Supporting information

The role of substrate surface geometry in the photo-electrochemical behaviour of supported TiO₂ nanotube arrays: a study by Electrochemical Impedance Spectroscopy (EIS)

Luana De Pasquale¹, Francesco Tavella¹, Victor Longo¹, Marco Favaro², Siglinda Perathoner¹, Gabriele Centi¹, Claudio Ampelli¹ and Chiara Genovese^{1,*},

Correspondence: chiara.genovese@unime.it

¹ Department of Chemical, Biological, Pharmaceutical and Environmental Sciences – University of Messina, ERIC aisbl and CASPE/INSTM, V.le F. Stagno d'Alcontres, 31, 98166 Messina, Italy

² Institute for Solar Fuels, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, Berlin, 14109, Germany

Figure S1. XRD patterns of TiO₂NTs/Ti mesh and Ti foil electrodes.

Figure S2. Elemental analysis by EDX of TiO₂NTs/Ti mesh

Figure S3. SEM images of the not-oxidized Ti mesh at different magnifications.

(b)

Figure S4. SEM images of cross-section (a) and top view (b) of the TiO_2NTs on Ti foil.

Figure S5. UV-visible diffuse reflectance spectra of the TiO₂NTs/Ti mesh and TiO₂NTs/Ti foil electrodes. The spectrum of TiO₂ P25 (Evonik, former Degussa) is shown for comparison.

Figure S6. Current density, in mA cm⁻² vs. time, of the TiO₂NTs/Ti mesh at 1.136 V vs. RHE, in 1 M KOH using open UV-visible lamp spectrum

Figure S7. (a) Chronoamperometric measurements for TiO₂ P25 at 1.136 V vs. RHE, in 1 M KOH using open UV-visible lamp spectrum (no light filter) and with light filter (AM1.5G, UVC, and UVB/C blocking filter); (b) Cyclic voltammetry for the same sample in 1 M KOH. The Ti P25 is deposited on a carbon conductive substrate by spray coating.

Figure S8. Bode plots at different applied potential for TiO₂NTs/Ti foil and TiO₂NTs/Ti mesh in dark conditions (**a**) (**b**) and under light irradiation (**c**) (**d**).

Figure S9. Nyquist plots for TiO₂ P25 measured under light irradiation (a) and in dark conditions (b) at different applied potential. Filled symbols, impedance experimental data; lines, fitting by using the equivalent circuit model (a two-constant circuit model used to fit all the data).

LIGHT IKKADIATION													
	0.9 V vs. RHE		1.1 V vs. RHE		1.3 V vs. RHE		1.5 V vs. RHE						
	TiO ₂ NTs/Ti												
	foil	mesh	foil	mesh	foil	mesh	foil	mesh					
Rs (Ω)	3.87	3.53	3.57	3.52	3.58	3.44	3.57	3.35					
Rct' (Ω)	436.8	91.6	271.7	70.9	251.3	81.0	236.6	94.8					
CPE' (F)	1.74E-04	8.44E-05	5.71E-05	7.42E-05	5.76E-05	6.10E-05	4.36E-05	5.73E-05					
Rct (Ω)	4.48E+04	2.53E+04	1.02E+05	6.22E+04	1.47E+05	6.66E+04	1.94E+05	6.53E+04					
CPE (F)	3.73 E-04	3.04 E-04	3.38E-04	3.43E-04	3.79E-04	2.87E-04	4.15E-04	2.84E-04					

Table S1. Charge transfer resistance parameters from EIS fitting data for TiO₂NTs/Ti foil and TiO₂NTs/Ti mesh under light irradiation at different applied potentials.

Table S2 Charge transfer resistance parameters from EIS fitting data for TiO₂NTs/Ti foil and TiO₂NTs/Ti mesh without illumination at different applied potentials.

DARK												
	0.9 V vs. RHE		1.1 V vs. RHE		1.3 V vs. RHE		1.5 V vs. RHE					
	TiO ₂ NTs/Ti											
	foil	mesh	foil	mesh	foil	mesh	foil	mesh				
Rs(Ω)	3.83	3.47	3.57	3.34	3.47	3.28	3.34	3.23				
Rct'(Ω)	521.0	98.0	376	84.5	98.1	85.3	84.5	84.9				
CPE' (F)	2.57E-05	3.40E-05	2.11E-05	3.28E-05	3.41E-05	2.93E-05	3.27E-05	2.80E-05				
Rct(Ω)	1.46E+05	5.35E+05	2.77E+05	6.27E+05	5.35E+05	3.16E+05	6.27E+05	1.28E+05				
CPE (F)	9.46E-05	6.74E-05	6.79E-05	6.08E-05	6.76E-05	6.43E-05	6.11E-05	6.29E-05				

Figure S10. Scheme of the Photo Electro Catalytic (PEC) cell used for water photo-electrolysis.

The formula for calculation of H₂ production is the following:

$$H_2 \, production \, (\mu mol \cdot h^{-1} cm^{-2}) = \frac{[H_2](\% vol.) \cdot Q \, (L/min)}{V_m \, (L/mol)} \cdot \frac{1}{60 \cdot A(cm^2)} \, 10^6$$

 $[H_2]$ = % of hydrogen detected by the GC

Q = flow rate

 V_m = molar volume of a gas at room temperature and atmospheric pressure

A = active area of the catalyst