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Abstract: The gilthead seabream, one of the most important species in Mediterranean aquaculture,
with an increasing status of exploitation in terms of production volume and aquafarming technologies,
has become an important research topic over the years. The accumulation of knowledge from
several studies conducted during recent decades on their functional and biological characteristics
has significantly improved their aquacultural aspects, namely their reproductive success, survival,
and growth. Despite the remarkable progress in the aquaculture industry, hatchery conditions are
still far from ideal, resulting in frequent abnormalities at the beginning of intensive culture, entailing
significant economic losses. Those deformities are induced during the embryonic and post-embryonic
periods of life, and their development is still poorly understood. In the present review, we created a
comprehensive synthesis that covers the various aspects of skeletal morphogenesis and anomalies in
the gilthead seabream, highlighting the genetic, environmental, and nutritional factors contributing
to bone deformities and emphasized the potential of the gilthead seabream as a model organism
for understanding bone morphogenesis in both aquaculture and translational biological research.
This review article addresses the existing lack in the literature regarding gilthead seabream bone
deformities, as there are currently no comprehensive reviews on this subject.

Keywords: skeletal morphogenesis; gilthead seabream; ossification pattern; bone deformities;
craniofacial anomalies; spinal deformities; genes; models

1. Introduction

The gilthead seabream (Sparus aurata), one of the most important species in Mediter-
ranean aquaculture, with an increasing status of exploitation in terms of production volume
and aquafarming technologies, has become, with other teleost, an important research topic
over the years [1–6]. The accumulation of new knowledge on aquaculture focusing on
obtaining the most sustainable and profitable production and ensuring a high-quality
product has significantly improved the seabream’s reproductive success, survival, and
growth [7–10]. However, hatchery conditions are still far from ideal, resulting in frequent
abnormalities, entailing significant economic losses [11–15]. Indeed, the quality of the fish
depends on morpho-anatomic and organoleptic characteristics that should be as similar as
possible to that of wild fish, which is the quality reference by the consumer [14]. Various
skeletal abnormalities hindering the efficiency of the production cycle have been reported
in many studies [7,11,14,16]. Other than downgrading the product’s image, these skeletal
abnormalities can impact fish movement, physiological functions, and consequently, their
health and survival.
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Skeletal deformities in the gilthead seabream fry typically affect the cephalic region,
namely the snout and the opercula, as well as the vertebral column and fins [12,14,15,17].
Those deformities are induced during the embryonic and post-embryonic stages, and their
development is still poorly understood [14,18].

Numerous factors have been recognized as possible causes for deformities, rang-
ing from nutritional, polluting sources to abiotic parameters, including hydrodynamic
conditions, lighting, and stocking density [14,19,20].

Therefore, our main purpose in the present review was to summarize the existing
research and to gather the current information available on gilthead seabream skeletal
morphogenesis and provide valuable insights into the developmental processes and factors
contributing to bone deformities in this species. Another aim of this review is to evaluate
the potential of the gilthead seabream as a model organism for understanding bone mor-
phogenesis in both aquaculture and translational biological research. This review article
addresses the existing lack in the literature regarding gilthead seabream bone deformities,
as there are currently no comprehensive reviews on this subject.

2. Skeletogenesis

Vertebrate skeletogenesis involves three main cell types: chondrocytes, osteoblasts,
and osteoclasts [21]. The first two cell types secrete the extracellular matrix proteins of the
cartilage and bone, respectively. In contrast, the third type produces matrix metallopro-
teinases, cathepsins, and tartrate-resistant acid phosphatase (TRAP), providing an acidic
environment where the mineralized matrix is broken down [14,22]. In addition, a fourth
type of cell known as osteocytes is involved in maintaining bone matrix, regulating bone
formation and resorption, and acting as mechanical load sensors. Contrary to fish with
cellular bone, teleosts, including the gilthead seabream, have derived skeletons composed
only of acellular bone, a tissue without osteocytes in the mineralized matrix. The lack of
osteocytes in acellular bone implies that bone remodeling is covered by other cell types [23].
Other than different types of cells, 65% of the dry mass of bone is made of hydroxyapatite
salts, and the remaining part is a collagen fiber matrix [24]. Osteogenesis is ensured by a
complex set of regulated molecular pathways involving signaling molecules, transcription
factors, and extracellular matrix (ECM) constituents, among which alkaline phosphatase
(ALP) or non-collagenous proteins, namely the matrix Gla protein (MGP) or osteocalcin
(OC) [23]. Thus, the perturbation of those factors implicated in the control of bone develop-
ment and homeostasis, as well as the incapacity of the self-regulating process to compensate
for the stressful environmental conditions, induce the disruption of skeletogenesis and lead
to the appearance of skeletal deformities [14,23].

Several studies have described skeletogenesis and the histological organization of
skeletal tissues in the gilthead seabream, as well as the different typologies of skeletal
deformities, in order to investigate the effects of different biotic and abiotic factors on the
development of bone and the appearance of skeletal anomalies [14].

The skeleton ontogenesis revealed precedency to the onset of the elements that serve in
feeding and respiration mechanisms (maxillary, Meckel’s cartilage, cartilaginous branchial
arches) [12,25].

Studies on gilthead seabream meristic counts reported 24 vertebrae, 13 hemal arches,
23 neural arches, four pairs of parapophyses in the vertebral column region, five hypurals,
one parahypural arch, three epurals in the caudal fin complex region beside all structures
composing the cephalic skeleton [12,25,26].

2.1. The Ossification Pattern

Many research groups investigated the ossification state in farmed gilthead sea-bream
larvae using acid-free double stains. During teleost embryogenesis, cartilaginous structures
are the first element of the skeleton to form, which becomes bone after mineralization [17,27].
Our previous study demonstrated that this pattern of development was valid for gilthead
seabream larvae [12].
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Figure 1 shows the chronology of ossification in the gilthead seabream between 33
and 53 days post-hatching (DPH) [12]. Until 33 DPH, the double staining revealed only
cartilaginous structures, including epiphysial tectum, sclerotic, lamina precerebralis, rostral
cartilage, premaxillary, maxillary, dentary, branchiostegal rays, cleithrum, and coraco
scapular cartilage in the cranial region (Figure 1a). At 43 DPH, all cartilaginous structures
earned volume, and the ossification began in the head region’s dentary, maxillary, and
opercular complex (Figure 1b). Later, a saltatory ossification process was introduced on the
vertebral column on centra 1–4, 8–10, and 14–19 (Figure 1b). The accomplishment of the
ossification process occurred at 53 DPH when alizarin red staining had preeminence over
the larva (Figure 1c).
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Figure 1. The ossification pattern of gilthead seabream larvae (a) at 33 DPH, (b) at 43 DPH, (c) at
53 DPH. Double-stained larvae showed alician blue-stained cartilaginous structures and alizarin
red-stained bony structures. Fr, frontal; Ttm, taenia tecti medialis; Et, epiphysial tectum; Sc, sclerotic;
Lp, lamina precerebralis; Rc, rostral cartilage; Pm, premaxillary; Mx, maxillary; De, dentary; Br,
branchiostegal rays; Cl, cleithrum; Co-Sca, coraco scapular cartilage; Pp, parapophyse; Ha, hemal
arches; Hy, hypural; Ep, epural; Na, neural arches. Scale bar: 0.5 mm. Schematic representation
adapted from [12].

2.2. The Genetics of Skeletogenesis

Skeletogenesis is a complex process encompassing skeleton patterning, cell differentia-
tion, and cell function, during which the skeleton develops under the precise guidance of
genetic programming, leading to the normal anatomy that provides support and protec-
tion for the internal organs [28]. It has been extensively described in several marine fish
species [12,19,20], but gene expression patterns have been partially characterized in the
gilthead seabream [29].

The expression of specific genes underlying the gilthead seabream’ cell proliferation
and differentiation processes in association with ossification and bone remodeling and
maintaining integrity was the aim of an in vitro study conducted by Tiago et al. using the
VSa13 (pre-chondrocyte) and VSa16 (pre-osteoblast) bone-derived cell lines [30].

Global analysis (GO) of gene expression during in vitro mineralization of VSa13 and
VSa16 identified 4223 and 4147 genes, respectively, differentially expressed. Among these,
3011 and 3049 up-regulated genes and 1212 and 1098 down-regulated genes were identified
from VSa13 and VSa16, respectively. Those genes were classified according to their putative
gene ontology and the up-regulated genes were principally associated with metabolism
transport, matrix/membrane, and signaling, while down-regulated genes were associated
with calcium binding, transport, and signaling [30].

In order to investigate genes involved in ECM mineralization, Tiago et al. exposed
dividing and mineralizing VSa13 cells to vanadate, an ultra-trace element with anti-
mineralogenic effect, and analyzed global gene expression. Thus, the genes oppositely
regulated during in vitro mineralization and upon vanadate exposition would most likely
be important for the differentiation/mineralization process. These genes and their respective
global analysis categories are listed in Table 1 and have been classified according to FCM
(control versus mineralization) and FCMV (mineralization versus mineralization + vanadate)
ratio [30].
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Table 1. VSa13 cells’ genes regulated during mineralization of (FCM) versus mineralization + vana-
date (FCMV).

Identified Genes GO: Biological Processes/Molecular
Function FCM/FCMV Score

Photoreceptor outer segment all-trans retinol
dehydrogenase [IPIAcc:IPI00024598]

metabolic process/oxidoreductase
activity 240.1

AMBP protein precursor [Uniprot Acc:P02760] -/- 131.5

Ependymin related protein-1 precursor
[IPIAcc:IPI00554718] cell-matrix adhesion/calcium ion binding 111.8

Xaa-Pro aminopeptidase 2 precursor [Uniprot
Acc:O43895]

proteolysis, creatine metabolic
process/metalloexopeptidase activity,
hydrolase activity, creatinase activity

110.2

Microtubule-associated proteins 1A/1B light
chain 3C precursor [Uniprot Acc:Q9BXW4] -/- 89.63

Cell death activator CIDE-3 [Uniprot
Acc:Q96AQ7] apoptosis/protein binding 45.71

PREDICTED: hypothetical protein [Danio rerio] pore complex biogenesis/channel activity 35.20

Hypothetical protein LOC447879
[RefSeq_peptideAcc:NP_001004618] integrin-mediated signaling pathway/- 32.64

Granulocyte-macrophage colony-stimulating
factor receptor alpha chain precursor [Uniprot

Acc:P15509]
-/- 29.83

IgGFc-binding protein precursor [Uniprot
Acc:Q9Y6R7] cell adhesion/- 23.12

Hydroxyacid oxidase 2 [Uniprot Acc:Q9NYQ3] metabolic process, electron
transport/oxidoreductase activity 21.38

Phosphatase and actin regulator 4 isoform 1
[RefSeq_peptideAcc:NP_001041648] -/- 18.08

Ependymin-related protein-1 precursor
[IPIAcc:IPI00554718]

cell–matrix adhesion/calcium ion
binding 18.02

Glucose-6-phosphate 1-dehydrogenase [Uniprot
Acc:P11413]

glucose metabolic
process/glucose-6-phosphate

dehydrogenase activity
16.05

Glutamate–cysteine ligase catalytic subunit
[Uniprot Acc:P48506] -/- 16.04

Complement factor I precursor [Uniprot
Acc:P05156]

proteolysis/catalytic activity, serine-type
endopeptidase activity, hydrolase activity,

scavenger receptor activity
15.91

Hypothetical protein LOC406276
[RefSeq_peptideAcc:NP_998168] -/calcium ion binding 12.54

Hypothetical protein LOC336637
[RefSeq_peptideAcc:NP_956317] cell redox homeostasis/- 12.17

Actin filament-associated protein 1-like 2.
[Uniprot Acc:Q8N4X5] -/- 11.79

Transcribed locus, weakly similar to
NP_175293.1 [UniGeneAcc:Tru.931]

metabolic process/methyltransferase
activity 11.69

Ornithine carbamoyltransferase, mitochondrial
precursor [Uniprot Acc:P00480]

-/ornithine carbamoyltransferase activity,
amino acid binding 11.38
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Table 1. Cont.

Identified Genes GO: Biological Processes/Molecular
Function FCM/FCMV Score

CDNA FLJ31025 fis, clone HLUNG2000501.
[Uniprot/SPTREMBLAcc:Q96ND9] -/- 11.25

Stromal cell-derived factor 1 precursor [Uniprot
Acc:P48061] -/- 10.36

ADM precursor [Uniprot Acc:P35318] -/- 10.10

Beta-2-glycoprotein 1 precursor [Uniprot
Acc:P02749] -/- 10.05

Signal peptide, CUB and EGF-like
domain-containing protein 2 precursor [Uniprot

Acc:Q9NQ36]
-/calcium ion binding 78.01

Actin, alpha skeletal muscle 1. [Uniprot
Acc:P68140]

-/structural molecule activity, ATP
binding, protein binding 38.39

Inter-alpha globulIn InhIbItor H3
[IPIAcc:IPI00028413]

hyaluronan metabolic
process/serine-type endopeptidase

inhibitor activity
24.67

Hypothetical protein LOC553753
[RefSeq_peptideAcc:NP_001018560] -/protein binding 21.14

Tenascin precursor [Uniprot Acc:P24821] signal transduction/receptor binding 20.56

Prolargin precursor [Uniprot Acc:P51888] -/- 18.89

Eukaryotic translation initiation factor
4E-1A-binding protein [Uniprot Acc:Q98TT6]

negative regulation of translational
initiation/eukaryotic initiation factor 4E

binding
12.02

WNT1-inducible-signaling pathway protein 1
precursor [Uniprot Acc:O95388]

regulation of cell growth/insulin-like
growth factor binding 10.77

GO classification was subdivided into biological processes (BP) and molecular function (MF).

Comparative analysis of expression data from fish and mammalian cell systems
reported that genes behind mechanisms of in vitro mineralization are conserved throughout
vertebrate evolution and across cell types; thus, the same type of genes and, in some cases,
the same orthologs were found to fulfill the same function [30,31].

3. Bone Deformities

In the last two decades, the gilthead seabream aquaculture industry has experienced
a rapid development with impressive progress in rearing techniques, disease control,
nutrition, and industrial hatcheries knowledge. As a maximal yield in growth success
may come into reach, several problems arise with respect to the overall quality of the
larvae and subsequent juvenile fish. The quality of the fish depends on morpho-anatomic
and organoleptic characteristics that should be as similar as possible to that of wild fish,
which is the quality reference by the consumer [14]. Various morphological abnormalities
induced during the embryonic and post-embryonic periods of life, hindering the efficiency
of the production cycle, have been reported in many studies [7,11,14,16]. These deformities,
affecting as much as 80% of the fingerling production, cause an enormous economic
slump in the industry, affecting the survival rates, growth, biological performance, the
quality of the reared fish, the consumers’ overall perception of fish, and thus the cost-
efficiency of marine fish aquaculture [17,32]. A significantly higher prevalence of anatomical
abnormalities may be observed in gilthead seabream produced in intensive aquaculture
than in wild-caught animals [14].

Despite the improvement in the rearing techniques, hatchery conditions in aquaculture
farms are still far from ideal. Thus, the most frequent abnormalities are recorded at the
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beginning of gilthead seabream intensive culture, during embryonic and larval periods,
long before osteological deformities are externally visible [14,33,34].

Skeletal deformities will fully develop to be visually identified only when fish are
over 0.5 g in size and the affected batches have to be screened. Animals that carry the
deformities must be detected and eliminated immediately since they will compete for food
and space with healthy fish [35].

Skeletal deformities in gilthead seabream fry typically affect the cephalic region (snout
and opercula), showing a deformed upper and lower jaw in a variety of shapes as well as
operculum complex deformities affecting its bone series, leaving part of the gills exposed;
the threshold traits of the vertebral column (vertebrae, neural, and hemal spin) as well as
the meristic characteristics of the fin, especially the caudal fin complex deformities and
saddleback syndrome [12,14,15,17,33,35].

Skeletal deformities and growth rates in the gilthead seabream have been the subject of
many research studies. Some authors have associated the skeletal deformities with a defect
in the inflation of the swim bladder [36]; others have attributed it to a dietary deficiency of
fatty acids [37] and vitamins [38] as well as to the larval rearing systems [39] and rearing
condition [40].

3.1. The Opercular Complex Deformities

The operculum is a hard, plate-like bony flap, made of opercles, subopercles, and
interopercles, which overlie an opercular membrane forming together a gill cover or
bony operculum protecting the orobranchial chamber. Below the opercular series, the
branchiostegals are arranged in series with the sub- and interopercles and are attached
proximally to the ventral face of the hyoid bar. The branchiostegal rays and membranes
play only a passive role in the abduction and adduction of the branchial cavity and seem to
serve primarily as a ventral-sealing valve (Figure 2) [41].
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Figure 2. The teleostean operculum complex organization. Schematic representation adapted
from [41].

Among cephalic malformations, anomalies of the opercular complex are the most
common and evident external abnormality in different fish species, especially in reared
gilthead seabream, affecting up to 80% of the population [11,17,33,42].

This malformation affecting the bone series of the operculum complex and the bran-
chiostegal membrane consists of a reduction in the protecting wall for the orobranchial
chamber on different levels, with references to a reduction or even lack of one of the various
operculum bones (Figure 3a,b). Other types of anomalies are attributed to the inside or
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outside folding of one or more opercular bones (Figure 3c,d) or a combined shortened-
folded operculum (Figure 3g). Moreover, we have detected for the first time new forms
of operculum deformities, including wave-like (Figure 3e) and spring-like (Figure 3f) gill
covers, as well as the lack of apposition of the branchiostegal membrane to the epithelium
at the terminal edge of the branchial cavity generated by different degrees of hyperplasia
(Figure 3h), and folded branchiostegal rays in the gill chamber (Figure 3i) [12].
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gill chamber. Scale bars: 200 µm. Figure is adapted from Mhalhel et al. [12].

Those operculum abnormalities are often associated with different degrees of malfor-
mation of the surrounding cranial region and exposure of the gills [7,33]. They may affect
one or both opercula; however, the prevalence of monolateral ones is higher for bilateral
ones. Until the last decade, the moment of apparition has not been precisely detected
but was generally thought to be during the weaning and/or the pre-growing phase [7,33].
Still, its premonitory symptom and morphoanatomical description remain incomplete. In
our study published in 2020, the first sign of opercular complex disorders was detected
in 13 DPH larvae, a long time before the ossification process took place and earlier than
the timing recorded by Galeotti et al. [12,17]. The wide variability in opercular complex
deformity typologies hampered the founding of specific patterns of deformities, like those
defined by Berlado et al. [43].

Moreover, the frequency of opercular anomalies on 13 to 83 DPH larvae ranged
between 9.7% and 21.3%, as reported by Mhalhel et al. [12], which fits within the incidence
scale extending from 6.3% to 43.2%, registered in prior studies conducted over the past two
decades [12,14,43]. Those variances may be attributed to the different rearing systems and
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conditions [14,39] and to the accumulation of new knowledge in aquaculture [12]. Although
the image and market value of the final product is impaired, opercular anomalies affect the
breathing process during water intake and discharge, reduce resistance to environmental
stress, especially reduced oxygen levels, and indirectly predispose the fish to gill diseases
and bacterial infections [7,11,17].

Over the years, biotic, abiotic, physiological, xenobiotic, nutritional, and rearing factors
have been incriminated as deterministic causes [33,43]. However, etiological knowledge is
still insufficient for the elaboration of a Cartesian experimental hypothesis concerning the
predisposing causes of apparition.

3.2. Other Cranial Deformities

According to previous studies, about 35–40% of the produced gilthead seabream had
head deformities [7,12]. Various head deformations were associated with deoperculation,
including a forward shift in the caudal margin of the opercular and subopercular, and the
upward shift of the interopercle, the infraorbital, and shortening of the neurocranium and
preorbital region [7].

Additionally, jaw abnormalities have been frequently reported to develop in reared
finfish, and the gilthead seabream is no exception. Those abnormalities have several
different types, including size reduction and deformity of the maxillaries and premaxillaries
(Figure 4). Different jaw skeletal elements, including Meckel’s cartilage, dentaries, articulars,
pre-maxillaries, maxillaries, ethmoid, vomer, and palatine, are involved in the abnormal
phenotypes generating a very complex anatomy of abnormalities [19,34,44]. Fish with head
deformities swam normally; however, their growth may have been affected as is the case in
all other forms of abnormalities [34,44].

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 9 of 26 
 

 

Additionally, jaw abnormalities have been frequently reported to develop in reared 
finfish, and the gilthead seabream is no exception. Those abnormalities have several 
different types, including size reduction and deformity of the maxillaries and 
premaxillaries (Figure 4). Different jaw skeletal elements, including Meckel’s cartilage, 
dentaries, articulars, pre-maxillaries, maxillaries, ethmoid, vomer, and palatine, are 
involved in the abnormal phenotypes generating a very complex anatomy of 
abnormalities [19,34,44]. Fish with head deformities swam normally; however, their 
growth may have been affected as is the case in all other forms of abnormalities [34,44]. 

 
Figure 4. Stereomicrograph of different abnormality types of the maxillaries and premaxillaries in 
gilthead seabream. (a) Normal anatomy of maxillaries (Ma), premaxilaries (PM), and rostral 
cartilage (Rc), in a seabream larva (9.5 mm TL;, (b) size reduction in the premaxillaries; (c) narrowing 
of maxillaries (arrow) and complete absence of the premaxillaries. Adapted from Fragkoulis et al., 
2018 [44]. 

3.3. Spinal Deformity 
In the gilthead seabream production industry, vertebral deformities are frequent 

abnormalities affecting between 27% and 50.3% in seabream larvae, 17.2% of post larvae, 
and 5% of adults [45,46]. Three main types of deformities exist, differentiated by the 
direction of their curvature. Scoliosis is defined as an aberrant lateral curvature of the 
vertebral column, detected either by dorsal or ventral examination (Figure 5a,b). Lordosis, 
however, is an abnormal ventral bend of the vertebral column accompanied by atypical 
calcification of the afflicted vertebrae compared to the normal anatomy of the vertebral 
column (Figure 5a,c), and finally, kyphosis is a dorsal curvature [46,47]. 

Figure 4. Stereomicrograph of different abnormality types of the maxillaries and premaxillaries in
gilthead seabream. (a) Normal anatomy of maxillaries (Ma), premaxilaries (PM), and rostral cartilage
(Rc), in a seabream larva (9.5 mm TL), (b) size reduction in the premaxillaries; (c) narrowing of
maxillaries (arrow) and complete absence of the premaxillaries. Adapted from Fragkoulis et al.,
2018 [44].

3.3. Spinal Deformity

In the gilthead seabream production industry, vertebral deformities are frequent
abnormalities affecting between 27% and 50.3% in seabream larvae, 17.2% of post larvae,
and 5% of adults [45,46]. Three main types of deformities exist, differentiated by the
direction of their curvature. Scoliosis is defined as an aberrant lateral curvature of the
vertebral column, detected either by dorsal or ventral examination (Figure 5a,b). Lordosis,
however, is an abnormal ventral bend of the vertebral column accompanied by atypical
calcification of the afflicted vertebrae compared to the normal anatomy of the vertebral
column (Figure 5a,c), and finally, kyphosis is a dorsal curvature [46,47].
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Figure 5. X-ray of gilthead seabream with different forms of spinal deformities. (a) Normal anatomy
of cervical, abdominal, and caudal regions of the vertebral column. Inter-vertebrae space is high-
lighted with an arrow, and swim bladder is indicated with a star; (b) apical X-ray of seabream caudal
region with scoliosis (highlighted with arrows); (c) X-ray of seabream with coexisting two main
deformities of the vertebral column lordosis and vertebral compression. (a,b) Are adapted from
Boursiaki et al., 2019 [48], while (c) is adapted from Berellis et al., 2015 [49].

Axis deformations are considered among the predominant types of spinal deformities
besides the compression and fusion of vertebral bodies and some phenotypes of lack or
extra-formation of the different vertebral elements [45,50,51]. The spinal column defor-
mities vary with the degree of deformity and in the number of flexions of the vertebral
column, resulting in a continuous distribution of the external morphology ranging from
insignificant to severe body-shape alterations [52]. Different studies recorded thirty-nine
types of skeletal deformities attributed to several malformation-altered vertebrae, includ-
ing rectangular slender vertebral body (Figure 6a), cubic thick vertebral body (Figure 6b),
and triangular-shaped vertebrae (Figure 6c) [12,46,51]. These basic deformities have been
reported to develop in a solitary manner or in various combinations of different types, e.g.,
lordosis and kyphosis in the saddleback syndrome [47] or the consecutive repetition of
lordosis/scoliosis/kyphosis (LSK) from head to tail, which was reported in some studies on
gilthead seabream [13,46]. They first appeared at the larval stage and have been correlated
with the absence of a functional swim bladder, which has been reported to be partly or
totally corrected following late inflation of the swim bladder, or to other biotic and abiotic
factors [49].

Fish with spinal deformities either swim upside-down or sideward, and their growth
is slow compared to normal fish [16].

3.4. Caudal Fin Deformity

Caudal fin abnormalities have been reported to develop in reared fish, and their
prevalence in gilthead seabream production ranged between 25 and 65% [38,53]. Severity
degrees show a wild variety of phenotypes, ranging from the lack of rays to the lateral
twisting of the whole caudal complex (Figure 7a) or the duplication of the caudal fin
(Figure 7c) [51,53,54], beside the bifurcation of the neural spine (Figure 6a,d) and detached
neural and hemal spine (Figure 6c,e). Thus, all the elements of the caudal region (epu-
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rals, hypurals and parahypurals, neural arch, and the uroneural and vertebra centra) are
implicated in the abnormalities [53].
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Figure 6. Typical forms of skeletal abnormalities in gilthead seabream larvae from the three groups of
larvae at 53 DPH. (a) Rectangular slender vertebral body (white asterisks), and bifurcated neural spine
(arrow); (b) cubic thick vertebral body (black asterisks); (c) the last caudal vertebra (v), preceding
the urostyle (u), is triangular-shaped with detached neural spine (arrow). The absence of the three
epurals (white circle), lack of the fifth hypural, and fusion of the third and fourth hypural (black
asteriks); (d) bifurcated neural spine (black arrow); (e) detached neural spine (arrow). The circle
indicates a normal epural arrangement; (f) normal hypural arrangement (1st to 5th hypurals) and
absence of the three epurals (white circle). Scale bars (a,b): 100 µm, and (c–f): 50 µm. The figure was
adapted from Mhalhel et al. [12].
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Figure 7. Caudal-fin deformities in gilthead seabream. (a) Lateral twisting of the whole caudal complex,
(b) incomplete formation of dorsal fin in juvenile S. aurata, (c) duplication of caudal fin, and (d) complete
lack of anal fin in juvenile S. aurata. The figure was adapted from Koumoundouros et al. [51].



Int. J. Mol. Sci. 2023, 24, 16030 11 of 23

The incomplete development of both dorsal and anal fins was reported to be one of
the most severe deformities (saddleback syndrome) in the gilthead seabream and other fish
species (Figure 7b,d) [51]. Those deformities were highly correlated to posterior notochord
deformities, mainly the lack of upper lepidotrichia and dermatotrichia at the pre-flexion
phase [51].

The existing literature on the causative factors of these abnormalities mostly focuses
on the effects of the rearing environment, including temperature, nutrition, dietary levels
of vitamin A, and the genetic basis [38,51,54].

3.5. Body Shape Deformities

The body shape is the main quality trait of reared fish, especially those sold as a whole,
like the gilthead seabream. Several studies proved that shape deviations from the typical
pattern are usually affected by all the previously detailed skeletal abnormalities [51,55].
However, the shape differentiations are very common even in subjects without skeleton
deformities, as a direct result of the different rearing conditions and the genotype [51,55].
In fact, canonical variate analysis revealed that both rearing methodologies and the origin
of the fish, namely wild or reared, significantly affect the body shape of seabream during
the on-growing phase [56].

4. Cause of Deformities

Deformities are one of the most recurrent biological problems affecting finfish aqua-
culture, defined as the common abnormal transformations of normal skeletal structures
into abnormal structures different from the normal prototype in both wild and cultured
fish populations; however, their frequencies are greater in hatchery populations [14,51].
The high incidence of skeletal deformities found in farmed fish can be explained by the
maximized fish survival due to the absence of predators and the high availability of food.
Technical errors or knowledge gaps in some critical segments of the rearing process were
also suspected [23,53]. Available evidence suggests that those abnormalities appear in the
early stages of development during the embryonic and larval stages of life, long before
they can be externally visible [16]. However, the etiology of these syndromes is not yet well
understood [16].

Osteogenesis is ensured by a complex set of regulated molecular pathways involving
signaling molecules, transcription factors, and extracellular matrix (ECM) constituents,
among which alkaline phosphatase (ALP) or non-collagenous proteins such as the matrix
Gla protein (MGP) or osteocalcin (OC) [23]. Thus, the perturbation of those factors impli-
cated in the control of bone development and homeostasis, beside the incapacity of the
self-regulating process to compensate for the stressful environmental conditions, induce
the disruption of skeletogenesis and lead to the appearance of skeletal deformities [14,23].

Different studies suggest that unfavorable environmental biotic, abiotic disturbances,
nutritional imbalances, presence of xenobiotic substances and/or genetic disorders, and
unsuitable rearing conditions are the most probable causative agents of deformities in
reared fish, to which we can add traumatic injury and parasite infections [14,16,23,35].

Several studies have listed the different abnormalities affecting the skeletal structures
in cultured seabream and have reported the effects of some rearing conditions (tempera-
ture, light) or substances (vitamins) on the prevalence of bone abnormalities. However,
etiological knowledge is still insufficient for elaborating Cartesian experimental hypotheses
concerning the predisposing causes of the apparition and the underlying processes behind
abnormalities since this is considered a multifactorial problem [14,19].

Various fish pathogens, including viruses, bacteria, and parasites, can potentially
trigger skeletal deformities [1]. For example, the infectious hematopoietic necrosis virus
in rainbow trout significantly increased the incidence of spinal deformities [2]. Infection
with Streptococcus agalactiae in Nile tilapia may lead to deformities affecting the cephalic
region, the vertebral column, as well as the fin and tails. These skeletal deformities induced
by streptococcosis infections could be explained by the desquamation of gastrointestinal
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mucosa, thereby hindering the absorption of dietary nutrients [3]. Moreover, pathogenic
agents such as Myxobolus sandrae Reuss and Myxobolus cerebralis have been reported
as responsible for vertebral column deformities, and severe spinal cord lesions in perch,
rainbow trout, the European chub, the roach, and the common bream [4,5].

Although a wide range of fish pathogens and their potential impact on skeletal health
have been detected in many fish species, to the best of the authors’ knowledge, no cases of
bone deformities associated with fish pathogens have been found in the gilthead seabream.

The environmental contaminants were generally controlled under rearing conditions
which can explain the rarity of studies reporting its causality of skeletal abnormalities in
reared gilthead seabream.

The only study reporting the effect of cademium on skeletogenisis was that of Sassi and
his co-authors, where the concentrations of 5 and 10 mg/L of cadimium down-regulated
the transcript levels of osteocalcin and disrupted bone mineralization [6].

Finally, stress arising during larvae handling has also been reported as a possible cause
of notochord distortions [7].

5. Effect of Deformities on Production and Welfare

The welfare of the gilthead seabream is a matter of concern due to the potential far-
reaching consequences of skeletal abnormalities. Such abnormalities in fish can result in
various adverse effects on their regular physiological functions. These include impacts
on buoyancy, swimming ability, respiration, conversion efficiency, growth rate, produc-
tion costs, and an increased susceptibility to stressors and diseases. These issues can
impede a fish’s ability to evade predators and overcome environmental challenges, posing
a significant threat to their well-being [11,23,26,46].

Deviations in the cranial skeleton, specifically mouth deformities, can give rise to two
primary challenges. Firstly, it can hinder the fish’s ability to move their jaw and ingest food,
potentially leading to starvation. This impediment not only hampers normal growth and
development but also hinders these fish from reaching their full potential size and weight,
thereby affecting their overall health and survival rates [57,58]. The second major issue
faced by these fish is the compromised respiratory efficiency, resulting from a reduced
capacity to utilize buccal–opercular pumping for proper gill ventilation. This phenomenon
has been observed in fish with lower jaw skeletal abnormalities and pug-headedness [20].
Fish with such mouth deformities become more susceptible to hypoxic stress and may need
to swim more to ensure adequate water flow over their gills, further compounded by high
stocking densities that can hinder their swimming abilities. Consequently, it is likely that
abnormal behaviors play a role in explaining the occurrence of mechanical damage to the
mouths of cultured fish [43,57].

To the best of the authors’ knowledge, there is no existing documentation on how
fin damage impacts gilthead seabream growth performance and survival. Moreover,
the potential consequences of fin damage, which could be inferred from tagging studies
examining the effects of fin clipping on growth and survival, were constrained due to
the scarcity and age of these studies. In his study conducted in 1975, Lasserre found that
pelvic fin clipping had no impact on fingerling growth. Similar observations were noted
in studies involving various species. Indeed, the removal of a single fin does not reduce
growth but does reduce survival in the rainbow trout [59]. Furthermore, fish with multiple
fin excisions exhibit a lower survival rate compared to those with a single fin removed [60].
In a study by Zymonas (2006), the growth performance of bull trout Salvelinus confluentus
remained unaffected even after the removal of three pelvic fin rays [61].

It is conceivable that fin damage may compromise fin function, potentially negatively
impacting a fish’s ability to maintain its posture and swim effectively or compete for food,
leading to a loss of weight and reduced growth. However, the outcome may vary depending
on the severity and type of fin damage, whether it involves erosion or splitting [57,58].
Moreover, spinal and swim bladder issues are reported, as well, to have a significant impact
on the gilthead seabream’s swimming performance [62].
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A concise and well-researched review of the potential effect of injuries and abnormal-
ities upon fish welfare was carried out, based on a number of associative inferences, by
Branson and his team in 2008 and Noble and his co-authors in 2012 [57,58]. Both studies
underscored the scarcity of recent, quantified investigations directly assessing the conse-
quences of deformities on fish welfare. These observations emphasize the critical need for
further investigation into these effects on fish welfare given the well-established evidence
that fish are capable of experiencing pain and suffering [63].

Understanding and addressing the impact of skeletal deformities on gilthead seabream
welfare is essential not only from an ethical standpoint but also for the sustainability of
aquaculture practices and the health of marine ecosystems.

6. The Genetic Component of Bone Deformities

In a study conducted on reared gilthead seabream, Riera-Heredia and her co-authors
investigated the extracellular matrix components’ gene expression and bone formation
and regeneration transcription factors in fish with the different skeletal anomalies (lordosis
(LD), lordosis–scoliosis–kyphosis (LSK), opercular, dental, or jaw abnormalities), compared
to control (CT) specimens [64]. The finding of this study revealed a potential association
between the presence of LD and LSK and the significant down-regulation of genes involved
in the maturation of the osteoblasts and matrix mineralization, namely collagen type
1-alpha (col1a1), osteopontin (OP), osteocalcin (OCN), matrix Gla protein (mgp), and
tissue non-specific alkaline phosphatase (tnap), as well as cathepsin K (ctsk) and matrix
metalloproteinase 9 (mmp9), taking part in bone resorption compared to the CT group’s fish.
Contrarily, runx2, the key osteogenic transcription factor, exhibited an up-regulation within
the malformed vertebra. This suggests an impaired mesenchymal stem cell determination
toward the osteo-blastic lineage (Figure 8) [64].
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Figure 8. Relative gene expression of (a) ECM components and (b) transcription factors in gilthead
seabream vertebral column fragments of control animals (CT) or specimens with lordosis (LD) or
lordosis–scoliosis–kyphosis (LSK). Results are shown as the mean ± SEM. Distinct letters denote
statistically significant differences among groups (p < 0.05). The figure was adapted from Riera-
Heredia et al. [64].
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In our study conducted on gilthead seabream larvae, we investigated bone and skele-
tal muscle-specific gene expression, parathyroid hormone-related protein-coding gene
(PTHrP), and myosin light chain 2 (mlc2), respectively, during the larval and post-larval
stages [12]. The marker of muscle development and growth, mlc2, one of the four light
chains of the myosine, exerts its regulatory role in binding calcium [65]. PTHrP is a calcium
regulatory factor in gilthead seabream that has a crucial function in several physiological
and biochemical processes, including calcium mobilization from internal sources (bone and
scales) and via calcium uptake from water and diet [66], as well as tissue differentiation
and proliferation [67].

We have reported an association between abnormally developing bones and a high
expression of PTHrP on Sparus aurata [12], and the same effect was assigned to PTHrP
up-regulation in the immature seabream’s systrophic spine by Ingleton [68]. Myosin, a
key component of striated muscle contributing to muscle contraction, consists of two
heavy chains (MHCs) and four light chains (MLCs). Myosin light chain-2 is a sarcomeric
protein expressed in the white muscle of gilthead seabream as two isoforms, mlc2a and
mlc2b. Myosin light chain 2a predominates the early larval stages, marking new fiber
development at the tissue level. In our study, the inverse dose-dependent relationship
of mlc2 downregulation and exogenous MEL concentration during the treatment period
was associated with the negative allometric growth pattern by MEL. Our results are in
accordance with the significant weight increase registered in Atlantic salmon implanted
with melatonin and contrasting the body weight and growth rate reduction induced by
implants or injections in both trout and goldfish [69–71].

In their study conducted in 2022, Gerogiou and his co-authors examined the potential
associations between mRNA levels of cathepsin D, cathepsin Z, cyclin-A2, and glucocor-
ticoid receptor and the occurrence of skeletal abnormalities during the larval period [72].
Their findings demonstrated that relatively high levels of cyclin-A2 and glucocorticoid
receptor were found to be associated with the early prediction of egg quality but not
correlated with the occurrence of skeletal abnormalities [72].

7. Mitigating Skeletal Abnormalities in Gilthead Seabream: Strategies for a
Sustainable Aquaculture

The management and prevention of skeletal abnormalities play a crucial role in guaran-
teeing the sustainability of aquaculture production. The development of skeletal disorders
is associated with a complex interplay of factors, including nutrition, environmental, and
genetic factors [38]. In order to address and mitigate the adverse effects of skeletal abnor-
malities in the gilthead seabream, it is crucial to understand the environmental preferences
and nutritional needs specific to each stage of the species, along with comprehending the
ontogeny of the skeletogenesis and the characteristics of different deformities [38]. By gain-
ing this understanding, adjustments can be made in feeding methods, rearing conditions,
and selective breeding programs to address these issues effectively.

The impact of nutrition on bone development and remodeling in the gilthead seabream
has been the subject of several studies, with the available information being somewhat
fragmentary, depending on the specific nutrients in consideration [73]. Recent advances in
formulating starter diets for larvae and enriching emulsions for live prey have revealed
various essential nutrients, particularly vitamins, lipids, and minerals, crucial in normal
skeletogenesis. Consequently, the improper balance or inadequate supply of these nutrients
in the diet may develop skeletal deformities [74].

Among the fat-soluble vitamins, vitamins A, D, and E have been the subjects of
numerous studies, each aiming to unveil their specific impacts on the development of
seabream bones. Prior studies have conclusively highlighted the crucial role of vitamin A, as
demonstrated by Fernández and his co-authors [38,75], illuminating its significance in bone
health and underlining the risk of the alteration of bone homeostasis by hypervitaminosis
A, accelerating bone mineralization, and inducing vertebral compression or fusion in
juvenile fish [75]. Furthermore, the works of Dominguez and Sivagurunathan in 2021 and
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2022 have underscored the potential role of vitamin D in averting skeletal irregularities in
seabream [76–78]. Similarly, Izquierdo and Saleh’s studies delved into the ramifications of
vitamin E within the context of bone deformities [37,79].

Research on the dietary levels of vitamin K and its influence on the skeletal develop-
ment of seabream has been sparse, with the most recent investigation carried out on juvenile
specimens by Dominguez in 2022 and Sivagurunathan and his co-authors in 2023 [80,81].

Implementing a nutrient-rich diet in essential nutrients, especially calcium and phos-
phorus, was suggested as a promoter for proper bone development, and balanced diets in
these minerals can help prevent skeletal abnormalities [48].

Furthermore, insufficient DHA levels appear to correlate with a heightened prevalence
of lordosis and kyphosis and a reduced count of mineralized vertebrae. Likewise, increased
dietary DHA content led to an escalation in deformities within cranial endochondral
bones and axial skeletal hemal and neural arches. Consequently, a moderate dosage of
3.20 ± 0.15% of the body weight was determined to be the optimal choice [37].

While there is a rich bibliography on the nutritional requirements to address bone
deformities, there has been a noted absence of investigations into the impact of the gut
microbiome on nutrient utilization and skeletal development in the gilthead seabream.
Thus, the potential benefits of probiotics and dietary interventions for enhancing bone
health in the gilthead seabream remain unexplored. This highlights a significant research
gap in our understanding of these crucial aspects of gilthead seabream biology.

Optimizing the rearing environment has a profound influence on skeletal health.
This entails the accurate maintenance of rigorous water quality parameters, including
temperature [40,82], oxygen levels [20], as well as stocking densities [2]. This careful
maintenance creates an ideal habitat and plays a pivotal role in stress reduction.

In addition, another crucial aspect of this comprehensive strategy involves the man-
agement of lighting and photoperiod conditions [12,83].

Even though controlling the environmental parameters, such as biotic and abiotic,
physiological, xenobiotic, nutritional, and rearing factors, can reduce the prevalence of
deformities, it cannot wholly eliminate the abnormalities [84]. Therefore, employing
animal breeding control and genetic selection could be a good strategy to decrease these
deformities’ prevalence permanently.

Intensive selective breeding programs were recognized as an effective strategy adopted
to overcome bone deformity issues for gilthead seabream mariculture, improving the
growth performance [85] and morphology [73,86] by preserving or neglecting the DNA
markers tightly linked to traits-affecting genes provided by the genomic region closely
linked to major effect genes known as quantitative trait loci (QTL).

Several QTL associated with traits of commercial importance in the gilthead seabream
were identified using microsatellite markers. These QTL were related to various aspects,
such as growth and morphometric traits. Several QTL related to growth and morphometric
traits were highlighted in multiple studies by Loukovitis et al. (2011, 2012, 2013) [87–89],
and one significant QTL for morphometric traits was detected by Boulton et al. (2011) [90].

In a study by Negrín-Báez and co-authors [91], they reported the identification of
seven quantitative trait loci (QTL) associated with frequent lordosis, vertebral fusion,
and jaw abnormalities. When it comes to vertebral fusion, the investigation revealed
the presence of one significant QTL, along with two suggestive QTL. For lordosis, one
significant QTL at the chromosome and genome-wide levels and one suggestive QTL were
detected. Lastly, in relation to jaw deformities, the investigators identified one significant
QTL and one suggestive QTL [91]. The three significant QTL, however, were detected
using a unique full-sibling family; thus, they could not be representative for other gilthead
seabream families.

Implementing a genetic selection program to identify and breed non-deformed individu-
als has the potential to significantly reduce the occurrence and severity of skeletal abnormali-
ties, improve overall fish health, and enhance the sustainability of aquaculture operations.
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8. Perspective for Investigating Bone Defects

In order to improve cost-efficiency for farmed gilthead seabream, fast and early
recognition of developing abnormalities is of great importance for fish farmers since
abnormal subjects, with adversely affected growth rates and reduced survival rates, will
compete for food and space with healthy fish [57]. A careful examination should be
conducted on both sides of each fish. When the percentage of deformities in a given fish
population exceeds the quality standards, the deformed animals should be sorted out. The
only effective technique to remove such fry is to sort them by hand [35].

For this reason, various procedures have been applied as simple and rapid diagnostic
tools for studying skeletal deformities, abnormal growth in different skeletal structures,
as well as the unusual swimming behavior revealing abnormal development in fish. The
visual examinations, including the analysis of geometric morphometrics, stereoscopic obser-
vations, double staining, computer tomography, and soft X-rays, allow for the description
of shape variation in growing and transforming fish and the effect of rearing conditions
on the body shape [14,35]. The histological procedures, bone mineral density, and calcium
content measure, as well as quantifying metabolic bone disease markers, namely bone-
specific alkaline phosphatase, are other valuable tools for providing elementary knowledge
on bone formation and the structural and physiological changes occurring in deformed
skeletal structures [14].

All the above-mentioned analyses on morphology allowed for a quantitative and
qualitative analysis of the nature of osteological aberrations in fish and the different degrees
of shape changes in their external morphology.

9. Gilthead Seabream as a Model for Understanding Skeletogenesis

Different studies on fish have recognized teleost as a suitable vertebrate model for
understanding vertebrate development and metabolism, particularly skeletogenesis in
lower and higher vertebrates, for comparative and evolutionary purposes [31,92–96].

The resemblance of physiological processes from fish to mammals and the presence of
fish orthologs for most mammalian gene regulatory networks for skeletogenesis are among
the traits that contributed to the recent interest in fish models.

Zebrafish and medaka are the predominant fish models in bone biomedical research.
They are used as an in vivo model of several human bone conditions, including holospondyly
osteogenesis, craniofacial dysplasia, and imperfecta, and for the exploration of the role
played by the different genes in bone formation, maintenance, skeletal development, and
abnormalities [97,98]. Despite their potential for translational research, it is important to
note that both species may not serve as ideal models for aquaculture in marine fish under
specific conditions. In fact, aside from their inability to encompass species with acellular
bone structures, they fail to meet the abiotic requirements essential for marine fish.

The skeletal system of the gilthead seabream is categorized as acellular since it is
generated and maintained by chondrocytes, osteoblasts, and osteoclasts, yet it does not
contain osteocytes within its calcified extracellular matrix [99].

The study of the transcription factors involved in the formation and turnover of
bone on gilthead seabream gill arch and vertebra has revealed homologs of many mam-
malian skeleton-related transcripts including osteoblast differentiation transcription factors
(Runx2/Cbfa1, osterix/Sp7), or components of the extracellular matrix that regulate min-
eral deposition such as osteonectin/SPARC, osteopontin/Spp1 and osteocalcin/BGP [100].
Moreover, the BMP2 mRNA expression pattern detected in the gilthead seabream mes-
enchymal stem cells cultures described by Riera-Heredia and his co-authors was found
to be coherent with the BMP2 association with the process of extracellular matrix min-
eralization and bone nodule formation during mesenchymal stem cell differentiation in
mammals [101].

Furthermore, gilthead seabream larvae, like other marine fish, hatch much earlier in
their development (39.41 h post fertilization) than the confirmed teleost model zebrafish
(approximately 72 h post fertilization) or other vertebrates, making it an attractive model to
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study the influence of several nutrient deficits (vitamin, calcium, and phosphorus. . .), and
genetic factors in morphogenesis and skeletogenesis during early larval development [28,102].
It exhibits indeterminate growth, in contrast to other vertebrate groups and zebrafish,
which means that they can grow in length and weight beyond the maturation stage for as
long as they live [103], allowing researchers to observe bone growth and regeneration over
an extended period, providing insights into bone remodeling processes. This characteristic
allows researchers to study aquaculture fish adaptability to the different rearing conditions
and bones’ differential responses to those factors.

In recent decades, important biochemical, molecular, and cellular tools have been de-
veloped [104]. These tools include several genomic sequences, large collections of expressed
sequence tags (EST) for several fish species, including the gilthead seabream [105,106], Eu-
ropean seabass [106], Atlantic salmon [107], high-density DNA microarray platforms to
explore these EST collections [108,109], and Agilent SurePrint™ Technology oligo-array,
namely for the gilthead seabream.

Various fish bone-derived cell lines are available for investigating tissue mineralization
mechanisms [110,111]. Indeed, in 2004, Pombinho et al. developed two bone-derived cell
lines, VSa13 and VSa16, from the marine teleost gilthead seabream [112]. The two cell lines
are particularly interesting with a pre-chondrocyte and pre-osteoblast phenotype, respec-
tively. Indeed, they have a differential capacity of mineralizing their extracellular matrix
with different degrees of mineral deposition, different levels of alkaline phosphatase activity,
and matrix gla protein (MGP), osteopontin (SPP1), osteocalcin (OC), bone morphogenetic
protein-2 (BMP-2) mineralogenic genes’ expression, as well as a distinct susceptibility
to mineralogenic or osteogenesis inhibitors [30,112]. Therefore, they have been used to
identify key mineralogenic genes differentially expressed during in vitro mineralization on
the different bone cell types [30].

While the gilthead seabream can be a valuable model for certain aspects of bone
research, there are potential limitations and negative points to consider when using this
species, mostly its limited genetic resources. Indeed, compared to more established model
organisms like zebrafish or mice, the gilthead seabream has limited available genetic and
molecular resources. It lacks well-established mutant lines that allow researchers to study
specific genes and their roles in bone development.

Furthermore, the research community dedicated to the gilthead seabream is smaller
when compared to the widespread utilization of canonical models. This discrepancy results
in fewer available protocols and research tools.

Finally, maintaining gilthead seabream in a research facility can entail higher costs
and logistic challenges than other model organisms.

10. Conclusions

Our review provides an overview of skeletal development and anomalies in the
gilthead seabream, highlighting the genetic, environmental, and nutritional factors con-
tributing to bone deformities and emphasizing the potential of the gilthead seabream
as a model organism for understanding bone morphogenesis in both aquaculture and
translational biological research.

Future research should explore the potential of the microbiome on nutrient utilization
and indirectly on skeletal development. To address this complex issue, a collaboration
involving aquaculture scientists, geneticists, nutritionists, and environmental specialists
could offer holistic solutions to mitigate the impact of skeletal abnormalities.

Developing databases and implementing big data analytics to integrate information from
diverse studies could uncover correlations that may not be evident in individual experiments.

Pursuing these research directions could enhance our understanding of skeletal de-
velopment and anomalies in the gilthead seabream, optimize aquaculture practices, and
contribute to the broader knowledge related to bone abnormalities, ultimately benefiting
both the aquaculture industry and translational biological research.
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