is
dense in R. Now, let F : Ω×R → 2R be the multifunction defined by setting, for each
(x,z) ∈ Ω×R,

F(x,z) :=
⋂︂

m∈N
conv

(︂ ⋃︂
v∈D1

|v−z|≤ 1
m

{g∗(x,v)}
)︂
=

⋂︂
m∈N

conv
(︂ ⋃︂

v∈D1
|v−z|≤ 1

m

{g1(x,v)}
)︂
.

Again by (8), we get

F(x,z)⊆ Y ∩ [−ξ (x),ξ (x)] for every (x,z) ∈ Ω×R. (10)

By (b2), for every z ∈ D1 the function g∗( · ,z) is measurable in Ω. Moreover, by (9), for
every x ∈ Ω the function g∗(x, ·) is bounded. Applying Proposition 2.3, with S =U0 ∪U1,
we get:

(c1) F has nonempty closed convex values;
(c2) for all z ∈ R, the multifunction F( · ,z) is L (Ω)-measurable;
(c3) for all x ∈ Ω, the multifunction F(x, ·) has closed graph;
(c4) if x ∈ Ω, and the function g∗(x, ·)|R\(U0∪U1) = g1(x, ·)|R\(U0∪U1) is continuous at

z ∈ R\ (U0 ∪U1), then one has F(x,z) = {g∗(x,z)}= {g1(x,z)}.
In particular, by properties (c4) and (b3), we get

F(x,z) = {g∗(x,z)}= {g1(x,z)} for all (x,z) ∈
(︁
Ω\Ω1

)︁
×
[︁
R\ (U0 ∪U1)]. (11)

By (10), we also get

sup
z∈R

(︁
inf{|y| : y ∈ F(x,z)}

)︁
≤ ξ (x) for all x ∈ Ω. (12)

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. 102, No. 2, A2 (2024) [17 pages]



IMPLICIT HIGHLY DISCONTINUOUS BOUNDARY VALUE PROBLEMS . . . A2-9

Now we want to apply Theorem 2.2 above to the multifunction F , choosing U :=(−∆p)
−1(Lp′(Ω)),

Φ(u) = u, Ψ(u) =−∆pu, ϕ(t) = σ(λ t)1/(p−1) and r = ∥ξ∥Lp′ (Ω)
, where λ and σ are as in

(5) and (6). To this aim, we observe what follows:
(d1) the operator

Ψ =−∆p|U : U → Lp′(Ω)

is bijective. This follows at once from the fact that the operator −∆p : W 1,p
0 (Ω)→

W−1,p′(Ω) is bijective (see Dinca, Jebelean, and Mawhin 2001, Theorem 8);
(d2) for every sequence {vh} in Lp′(Ω), weakly converging to v in Lp′(Ω), there is a

subsequence {vhk} such that {(−∆p)
−1(vhk)} → (−∆p)

−1(v) a.e. in Ω. Indeed,
assume that {vh} converges weakly to v in Lp′(Ω). Since Lp′(Ω) is compactly
embedded in W−1,p′(Ω), there exists a subsequence {vhl} of {vh} such that {vhl}→
v strongly in W−1,p′(Ω). Since the operator

(−∆p)
−1 : W−1,p′(Ω)→W 1,p

0 (Ω)

is strongly continuous (see Dinca, Jebelean, and Mawhin 2001, Theorem 8), the
sequence {(−∆p)

−1(vhl )}→ (−∆p)
−1(v) strongly in W 1,p

0 (Ω), hence strongly in
Lp(Ω). Consequently, the sequence {(−∆p)

−1(vhl )} has a subsequence which
converges to (−∆p)

−1(v) almost everywhere in Ω, and this proves our claim.

(d3) we have ∥u∥L∞(Ω) ≤ ϕ(∥−∆pu∥Lp′ (Ω)
) for all u ∈U . Indeed, by (5) and (6), taking

into account Remark 2 at p. 349 of Dinca, Jebelean, and Mawhin (2001), for each
u ∈U we have

∥u∥L∞(Ω) ≤ σ∥u∥∗ = σ ∥−∆pu∥1/(p−1)
W−1,p′ (Ω)

≤ σ

(︂
λ ∥−∆pu∥Lp′ (Ω)

)︂1/(p−1)
,

that is our claim;

(d4) the function

γ(x) := sup
|z|≤ϕ(∥ξ∥

Lp′ (Ω)
)

(︁
inf{|y| : y ∈ F(x,z)}

)︁
, with x ∈ Ω

belongs to Lp′(Ω) and ∥γ∥Lp′ (Ω)
≤ ∥ξ∥Lp′ (Ω)

. This follows at once by (12), since
p′ < 2; for what concerns the measurability of γ , we refer to p. 262 of Naselli
Ricceri and Ricceri (1990).

Thus, all the assumptions of Theorem 2.2 are satisfied. Consequently, there exists a function
u ∈ U (that is, u ∈ W 1,p

0 (Ω) and −∆pu ∈ Lp′(Ω)) such that −∆pu(x) ∈ F(x,u(x)) for a.e.
x ∈ Ω. We now prove that the function u satisfies our conclusion. To this aim, let Ω2 ⊆ Ω,
with mn(Ω2) = 0, be such that

−∆pu(x) ∈ F(x,u(x)) for all x ∈ Ω\Ω2. (13)

By (10) we have

−∆pu(x) ∈ Y ∩ [−ξ (x),ξ (x)] for all x ∈ Ω\Ω2, (14)
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hence, in particular, −∆pu ∈ L2(Ω) and |∆pu(x)| ≤ ξ (x) for a.e. x ∈ Ω. Since 0 ̸∈ Y , by
(14) we get that the function −∆pu has constant sign in Ω\Ω2. Let us assume that

−∆pu(x)> 0 for all x ∈ Ω\Ω2 (15)

(if, conversely, −∆pu(x)< 0 for all x ∈ Ω\Ω2, then the argument is analogous). By Lemma
1 of De Giorgi, Buttazzo, and Dal Maso (1983), we have

∇u(x) = 0Rn for a.e. x ∈ u−1(U0 ∪U1).

On the other side, by (15) and by Corollary 1.1 of Lou (2008), the set

{x ∈ Ω : ∇u(x) = 0Rn}
has null Lebesgue measure, hence we easily get that mn(u−1(U0 ∪U1)) = 0. Let

Ω
∗ := Ω1 ∪Ω2 ∪ [u−1(U0 ∪U1) ].

By the above construction, it follows that mn(Ω
∗) = 0. Fix any x ∈ Ω\Ω∗. By (13), we

have that −∆pu(x) ∈ F(x,u(x)). Moreover, u(x) ̸∈U0 ∪U1, hence, in particular, u(x) ̸∈ E.
Since x ̸∈ Ω1, by (11) we have that

F(x,u(x)) = {g1(x,u(x))},
hence

−∆pu(x) = g1(x,u(x)) ∈ Λ(x,u(x))⊆ Y. (16)
By (16), by the continuity of ψ and by the closedness of Y , we get

−∆pu(x) ∈ (ψ−1( f (x,u(x)))∩Y0)⊆ ψ−1( f (x,u(x))) = ψ
−1( f (x,u(x))),

and thus
ψ(−∆pu(x)) = f (x,u(x)).

This completes the proof. □

Now we state explicitly some special cases and some corollaries of Theorem 3.1. Firstly,
we consider the case where f does not depend on x ∈ Ω. In this case, Theorem 3.1
immediately gives the following result.

Corollary 3.2. Let Y ⊆ R be a closed interval, with infY > 0, ψ : Y → R and f : R → R
two given functions, and let E ⊆ R, with m1(E) = 0. Assume that:

(i) ψ is continuous and int(ψ−1(t)) = /0 for all t ∈ int(ψ(Y ));
(ii) f |R\E is continuous;

(iii) one has f (R\E)⊆ ψ(Y ) and supψ−1( f (R\E))<+∞.

Then, there exists u ∈W 1,p
0 (Ω) such that −∆pu ∈ L∞(Ω), and:

(a) −∆pu(x) ∈ Y and ψ(−∆pu(x)) = f (u(x)) for a.e. x ∈ Ω;
(b) u(x) ∈ R\E for a.e. x ∈ Ω.

Proof. It follows at once from Theorem 3.1. □

As an application of Corollary 3.2, we can now prove the following result, where the
constants λ and σ are as in (5) and (6).

Theorem 3.3. Let Let a > 0, ψ : [a,+∞[→ R a continuous function, and let f : R → R be
a given function. Let E ⊆ R, with m1(E) = 0. Assume that:
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(i) the function f |R\E is continuous;
(ii) int(ψ−1(t)) = /0 for all t ∈ int(ψ([a,+∞[));

(iii) there exists ρ > a such that

f ( ] −σ(λρ)1/(p−1) mn(Ω)1/p,σ(λρ)1/(p−1) mn(Ω)1/p [ \ E )⊆ ψ([a,ρ]).

Then, there exists a function u ∈W 1,p
0 (Ω) such that −∆pu ∈ L∞(Ω), and also one has:

(a) −∆pu(x) ∈ [a,ρ] and ψ (−∆pu(x)) = f (u(x)) for a.e. x ∈ Ω;
(b) u(x) ∈ ] −σ(λρ)1/(p−1) mn(Ω)1/p, σ(λρ)1/(p−1) mn(Ω)1/p [ \ E for a.e. x ∈ Ω.

Proof. Choose any˜︁z ∈ ] −σ(λρ)1/(p−1) mn(Ω)1/p, σ(λρ)1/(p−1) mn(Ω)1/p [ \ E .

Let Y := [a,ρ], ψ̂ := ψ|Y , and let f̂ : R → R be defined by

f̂ (z) =

{︄
f (z) if z ∈ [−σ(λρ)1/(p−1) mn(Ω)1/p, σ(λρ)1/(p−1) mn(Ω)1/p ],

f (˜︁z) otherwise.

Put ˜︁E := E ∪
{︁
−σ(λρ)1/(p−1) mn(Ω)1/p, σ(λρ)1/(p−1) mn(Ω)1/p}︁.

Then, we have that m1(˜︁E) = 0, the function f̂ |R\˜︁E is continuous and

f̂ (R\ ˜︁E) = f ( ] −σ(λρ)1/(p−1) mn(Ω)1/p,σ(λρ)1/(p−1) mn(Ω)1/p [ \ E )⊆ ψ̂([a,ρ]).

Moreover, int(ψ̂−1(t)) = /0 for all t ∈ int(ψ̂(Y )). Finally, we have sup ψ̂−1( f̂ (R\ ˜︁E))≤ ρ.

By Corollary 3.2, there exists a function u ∈W 1,p
0 (Ω) such that −∆pu ∈ L∞(Ω) and one has

−∆pu(x) ∈ [a,ρ], ψ̂(−∆pu(x)) = f̂ (u(x)) and u(x) ∈ R\ ˜︁E (17)

for a.e. x ∈ Ω. By (5) and (6), taking into account Remark 2 at p. 349 of Dinca, Jebelean,
and Mawhin (2001), we have that

∥u∥L∞(Ω) ≤ σ∥u∥∗ = σ ∥−∆pu∥1/(p−1)
W−1,p′ (Ω)

≤ σ

(︂
λ ∥−∆pu∥Lp′ (Ω)

)︂1/(p−1)
.

Since by (17) we have
∥∆pu∥Lp′ (Ω)

≤ ρ mn(Ω)1/p′ ,

we get

∥u∥L∞(Ω) ≤ σ

(︂
λ ρ mn(Ω)(p−1)/p

)︂1/(p−1)
= σ(λ ρ)1/(p−1) mn(Ω)1/p.

Taking into account (17), this implies that

u(x) ∈ ] −σ(λρ)1/(p−1) mn(Ω)1/p, σ(λρ)1/(p−1) mn(Ω)1/p [ \ E

for a.e. x ∈ Ω. Thus, for a.e. x ∈ Ω we get

ψ(−∆pu(x)) = ψ̂(−∆pu(x)) = f̂ (u(x)) = f (u(x)),

and this completes the proof. □
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Remark 3.4. In order to apply concretely Theorem 3.3, one needs to have explicit estimates
of the constants λ and σ . To this aim, we observe that by Formula (6b) of Talenti (1987)
we have

σ ≤ n−1/p
√

π

(︂ p−1
p−n

)︂1−1/p(︂
Γ

(︂
1+

n
2

)︂)︂1/n
mn(Ω)1/n−1/p,

where Γ is the Gamma function. Moreover, we have (see Marano 2012, Remark 3.4):

λ ≤ n−1/p
√

π

(︂ p−1
p−n

)︂1−1/p(︂
mn(Ω) ·Γ

(︂
1+

n
2

)︂)︂1/n
.

We now consider the explicit case where ψ(t) = t. In this case, Theorem 3.1 immediately
gives the following result.

Theorem 3.5. Let f : Ω×R → R be a given function. Let α > 0, E ⊆ R, with m1(E) = 0,
and ξ ∈ L2(Ω) be such that:

(i) for a.e. x ∈ Ω, the function f (x, ·)|R\E is continuous;
(ii) for all z ∈ R\E, the function f ( · ,z) is measurable;

(iii) for a.e. x ∈ Ω, one has inf f (x,R\E)≥ α and sup f (x,R\E)≤ ξ (x).

Then, there exists a function u ∈W 1,p
0 (Ω) such that −∆pu ∈ L2(Ω), and one also has:

(a) −∆pu(x) ∈ [α,ξ (x)] and u(x) ∈ R\E for a.e. x ∈ Ω;
(b) −∆pu(x) = f (x,u(x)) for a.e. x ∈ Ω.

Proof. Choose Y := [α,+∞[ and ψ(y) = y. Then, the conclusion follows by at once by
Theorem 3.1. □

By Theorem 3.5 we immediately get the following result, which concerns the problem
−∆u = g(x,u)+h(x).

Corollary 3.6. Let g : Ω×R → R be a given function. Let h,η ∈ L2(Ω), α > 0 and E ⊆ R,
with m1(E) = 0, be such that:

(i) for a.e. x ∈ Ω, the function g(x, ·)|R\E is continuous;
(ii) for all z ∈ R\E, the function g( · ,z) is measurable;

(iii) for a.e. x ∈ Ω, one has

α −h(x)≤ infg(x,R\E), supg(x,R\E)≤ η(x).

Then, there exists a function u ∈W 1,p
0 (Ω) such that −∆pu ∈ L2(Ω), and one also has

u(x) ∈ R \E , −∆pu(x) ∈ [α,η(x)+ h(x)], and −∆pu(x) = g(x,u(x))+ h(x) for almost
every x ∈ Ω.

Proof. It follows at once by Theorem 3.5, by choosing f (x,z) = g(x,z)+ h(x) and
ξ = η +h. □

Finally, when the function g does not depend on x ∈ Ω, by Corollary 3.6 we get the
following existence result for the problem −∆u = ϕ(u)+h(x), where the function ϕ : R →
R can be discontinuous even at all points z ∈ R.
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Corollary 3.7. Let ϕ : R → R be a given function. Let h ∈ L2(Ω), α > 0 and E ⊆ R, with
m1(E) = 0, be such that:

(i) the function ϕ|R\E is continuous and bounded;
(ii) for a.e. x ∈ Ω, one has

h(x)≥ α − infϕ(R\E).

Then, there exists a function u ∈W 1,p
0 (Ω), with −∆pu ∈ L2(Ω), such that u(x) ∈ R\E

and −∆pu(x) = ϕ(u(x))+h(x) for a.e. x ∈ Ω.

We now give some remarks about possible improvements and applications of our results.

Remark 3.8. Let us consider the function f : R → R defined by

f (z) =

{︄
0 if z ̸= 0,
1 if z = 0.

The Example 4.3 of Marino and Paratore (2021) shows that in this case, for any p > n,
the equation −∆pu = f (u) has no solutions in W 1,p

0 (Ω). It is immediate to check that, in
this case, all the assumptions of our Theorem 3.1 (except for the assumption 0 ̸∈ Y ) are
satisfied by taking Y = [0,1], E = {0}, ψ(y) = y, ξ (x) ≡ 0. Consequently, the Example
4.3 of Marino and Paratore (2021) shows that the assumption 0 ̸∈ Y cannot be dropped
from the statement of Theorem 3.1. Moreover, it shows that the assumptions infY > 0
and inf f (x,R\E)≥ α > 0 in Corollary 3.2 and Theorem 3.5, respectively, are essential.
Finally, the same example shows that the assumptions α −h(x)≤ infg(x,R\E) and h(x)≥
α − infϕ(R\E) in Corollary 3.6 and in Corollary 3.7, respectively, cannot be dropped from
the statements.

Remark 3.9. It is quite simple to provide examples of application of our results, where
for every x ∈ Ω the function f (x, ·) is discontinuous at all points z ∈ R. To this aim, it
suffices to take f as defined in (2). In this case, applying Theorem 3.5 with E = Q, α = 2
and ξ (x)≡ 4, it follows that there exists u ∈W 1,p

0 (Ω) such that −∆pu ∈ L∞(Ω) and for a.e.
x ∈ Ω one has −∆pu(x) ∈ [2,4], u(x) ∈ R\Q and −∆pu(x) = f (x,u(x)). In a similar way,
as regards the case where f does not depend on x ∈ Ω, one can take f as defined by (3), and
then apply Theorem 3.5. As we have already observed, such a function f is discontinuous
at all points z ∈ R. We now want to present, stated as corollaries, two more articulated
examples of application of our results. Such examples are simply intended to illustrate
possible uses of our results.

Corollary 3.10. Let h ∈ L∞(Ω), with a := essinfx∈Ω h(x) > 0. Let β > 0, α ≥ 0, b ≥ 1,
γ ∈ [0,1] be four constants, and let f : Ω×R → R be defined by putting

f (x,z) =

⎧⎪⎨⎪⎩
h(x)+α(b+ cosz)β if x ∈ Ω, z < 0 and z ∈ R\Q,
h(x)+α(b+ cosz)β +1 if x ∈ Ω, z > 0 and z ∈ R\Q,
h(x)+α(b+ cosz)β +2 if x ∈ Ω and z ∈ Q.

Finally, let V ⊆ R be a measurable set, with m1(V ) = 0.

Then, there exists a function u ∈W 1,p
0 (Ω) such that −∆pu ∈ L∞(Ω) and also one has:
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(a) −∆pu(x) = f (x,u(x))+ γ sin(−∆pu(x)) for almost every x ∈ Ω;
(b) u(x) ∈ R\ (Q∪V ) for almost every x ∈ Ω.

Proof. Put E := Q∪V . It is immediate to check that for all z ∈ R\E the function f ( · ,z)
is measurable, and for all x ∈ Ω the function f (x, ·)|R\E is continuous. Now, let Ω∗ ⊆ Ω,
with mn(Ω

∗) = 0, be such that a ≤ h(x)≤ ∥h∥L∞(Ω) for all x ∈ Ω\Ω∗. Hence, we get

a ≤ f (x,z)≤ ∥h∥L∞(Ω)+α(b+1)β +1 for all x ∈ Ω\Ω
∗, z ∈ R\Q. (18)

Since limy→0+(y− γ siny) = 0, there exists y0 > 0 such that y0 − γ siny0 < a. Moreover,
since limy→+∞(y− γ siny) = +∞, there exists y1 > y0 such that

y1 − γ siny1 > ∥h∥L∞(Ω)+α(b+1)β +1.

Now, we want to apply Theorem 3.1, by choosing Y = [y0,y1], ξ (x) ≡ y1 and ψ(y) =
y−γ siny, and with E and f defined as above. To this aim, we firstly observe that assumption
(i) is satisfied since ψ ′ never vanishes identically on a interval. Moreover, we have already
observed that f satisfies assumptions (ii) and (iii). Assumption (iv) is satisfied since, by
(18) and by the above construction, we have that

f (x,R\E)⊆ [a,∥h∥L∞(Ω)+α(b+1)β +1]⊆ [ψ(y0),ψ(y1)]⊆ψ(Y ) for all x∈Ω\Ω
∗.

Finally, assumptions (v) is obviously satisfied. Hence, by Theorem 3.1 there exists a function
u ∈ W 1,p

0 (Ω) such that −∆pu ∈ L∞(Ω), and for almost every x ∈ Ω one has u(x) ∈ R \E
and −∆pu(x)− γ sin(−∆pu(x)) = f (x,u(x)), that is our conclusion. □

Corollary 3.11. Let h ∈ L∞(Ω), with a := essinfx∈Ω h(x)> 0. Let β > 0, α ≥ 0, b ≥ 1 and
γ ∈ [0,a[ be four constants, and let f : Ω×R → R be defined by

f (x,z) =

⎧⎪⎨⎪⎩
h(x)+α(b+ cosz)β if x ∈ Ω, z < 0 and z ∈ R\Q,
h(x)+α(b+ cosz)β +1 if x ∈ Ω, z > 0 and z ∈ R\Q,

h(x)+α(b+ cosz)β +2 if x ∈ Ω and z ∈ Q.

Finally, let V ⊆ R be a measurable set, with m1(V ) = 0. Then, there exists a function
u ∈W 1,p

0 (Ω) such that −∆pu ∈ L∞(Ω), and one also has:

(a) −∆pu(x) = f (x,u(x))− γ e−∆pu(x) for almost every x ∈ Ω;
(b) u(x) ∈ R\ (Q∪V ) for almost every x ∈ Ω.

Proof. We essentially argue as in Corollary 3.10. Let us put E := Q∪V . As above, it
is immediate to check that for all z ∈ R\E the function f ( · ,z) is measurable, and for all
x ∈ Ω the function f (x, ·)|R\E is continuous. Let Ω∗ ⊆ Ω, with mn(Ω

∗) = 0, be such that
a ≤ h(x)≤ ∥h∥L∞(Ω) for all x ∈ Ω\Ω∗. Hence, we have

a ≤ f (x,z)≤ ∥h∥L∞(Ω)+α(b+1)β +1 for all x ∈ Ω\Ω
∗, z ∈ R\Q. (19)

Since limy→0+(y+ γey) = γ < a, there exists y0 > 0 in such a way that y0 + γey0 < a. Since
limy→+∞(y+ γey) = +∞, there exists y1 > y0 in such a way that

y1 + γey1 > ∥h∥L∞(Ω)+α(b+1)β +1.

We now apply Theorem 3.1, with Y = [y0,y1], ξ (x)≡ y1, ψ(y) = y+ γey, and E and f as
defined above. To this aim, we observe that assumption (i) is satisfied since ψ ′(y)≥ 1 for
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all y ∈ R. Moreover, we have already observed that f satisfies assmptions (ii) and (iii). For
what concerns assumption (iv), we observe that by (19) and by the above construction we
get

f (x,R\E)⊆ [a,∥h∥L∞(Ω)+α(b+1)β +1]⊆ [ψ(y0),ψ(y1)] =ψ(Y ) for all x∈Ω\Ω
∗,

hence assumption (iv) is satisfied. Since assumption (v) is obviously satisfied, by Theorem
3.1 we have that there exists a function u ∈ W 1,p

0 (Ω) such that −∆pu ∈ L∞(Ω), and for
almost every x ∈ Ω one has u(x) ∈ R\E and −∆pu(x)+ γe−∆pu(x) = f (x,u(x)), that is our
conclusion. □

Remark 3.12. We now briefly compare our main result (Theorem 3.1) with Theorem 4.1
of Marino and Paratore (2021), which is the main result of Marino and Paratore (2021) for
what concerns the discontinuous framework. For the reader’s convenience, we now state
explicitly this latter result (Ω, n and p are assumed as in Section 2).

Theorem 3.13. (Marino and Paratore 2021, Theorem 4.1) Let (α,β ) ⊆ R be such that
0 ̸∈ (α,β ), let ψ : (α,β )→ R be continuous, and let f : Ω×R → R be given. Assume that:

(i) f is L (Ω×R)-measurable and essentially bounded;
(ii) the set D f := {(x,z) ∈ Ω×R : f is discontinuous at (x,z) } belongs to the family

FΩ;
(iii) f−1(r)\ int( f−1(r)) ∈ FΩ for every r ∈ ψ((α,β ));
(iv) f ((Ω×R)\D f )⊆ ψ((α,β )).

Then, there exists u ∈ W 1,p
0 (Ω) such that ∆pu ∈ Lp′(Ω), and also −∆pu(x) ∈ Y and

ψ(−∆pu(x)) = f (x,u(x)) for a.e. x ∈ Ω.

As we have already observed, Theorem 3.1 and Theorem 3.13 are formally independent.
However, we observe that in Theorem 3.1, as well as in its consequences below, it is
assumed that int(ψ−1(t)) = /0 for all t ∈ int(ψ(Y )). This is not a restrictive condition, and
it is satisfied, for instance, if ψ is nonconstant over the intervals. It is worth noticing that,
if such an assumption is satisfied, then Theorem 3.13 is a consequence of our Theorem
3.1. To see this, assume that all the assumptions of Theorem 3.13 are satisfied, and that
int(ψ−1(t)) = /0 for all t ∈ int(ψ(Y )). It is routine matter to check that assumption (i) of
Theorem 3.13 implies that the restriction f |(Ω×R)\D f

is bounded. Put

γ := inf f ((Ω×R)\D f ), δ := sup f ((Ω×R)\D f ).

By assumption (iv) of Theorem 3.13, there exist t1, t2 ∈ (α,β ) such that ψ(t1) = γ , ψ(t2) =
δ . Let [y1,y2] be any compact interval, with y1 < y2, such that

t1 ∈ [y1,y2], t2 ∈ [y1,y2], and [y1,y2]⊆ (α,β ).

By assumption (ii) of Theorem 3.13, we have that at least one of the two sets π0(D f ) and
π1(D f ) has null Lebesgue measure. Firstly, assume that mn(π0(D f )) = 0. We have that for
every x ∈ Ω\π0(D f ) the function f (x, ·) is continuous in R. Moreover, for each fixed z ∈ R,
the function f ( · ,z)|Ω\π0(D f ) is continuous, hence measurable. Since mn(π0(D f )) = 0, this
implies that the function f ( · ,z) is measurable in Ω. Finally, for every x ∈ Ω\π0(D f ), and
every z ∈ R, we have (x,z) ̸∈ D f , hence by the above construction it follows easily that
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f (x,z) ⊆ ψ([y1,y2]). Consequently, all the assumptions of Theorem 3.1 are satisfied by
taking E = /0, Y = [y1,y2] and ξ (x)≡ max{|y1|, |y2|}.

Conversely, assume that m1(π1(D f )) = 0. Then, arguing as above, it is easy to check
that all the assumptions of Theorem 3.1 are satisfied by taking E = π1(D f ), Y = [y1,y2] and
ξ (x)≡ max{|y1|, |y2|}. Hence, in both cases Theorem 3.1 gives the existence of a function
u ∈W 1,p

0 (Ω) such that ∆pu ∈ L∞(Ω), and also −∆pu(x) ∈Y and ψ(−∆pu(x)) = f (x,u(x))
for a.e. x ∈ Ω, and thus our claim is proved.

At this point, it is natural to ask if the assumption “int(ψ−1(t)) = /0 for all t ∈ int(ψ(Y ))”
in the statement of Theorem 3.1 is essential. Since we did not succeed in finding a counter-
example, we leave this as an open problem.
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