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ABSOLUTES AND n-H-CLOSED SPACES

FORTUNATA AURORA BASILE a , MADDALENA BONANZINGA a∗ ,
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ABSTRACT. In this paper the investigation of n-H-closed spaces that was started by Basile
et al. (2019) is continued for every n ∈ ω , n≥ 2. In particular, starting with the relationship
between the absolute space PX of an arbitrary topological space X , reported by Ponomarev
and Shapiro (1976) and introduced by Błaszczyk (1975, 1977), Ul’yanov (1975a,b) and
Shapiro (1976), it is shown that the absolute PX is n-H-closed if and only if X is n-H-closed.
For an arbitrary space X , a β -like extension (β for the Stone-Čech compactification) ˆ︁Y is
constructed for the semiregularization PX(s) of the absolute PX such that ˆ︁Y is a compact,
extremally disconnected, completely regular (but not necessarily Hausdorff) extension of
PX(s), and PX(s) is C∗-embedded in ˆ︁Y . The definition of the Fomin extension σX for a
Hausdorff space X (Porter and Woods 1988) is extended to an arbitrary space X and σX\X is
shown to be homeomorphic to the remainder ˆ︁Y\PX(s). A similar result is established when
X is an n-Hausdorff space defined by Basile et al. (2019). Further, we give a cardinality
bound for any n-Hausdorff space X and show that the inequality |X | ≤ 2χ(X) for an H-closed
space X proved by Dow and Porter (1982) can be extended to n-H-closed spaces.

1. Introduction

In 1963 Iliadis extended the concept of absolute spaces for Hausdorff spaces. For
the past 50 years, the absolute spaces of Hausdorff spaces have played a major role in
understanding Hausdorff spaces. For each Hausdorff space X , an extremally disconnected,
Tychonoff space, denoted as EX and called the absolute space of X , is associated with X
via a surjection (called the absolute map) from EX to X that is closed, irreducible, compact,
and θ -continuous. The space EX is compact iff X is H-closed.

In recent years, the application of topology to areas outside of topology has expanded (see
Rump 2009). Some of these areas include domain theory in computer science, spectrums
in ring theory, lattice-ordered group theory, etc.. In 2007 Rump used category theory to
extend the notion of absolutes to arbitrary spaces and proved how it can be used to obtain a
well-known theorem by Conrad (1973). The expansion of the concept of absolute spaces
to arbitrary spaces was paved in 1975–77 by Błaszczyk (1975, 1977), Shapiro (1976) and
Ul’yanov (1975a,b).
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A1-2 F. A. BASILE ET AL.

In this paper we use the explicit description of an absolute space, developed by Shapiro
(1976), that uses maximal filters of open sets on the space X (called open ultrafilters on
X); this development is similar to the development of the Iliadis absolute space (Iliadis
1963). As noted by Błaszczyk (1975), Ul’yanov (1975a,b), Shapiro (1976), and Błaszczyk
(1977), the absolute spaces are homeomorphic relative to the absolute map. In particular,
this absolute space is the same absolute space as produced by Rump, some 30 years later.

The absolute space is not a generalization of the Iliadis absolute for a Hausdorff space
but is very close (see Porter and Woods 1988, for details). However, this absolute space is
an extension of the Banascheski absolute space described by Porter and Woods (1988) for a
Hausdorff space. In a recent paper (Basile et al. 2019) the authors extended the concept
of H-closed spaces to n-Hausdorff spaces defined by Bonanzinga (2013); the n-Hausdorff
spaces is a class of spaces extending the property of Hausdorff. The authors realized that
to expand the theory of n-H-closed spaces, a theory of absolutes spaces for non-Hausdorff
spaces might be needed.

This paper starts, after a preliminary section, with a quick development of the absolute
space PX for an arbitrary space X and connects n-Hausdorff and n-H-closed spaces to the
absolute space PX . The middle third of the paper is a series of results applying the theory
of absolutes spaces to show that the remainder of the n-Fomin extension of an arbitrary
n-Hausdorff space is completely regular and is a subspace of an extremally disconnected
space whose T0-identification is Hausdorff. The final third of the paper shows that n-H-
closed, semiregular spaces are minimal n-Hausdorff but the converse is false. The paper
ends with results about the cardinality of n-H-closed spaces using absolute spaces.

2. Preliminaries

For a topological space X , we will use τ(X) (τ if there is no confusion) to denote the
topology on X . For x ∈ X , we define τ(x) = {U ∈ τ(X) : x ∈U}. An open filter F on X
is a filter on the lattice τ(X) and an open ultrafilter on X is a maximal filter on τ(X). In
particular, τ(x) is an open filter on X . Let B(X) denote the set of all open ultrafilters on X .
For an open filter F on X , aXF =

⋂︁
F∈F cl(F) denotes the adherence of F; when aXF is

nonempty, we say that F is fixed. The subscript in the notation aXF is omitted when no
confusion arises. For U ∈ τ(X), let rU = intX clXU ; it is easy to verify that r(rU) = r(U)
and r(U ∩V ) = rU ∩ rV . Sets of the form rU are called regular open. For a space X , let
X(s) denote the set X with the topology generated by {rU : U ∈ τ(X)}; X(s) is called the
semiregularization of X . The identity function X → X(s) is a continuous bijection (see
Sect. 2.2 of Porter and Woods 1988). A space X is semiregular if X = X(s).

Our first preliminary result is a collection of known results about open ultrafilters, some
are in Sect. 2 of Porter and Woods (1988) and others are straightforward to verify.

Proposition 1. Let U be an open ultrafilter on a space X and let Us be the open filter on
X(s) generated by the open ultrafilter base rU= {rU : U ∈ U}. Then:
(a) Us is an open ultrafilter on X(s) and the function fs : B(X)→ B(X(s)) : U ↦→ Us is a
bijection,
(b) for each U ∈ B(X), aXU= aX(s)Us =

⋂︁
U∈U clXU =

⋂︁
U∈U clX (rU),

(c) U is the unique open ultrafilter on X meeting {rU : U ∈ U},
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(d) Us is the unique open ultrafilter on X(s) meeting {rU : U ∈ U}, and
(e) Us = U∩ τ(X(s)).

Throughout the paper, no additional hypotheses (for example, separation axioms) are in-
cluded unless explicitly mentioned. A space X is extremally disconnected (Porter and
Woods 1988) if disjoint open sets in X have disjoint closures (equivalently, the closure
of an open set is also open); it is straightforward to show that a semiregular, extremally
disconnected space is completely regular (not necessarily Hausdorff) and has a topological
base of clopen sets. It is well-known (Porter and Woods 1988) that if Y is extremally dis-
connected, then Y (s) is extremally disconnected and completely regular (but not necessarily
Hausdorff).

For spaces X ,Y , recall that a function f : X → Y is separable if for each y ∈ Y , distinct
points in f←(y) can be separated by disjoint open sets in X ; irreducible if it is surjective
and whenever A is a proper closed subset of X , then f (A) ̸= Y ; compact if f←(y) is a
compact subset of X for every y ∈ Y ; and perfect if it is closed and compact.

We will need the following concepts (Bonanzinga 2013; Basile et al. 2019).

Definition 2. (Bonanzinga 2013) Let n ∈ ω , n≥ 2. A space X is n-Hausdorff if for any
distinct points x1, ...,xn ∈ X , there are open subsets Ui of X containing xi for every i= 1, ...,n
such that

⋂︁n
i=1 Ui =∅. In particular, a space X is 2-Hausdorff iff X is Hausdorff.

Note that since rU ∩ rV = r(U ∩V ) for open sets U,V in a space X , it follows that X is
n-Hausdorff iff X(s) is n-Hausdorff.

Definition 3. (Basile et al. 2019) Let n ∈ ω , n ≥ 2. An extension Y of X is said to be
n-Hausdorff except for X if for points p ∈ Y\X and q1, ...,qn−1 ∈ Y , there are open sets
U,V1, ...,Vn−1 in Y such that p ∈U and qi ∈Vi, i = 1, ...,n−1, and U ∩V1∩·· ·∩Vn−1 = /0.

Theorem 4. (Basile et al. 2019) Let X be a space and n ∈ ω , where n≥ 2. The following
are equivalent:

(a) for every open filter F on X , |aF| ≥ n−1,
(b) for every open ultrafilter U on X , |aU| ≥ n−1,
(c) for every A ∈ [X ]<n−1 and for any family U of open subsets of X such that X \A⊆⋃︁

U, there exists V ∈ [U]<ω such that X =
⋃︁

V∈V clV , and
(d) X is closed in every extension of X that is n-Hausdorff except for X .

Comment: Part (b) of Theorem 4 is added to the result proven by Basile et al. (2019).

Definition 5. (Basile et al. 2019) Let n∈ω , n≥ 2. A space is n-qH-closed if X satisfies one
(and hence all) of the conditions of Theorem 4. A 2-qH-closed space is called qH-closed.

Notes: (a) If a space X is n-qH-closed then by Theorem 4 X is also qH-closed.
(b) By Proposition 1, a space X is n-qH-closed iff X(s) is n-qH-closed.
(c) If Y is an extension of X then by Theorem 4 Y is qH-closed iff for every free open
ultrafilter U on X , aYU ̸=∅.

Definition 6. (Basile et al. 2019) Let n ∈ ω , n ≥ 2. An n-Hausdorff space X is called
n-H-closed if X is closed in every n-Hausdorff space Y in which X is embedded.

Theorem 7. (Basile et al. 2019) An n-Hausdorff space X is n-H-closed iff it is n-qH-closed.
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Recall the following definitions and concepts given by Porter and Woods (1988). Let Y
be an extension of a space X . For p∈Y , let Op = {U ∩X : p∈U ∈ τ(Y )} and for U ∈ τ(X),
let oU = {p ∈ Y : U ∈ Op}. Note that for U,V ∈ τ(X), o(U ∩V ) = oU ∩ oV , o(∅) = ∅,
and oX = Y . So, {oU : U ∈ τ(X)} forms a basis for a topology, denoted as τ#(Y ), on Y .
Denote by τ+(Y ) the topology on Y generated by the base B = {U ∪{p} : U ∈ Op and
p ∈ Y}. We have τ#(Y )⊆ τ(Y )⊆ τ+(Y ), and Y #(resp. Y+) is used to denote the set Y with
τ#(Y ) (resp. τ+(Y )). Y+ is called a simple extension of the space X and Y # is called a
strict extension of the space X . Following Porter and Woods (1988, Sect. 7.2), if Y is an
extension of X , then Y (s) is a strict extension of X(s).

If X is a space (not necessarily Hausdorff), then both the Katětov and Fomin H-closed
extensions are defined as follows:

The Katětov extension for an arbitrary space is defined by κX = X ∪{U : U is a free
open ultrafilter on X} with the simple extension topology, where a set U ⊆ κX is open
if U ∩X is open in X and U ∩X ∈ U if U ∈ U . In the non-Hausdorff setting there are
simple extensions Y of X such that the function Y\X →{U : U is a free open ultrafilter on
X} : p ↦→ {U∩X : p∈U ∈ τ(Y )} is a surjection but not one-to-one. The n-Katětov extension
described by Basile et al. (2019) is such an extension. The Fomin extension σX of an
arbitrary space X is defined as the strict extension of the Katětov extension; that is, an open
basis for the topology of σX is {o(U) : U ∈ τ(X)}, where o(U) =U∪{U∈σX\X : U ∈U}.

Let X be a space. A strict extension Y of X is said to be σ -like if for p ∈ Y\X , Op is
an open ultrafilter on X . The Fomin extension of an arbitrary space is σ -like, and in the
class of n-Hausdorff spaces, the Fomin extension n-σX of a space X defined by Basile
et al. (2019) is also σ -like. If Y is a σ -like extension of X , there may be distinct points
p,q ∈Y\X such that Op = Oq. As Y has the strict extension topology generated by the open
base {o(U) : U ∈ τ(X)}, for each U ∈ τ(Y ), p ∈ o(U) iff q ∈ o(U). Thus, {o(U) : U ∈Op}
is an open base for both p and q; let p̂ = {q ∈ σX\X : Op = Oq}. If Op ̸= Oq, then there are
U ∈ Op and V ∈ Oq such that U ∩V =∅. The set { p̂ : p ∈ Y\X} is a partition into disjoint
closed sets that can be separated by disjoint open sets.

Proposition 8. Let Y be a σ -like extension of a space X, T ∈ τ(Y ), and U ∈ τ(X). Then:
(a) T ⊆ o(T ∩X) and o(U)\X = o(rU)\X ,
(b) clY o(U) = clXU ∪o(U) = clXU ∪o(rU) and
(c) intY clY o(U) = o(intX clXU).

Proof. (a) Since o(T ∩X)∩X = T ∩X , it suffices to show that if U ∈ T , then U ∈ o(T ∩X).
But U∈ T implies that T ∩X ∈U and hence, U∈ o(T ∩X). By Proposition 1(c), o(U)\X =
o(rU)\X .
(b) Clearly, clXU ∪o(U)⊆ clY o(U)⊆ clY (o(U)∩U)∪o(U) = clYU ∪o(U) = (clXU\X)∪
clXU ∪o(U). Note that for V ∈ σX\X , V ∈ clYU iff V ∩U ̸=∅ for every V ∈ V iff U ∈ V

iff V ∈ o(U). This shows that clY o(U) = clXU ∪o(U).
(c) To show intY clY o(U) = o(intX clXU), we first apply a result from the proof of 2.2(i)(2)
given by Porter and Woods (1988), to obtain that (intY clY o(U))∩X
= intX clX (o(U)∩X = intX clXU . By (a), intY clY o(U)⊆ o(intX clXU). To prove the converse,
let p∈ o(intX clXU)\X . Then, by (b), p∈ o(U) ⊆ intσX clσX o(U) and hence, o(intX clXU)⊆
intY clY o(U). □
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Proposition 9. Let Y be a σ -like extension of a space X. Let g : Y → Y (s) : y ↦→ y denote
the identity function (which is a continuous bijection).
(a) For p ∈ Y\X , Og(p) = Op ∩ τ(X(s)) is the unique open ultrafilter on X(s) containing
{rT : T ∈ Op};
(b) g|Y\X : Y\X → Y (s)\X(s) is a homeomorphism;
(c) Y (s) is a σ -like extension of X(s).

Proof. (a) The proof is straightforward. (b) For p ∈Y\X ,Og(p) ∈Y (s)\X(s) by Proposition
1(b). Note that τ(Y\X) is generated by {o(U)\X :U ∈ τ(X)} and τ(Y (s)\X(s)) is generated
by {o(int(cl(U)))\X(s) : U ∈ τ(X)}. This shows that the continuous bijection id|Y\X :
Y\X → Y (s)\X(s) is a homeomorphism. (c) By (a), for s(p) ∈ Y (s)\X(s), Os(p) is an open
ultrafilter on X(s). By Sect. 7.2. of Porter and Woods (1988), Y (s) is a strict extension of
X(s). □

For a subset A of a space X we will denote by [A]<λ ([A]≤λ ) the family of all subsets of
A of cardinality < λ (≤ λ ). We use the standard notation presented by Porter and Woods
(1988) and Engelking (1989).

3. The absolute space for any space

Let X be a space and B(X) denote the set {U : U is an open ultrafilter on X} with the
topology generated by the open basis {oU : U ∈ τ(X)} where oU = {U ∈ B(X) : U ∈ U}.
B(X) is the well-known Stone space generated by the Boolean algebra of regular open sets
on X (see Porter and Woods 1988). B(X) is a compact extremally disconnected Hausdorff
space even though X may not be Hausdorff. Let EX be the dense subspace of B(X) of fixed
open ultrafilters on X (this is the absolute space of X , defined by Iliadis (1963), when X is
Hausdorff). For each x ∈ X , let k−1(x) denote the subset {U ∈ B(X) : x ∈ aU} of B(X); the
subspace k−1(x) of EX is compact Hausdorff. In a non-Hausdorff space X , it may happen
that k−1(x) = k−1(y) for distinct points x,y ∈ X .

We use the explicit construction of Shapiro (1976) to define the absolute space PX for
an arbitrary space X .

In the product space X×EX , we define the subset PX = {(x,U) ∈ X×EX : x ∈ aU,U ∈
B(X)}. For open sets U,V ∈ τ(X), the basic open set in PX is (U × oV )∩PX , which is
denoted as ⟨U,V ⟩. Also for an open set U ∈ τ(X), we let OU denote {(x,U) ∈ PX : x ∈
aU,U ∈ oU}. The projection function p : PX → X : (x,U) ↦→ x is the absolute map.

Here are some basic properties of the absolute space PX for an arbitrary space X and the
absolute map p : PX → X . The proofs are straightforward.

Proposition 10. Let X be a space, U,V,S,T ∈ τ(X), and U ∈ EX, then
(a) p : PX → X is continuous and onto
(b) p←[U ]∩OV = ⟨U,V ⟩, OV = ⟨X ,V ⟩, and p←[U ] = ⟨U,X⟩
(c) ⟨U,V ⟩∩ ⟨S,T ⟩= ⟨U ∩S,V ∩T ⟩ and ⟨U,V ⟩= ⟨U,rV ⟩
(d) p←(U ∩V )⊆ p←(U)∩OV ⊆ O(U ∩V )
(e) p←[U ]∩OV ̸=∅ iff ⟨U,V ⟩ ̸=∅ iff U ∩V ̸=∅.
(f) cl⟨U,X⟩= ⟨X ,U⟩
(g) O(U ∩V ) = OU ∩OV and O(U ∪V ) = OU ∪OV
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(h) If cl(U) = cl(V ), then OU = OV
(i) PX\OU = O(X\clU) and OU = O(rU)
(j) x ∈ aU iff τ(x)⊆ U

(k) τ(x)⊆
⋂︁

τ(x)⊆UU and V ∈
⋂︁

τ(x)⊆UU iff rV ∈ τ(x)
(l) For x ∈ X , p←(x) = {x}× k←(x) and {x}× k←(x) is homeomorphic to k←(x) and is a
compact subset.
(m) Let {Ui : i ∈ I} be a family of open subsets of X . Then clPX

⋃︁
I OUi = O(

⋃︁
I Ui).

(n) Let U,V be open subsets of X . Then clPX ⟨U,V ⟩= O(U ∩V ).

Note that the set OU is closed by Proposition 10(i) (also by Proposition 10(b, f)); that is,
OU is clopen.

Proposition 11. Let X be a space. Then:
(a) If W is open in PX , then clPXW = OU for some U open in X .
(b) For U ∈ τ(X), p[OU ] = clXU .
(c) For U ∈ τ(X) and x ∈ X , p←(x)⊆ OU iff x ∈ rU .
(d) For U,V ∈ τ(X), OU = OV iff rU = rV .

Proof. For (a), there is a family {⟨Ua,Va⟩ : a ∈ A} of basic open sets such that set W =⋃︁
a∈A⟨Ua,Va⟩. By Proposition 10(m,n), clW ⊆ cl

⋃︁
a∈A cl⟨Ua,Va⟩ = cl

⋃︁
O(Ua ∩Va) =

clO(
⋃︁
(Ua∩Va)) =O(

⋃︁
(Ua∩Va)). Also, by Proposition 10(m,n), clW ⊇

⋃︁
a∈A cl⟨Ua,Va⟩ ⊇⋃︁

a∈A O(⟨Ua,Va⟩); thus, clW = cl2W ⊇ cl(
⋃︁

a∈A O(⟨Ua,Va⟩)) = O(
⋃︁

a∈A(Ua ∩Va)). To
prove (b), note that since p : PX → X is a closed function, it suffices to show that
U ⊆ p[OU ] ⊆ clXU . If x ∈U , let U be any open ultrafilter on X such that U ∈ U. Then
(x,U) ∈ OU . So, U ⊆ p[OU ]. Now, if (x,U) ∈ OU , then U ∈ U and p((x,U)) = x ∈ aU⊆
clXU . Thus, p[OU ] ⊆ clXU . To prove (c), suppose p←(x) ⊆ OU . Then x ∈ aU for every
open ultrafilter U such that τ(x)⊆U, U ∈U. That is, U ∈

⋂︁
τ(x)⊆UU. By Proposition 10(k),

rU ∈ τ(x) and x∈ rU . Conversely, suppose x∈ rU . Then U∈ p←(x) iff x∈ aU iff τ(x)⊆U.
Since rU ∈ τ(x), by Proposition 10(k), U ∈

⋂︁
τ(x)⊆UU=

⋂︁
U∈p←(x)U. Thus, for U∈ p←(x),

x ∈ aU and U ∈ o(U). So, p←(x)⊆ OU . To prove (d), suppose OU = OV . By Proposition
11(b), clU = clV ; thus, rU = rV . Conversely, suppose rU = rV . So, O(rU) = O(rV ). By
Proposition 10(i), O(U) = O(V ). □

Theorem 12. (Ul’yanov 1975a; Shapiro 1976; Błaszczyk 1977) For a space X , the absolute
space PX is extremally disconnected and the absolute map PX → X is continuous, onto,
irreducible, separable, and perfect.

Proposition 13. Let X be a space. Then:
(a) if W is an open ultrafilter on PX, there is an unique open ultrafilter U on X such that

{rT : T ∈W}= {OU : U ∈ U} and (x,U) ∈ aW iff x ∈ aU,
(b) if U is an open ultrafilter on X, there is an unique open ultrafilter W on PX such that

{rT : T ∈W}= {OU : U ∈ U},
(c) there is a bijection g : B(PX)→ B(X) such that for each W ∈ B(PX), {rT : T ∈

W}= {OU : U ∈ g(W)}, and
(d) for W ∈ B(PX), aW= {(x,g(W)) ∈ PX : x ∈ a(g(W))}.
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Proof. The proofs of (a) and (b) follow directly from the properties in Propositions 10 and
11. The proof of statement (c) is immediate from (a) and (b). The proof of (d) follows from
the definition of (x,g(W)) ∈ PX . □

Proposition 14. Let U be an open ultrafilter on X and V= {OU : U ∈U} the corresponding
open ultrafilter base on both PX and PX(s). Then aPX(s)V ̸=∅ iff aPXV ̸=∅ iff aXU ̸=∅.

Proof. This result follows from Propositions 1 and 13. □

Another immediate consequence of Proposition 13(d) is the following result.

Proposition 15. A space X is n-qH-closed iff PX is n-qH-closed.

Proposition 16. A space X is n-Hausdorff iff PX is n-Hausdorff.

Proof. If X is n-Hausdorff, it follows quickly by Proposition 10(b,e) that PX is n-Hausdorff.
Conversely suppose that PX is n-Hausdorff. The proof that X is n-Hausdorff is the same
for any n≥ 2. Here is a proof by contradiction when n = 2. Assume there are two distinct
points x1,x2 such that if Ui ∈ τ(xi) for i = 1,2, U1∩U2 ̸=∅.

Let U be an open ultrafilter that contains the open filter base {U1∩U2 : Ui ∈ τ(xi), i =
1,2}. There are open sets ⟨Vi,Wi⟩, i = 1,2, such that (xi,U) ∈ ⟨Vi,Wi⟩ for i = 1,2 and
⟨V1,W1⟩∩ ⟨V2,W2⟩=∅. By Proposition 10(c,e), V1∩W1∩V2∩W2 =∅. As Vi ∈ τ(xi) and
Wi ∈U for i = 1,2, it follows that V1∩V2 ∈U and W1∩W2 ∈U. Hence, V1∩V2∩W1∩W2 ̸=
∅, a contradiction. □

Comment: By the above propositions, if X is n-qH-closed, then PX is also n-qH-closed.
Now PX is extremally disconnected as the closure of an open set is clopen. It follows
that its semiregularization PX(s) is also extremally disconnected, qH-closed, and has a
clopen basis. Then PX(s) is completely regular (but not necessarily Hausdorff). By next
proposition, PX(s) is also compact.

Proposition 17. If a space X is n-qH-closed and regular, then X is compact.

Proof. Let X be a n-qH-closed and regular space and let U be an open cover of X . For every
x∈X there exists Ux ∈U such that x∈Ux. By regularity, there exists an open neighbourhood
Vx of x such that Vx ⊆ clVx ⊆Ux. Put V = {Vx : x ∈ X}. By hypothesis X is n-qH-closed,
then there exists {Vx : x ∈W} ∈ [V]<ω such that X =

⋃︁
x∈W clVx, hence X =

⋃︁
x∈W Ux. □

Corollary 18. If a regular space X is n-H-closed, then X is compact and n-Hausdorff.

Note that a compact n-Hausdorff space need not be regular. Indeed, in Example 5 of
Bonanzinga et al. (2016), a compact 3-Hausdorff first countable non 3-normal space is
constructed and since this space is not Hausdorff, it is not regular. We can notice that this
space is not 3-H-closed. In fact, the open ultrafilter containing the neighborhoods of 1/4
plus the open set [0,1/4) has only one adherent point.

4. Applying the absolute PX to the Fomin extension

Our main goal in this section is to use the Fomin extension σX for a space X to construct
a completely regular extension Z of PX(s) such that PX(s) is C∗-embedded in Z and the
space σX\X and Z\PX(s) are homeomorphic and Hausdorff. That is, an arbitrary space X
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has an extension T such that T\X is Tychonoff and a subspace of an extremally disconnected
space.
Construction. We start with a σ -like extension Y of X . The intermediate goal is to construct
a σ -like extension ˜︁Y of PX(s) such that Y\X and ˜︁Y\PX(s) are homeomorphic. For each
p ∈ Y\X , Op is an open ultrafilter on X , and by Proposition 13 there is an unique open
ultrafilter Oh(p) on PX such that {rS : S ∈ Oh(p)} = {OS : S ∈ Op}. We denote the open
ultrafilter on PX(s) generated by the base {rS : S ∈ Oh(p)}= {OS : S ∈ Op} by Oh(p)

s . Let˜︁Y = {h(p) : p ∈ Y\X}∪PX(s) with the strict extension topology. Since Oh(p)
s is an open

ultrafilter on PX(s) for each p ∈ Y\X , ˜︁Y is a σ -like extension of PX(s). It follows that the
function h : Y\X → ˜︁Y\PX(s) : p ↦→ h(p) is a bijection. More is true as noted in the next
result.

Theorem 19. Let Y be a σ -like extension of a space X. The bijection g : Y\X → ˜︁Y\PX(s) :
p ↦→ h(p) is a homeomorphism.

Proof. For p∈Y\X ,{oU\X :U ∈Op} is an open neighborhood base for p in Y\X ; note that
oU\X = {q ∈Y\X : U ∈Oq}. Likewise, for h(p)∈ ˜︁Y\PX(s), {o(OU)\PX(s) : U ∈Op} is
an open neighborhood base for h(p) ∈ ˜︁Y\PX(s); note that o(OU)\PX(s) = {h(q) : OU ∈
Og(q),q ∈ Y\X}= {h(q) : U ∈ Oq,q ∈ Y\X}. This shows that g : Y\X → ˜︁Y\PX(s) : p ↦→
h(p) is a homeomorphism. □

Lemma 20. Let Y be a σ -like extension of a space X and T be a clopen set in X. Then
o(T ) is also clopen in Y .

Proof. As X\T is also clopen, then o(T )∩o(X\T ) =∅ and Y = o(T )∪o(X\T ). □

Corollary 21. Let Y be a σ -like extension of a space X where X is extremally disconnected
and semiregular. Then Y is extremally disconnected and completely regular.

Proof. If p ∈ Y\X , then Op is an open ultrafilter on X and rOp = {rU : U ∈ Op} is an
open ultrafilter base on X that is contained in an unique open ultrafilter on X . Since X is
semiregular, by Lemma 20, {o(rT ) : T ∈ τ(X)} is a clopen basis for Y . So, Y is completely
regular. Let S ∈ τ(Y ), then clY S = clY (S∩X) = clY r(S∩X). Now r(S∩X) is clopen in X ,
and by Lemma 20, o(r(S∩X)) is clopen in Y . So, clY S = clY o(S) = o(S) is clopen. This
shows that Y is extremally disconnected. □

Theorem 22. Let Y be an extension of X such that Op is an open ultrafilter for each
p ∈ Y\X. Then X is C∗-embedded in Y .

Proof. Let f : X → R be continuous and bounded. For x ∈ X , let Fx be the filter generated
by { f [U ] : x ∈U ∈ τ(X)} and note that f (x) ∈ c(Fx) by the continuity of f . For p ∈ Y\X ,
let Fp be the filter generated by { f [U ] : U ∈ Op}. Now, f [X ]⊆ [a,b]. As [a,b] is compact,
aFp ̸=∅. The next step is to show that |aFp|= 1. Assume that c,d ∈ aFp. There are open
sets U,V in R such that c ∈U,d ∈V and U ∩V =∅.
Now f←[U ] meets Op and, hence, f←[U ] ∈ Op; similarly, f←[V ] ∈ Op. But f←[U ]∩
f←[V ] =∅, a contradiction. Thus, |aFp|= 1. By compactness of [a,b], Fp converges to
some point, denoted as F(p), in R. For x ∈ X , define F(x) = f (x). The function F : Y → R
is an extension of f .
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ABSOLUTES AND n-H-CLOSED SPACES A1-9

We will now show that F is continuous. Let y ∈ Y and T be an open set in R such that
F(y)∈ T . There is an open set S in R such that F(y)∈ S⊆ clRS⊆ T . For y = x∈ X , there is
an open set U in Y such that F [U ∩X ] = f [U ∩X ]⊆ S. Let q ∈U\X and F(q) ∈V ∈ τ(R).
Then U ∩X ∈ Oq and there is R ∈ τ(Y ) such that F [R∩X ] = f [R∩X ]⊆V and R∩X ∈ Oq.
Thus, R∩U ∩X ∈Oq. So, it follows that ∅ ̸= F [R∩U ∩X ]⊆ F [R∩X ]∩F [U ∩X ]⊆V ∩S.
This shows that F(q) ∈ clRS⊆ T . That is, F [U ]⊆ T . For y = p ∈ Y\X , F(p) ∈ c(Fp) and
there is an open set U in Y such that F [U ∩X ]⊆ S. By repeating the same proof as above, it
follows that F [U ]⊆ T . □

Proposition 23. Let Y be a σ -like extension of a space X and ˜︁Y be the σ -like extension of
PX(s) constructed in Construction. Then Y is qH-closed iff ˜︁Y is qH-closed.

Proof. By Theorem 4, Y is qH-closed iff for every free open ultrafilter U on X , aYU ̸=∅.
Likewise, a σ -like extension ˜︁Y of PX(s) is qH-closed iff every free open ultrafilter W on
PX(s), a˜︁YW ̸=∅ on PX(s).

Suppose Y is qH-closed, and W is a free open ultrafilter on PX(s) such that aPX(s)W=∅.
Then {rT : T ∈W} is an open ultrafilter base that generates the free open ultrafilter W
on PX(s); so, aPX(s)Ws = aPX(s)W = ∅. By Proposition 13, there is an unique open
ultrafilter U on X such that rW = {rT : T ∈W} = {OT : T ∈ U}. By Proposition 14, as
aPX(s)W = ∅,aXU = ∅. Thus there is a p ∈ Y\X such that Op = U as Y is qH-closed.
Hence, p ∈ aYU ̸= ∅. By Theorem 19 and the construction of ˜︁Y , Oh(p) = W. Thus,
h(p) ∈ aỸW. This shows that ˜︁Y is qH-closed. Conversely, suppose ˜︁Y is qH-closed and U is
a free open ultrafilter on X . By Proposition 13, there is an open ultrafilter W on PX(s) such
that {rW : W ∈W}= {OU : U ∈ U} is an open ultrafilter base on PX(s). By Proposition
14, aPX(s)W=∅ since aXU=∅. As ˜︁Y is qH-closed, by Theorem 19, there is p∈Y\X such
that Oh(p) =W ∈ ˜︁Y\PX(s). By the construction of ˜︁Y , Op = U and p ∈ aYU. This shows
that Y is qH-closed. □

Let Y be a qH-closed, σ -like extension of a space X . By Theorem 12, PX is extremally
disconnected, and, hence, the regular open subsets of PX are clopen. Thus, (PX)(s) has
a basis of clopen sets and is completely regular. Also, if U is open in (PX)(s), then
clPXU = cl(PX)(s)U is clopen in both PX and (PX)(s). That is, (PX)(s) is also extremally
disconnected. As completely regular spaces are also semiregular, by Corollary 21, ˜︁Y is
extremally disconnected and completely regular. By Proposition 23, ˜︁Y is qH-closed, thus
using Proposition 17 we have that ˜︁Y is compact. By Theorem 22, (PX)(s) is C∗-embedded
in ˜︁Y (defined in Theorem 19). Thus, for a qH-closed, σ -like extension Y of a space X , the
extension Ỹ of PX(s) is compact, extremally disconnected and PX(s) is C∗-embedded in X̃
and Y\X is homeomorphic to Ỹ\PX(s). Two special cases of this theory are stated in the
next result.

Theorem 24. (a) Let X be a space. The Fomin extension σX of X is qH-closed. The Fomin
extension σPX(s) is compact, extremally disconnected, and completely regular; PX(s) is
C∗-embedded in σPX(s); and σX\X is homeomorphic to σPX(s)\PX(s). Also, σX\X is
Hausdorff.
(b) Let X be an n-Hausdorff space X . The n-σPX(s) extension of PX(s) is n-qH-closed. The

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. 99, No. 2, A1 (2021) [16 pages]



A1-10 F. A. BASILE ET AL.

Fomin extension n-σPX(s) is compact, extremally disconnected, and completely regular;
PX(s) is C∗-embedded in n-σPX(s); and n-σX\X is homeomorphic to σPX(s)\PX(s).

Proof. Note that both σX and n-σX are qH-closed, σ -like extensions of X and ˜︁Y =
σ(PX(s)) and Ỹ = n−σ(PX(s)), respectively. By Theorem 19, σX\X ∼=σ(PX(s))\(PX)(s)
and n-σX\X ∼= σ(PX(s))\(PX)(s). The conclusions follow. □

Final comment: The conclusions of Theorem 24 show that for an arbitrary space X ,
the extensions σX and n-σX have very nice remainders that are completely regular and
subspaces of extremally disconnected spaces. More is true in the case of σX . As σX\X =
{Op : p ∈ σX\X}= {U : U is a free open ultrafilter on X} and when Op ̸= Oq for distinct
points p,q, σX\X is Hausdorff. That is, σX\X is Tychonoff and a subspace of an extremally
disconnected space even though X may be far from being Hausdorff. When X is a Hausdorff
space, the T0 identification (sometimes called the Kolmogorov quotient) of n-σX\X is
Hausdorff. To apply the T0 identification, first define the equivalence relation on n-σX\X
by saying that two points y,z are equivalent if cl({p}) = cl({q}). The induced quotient
space of n-σX\X is Hausdorff.

5. Functions and minimal n-Hausdorff spaces

Definition 25. A space X is called minimal n-Hausdorff if X has no strictly coarser
n-Hausdorff topology.

We know (see Porter and Woods 1988) that a 2-Hausdorff space X is minimal 2-Hausdorff
iff X is 2-H-closed and semiregular. We ask if this is true when 2 is replaced by an arbitrary
n. The following shows this is true in only one direction.

Proposition 26. (a) If X is n-Hausdorff, then X(s) is n-Hausdorff.
(b) If X is n-H-closed, then X(s) is n-Hausdorff.

Proof. For (a), we can use that r(
⋂︁

n Ui) =
⋂︁

n rUi. For (b), if U is an open ultrafilter on X ,
then Us = {rU : U ∈U} is an ultrafilter base for U on X and for U∩τ(X(s)) on X(s). Thus,
aU= aUs = a(U∩ τ(X(s)). □

Example 1. A minimal 3-Hausdorff that is not 3-H-closed space.

Let X = {1,2,3} with the topology {X ,∅,{1},{2,3}}. Note that X is 3-Hausdorff
and semiregular. The only coarser topology on X is the indiscrete topology and it is not
3-Hausdorff; so, X is minimal 3-Hausdorff. However, for the open ultrafilter U= {X ,{1}},
aU has only one adherent point, namely {1}. This shows that X is not 3-H-closed. □

We can show that n-H-closedness is preserved under continuous functions but first we
prove the following stronger result.

Lemma 27. Let m,n∈ω , with n≥ 2 and m≥ 1. Let X be (m ·n)-H-closed, Y be n-Hausdorff,
and f : X → Y be a continuous, m-to-1, surjective function. Then Y is n-H-closed.

Proof. Let A⊆ Y such that |A|< n−1 and C be an open family in Y such that Y\A⊆
⋃︁
C.

Since f is continuous, m-to-1 and onto, then | f←[A]|<m(n−1) and X\ f←[A]⊆
⋃︁

C f←[U].
By Theorem 2 of Basile et al. (2019), there is a finite subfamily D ⊆ C such that X =
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⋃︁
D cl( f←[U ]). Then Y = f [X ] =

⋃︁
D f [cl( f←[U ])]⊆

⋃︁
D cl f ( f←[U ]) =

⋃︁
D clU . Again,

by Theorem 2 of Basile et al. (2019), this shows that Y is n-H-closed. □

Corollary 28. Let X be n-H-closed, Y be n-Hausdorff, and f : X → Y be a continuous
bijection. Then Y is also n-H-closed.

Theorem 29. A semiregular, n-H-closed space X is minimal n-Hausdorff.

Proof. Let X be semiregular, n-H-closed, and σ be a coarser n-Hausdorff topology on X . Let
f be the identity function on X . We will show that the continuous bijection f : X → (X ,σ)
is a homeomorphism. As the family of regular-closed subsets of X is a closed base for X , it
suffices to show that f [cl(U)] is closed in (X ,σ) where U is open in X . By Proposition 3
of Basile et al. (2019), cl(U) is n-H-closed. As f |cl(U) : cl(U)→ f [cl(U)] is a continuous
bijection, by Corollary 28, f [cl(U)] is n-H-closed. By the definition of n-H-closed, f [cl(U)]
is closed in (X ,σ). □

Example 2. 3-H-closedness is not preserved under continuous, onto, compact, closed,
irreducible functions.

We use the space in Remark 1 of Basile et al. (2019). Recall that X = ω ∪{a,b} where
a set U ⊆ X is defined to be open if a ∈U or b ∈U , then U ∩ω is cofinite in ω , and each
point n ∈ ω is isolated. Let Y = X ∪{cn : n ∈ ω} where cn ̸∈ X for n ∈ ω . A set U ⊆ Y
is defined to be open if a ∈U or b ∈U when there is some m ∈ ω such that {n,cn} ⊆U
for n ≥ m and cn ∈U iff n ∈U . The space Y is 3-H-closed, and X is dense in Y . Let Z
be the one-point compactification of ω where the point at infinity is denoted as p. Define
f : Y → Z by f (n) = f (cn) = n for n ∈ N and f (a) = f (b) = p. Note that f is continuous,
onto, compact and not separable (we can consider the point p ∈ Z). We now prove that f is
closed. Let C be a closed subset of Y . We distinguish two cases. If the set C contains a or b,
then f (C) contains p and every subset of Z containing p is a closed subset of Z. If the set C
does not contain a and b, then it is finite and also f (C) is a finite, hence closed subset of Z.
We can easily notice from the above comment that for every proper closed subset C of Y , we
have f (C) ̸= Z. This means f is also irreducible. As Z is Hausdorff, it is also n-Hausdorff
for all n≥ 2. Then the compact space Z is H-closed. It was noted by Basile et al. (2019)
that an H-closed space is not n-H-closed, for every n > 2; hence Z is not 3-H-closed. □

We now introduce the following definition which represents a generalization of the notion
of separable function.

Definition 30. A function f : X → Y is called n-separable if for each y ∈ Y and different
points x1, ...,xn ∈ f←(y), there exist open subsets Ui containing xi, for every i = 1, ...,n,
such that

⋂︁n
i=1 Ui = /0.

Remark 1. We can extend the space of Example 2. We consider X = ω ∪{x1, ...,xn} where
x1, ...,xn /∈ ω and U is defined to be open when if it contains one of xi for i = 1, ...,n, then
U ∩ω is cofinite in ω , and each point of ω is isolated. The space Y is now n-H-closed and
the function f : Y → Z is continuous, onto, compact, closed, irreducible and not n-separable.
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6. Cardinality bounds for n-H-closed spaces

Recall the following definitions given by Carlson and Porter (2018). The definition of a
section is given after Proposition 2.1 of Carlson and Porter (2018), and also before Theorem
5.1 of Porter and Woods (1978).

Definition 31. (Carlson and Porter 2018) For a space X , define a section to be a one-to-one
function

b : X →{U : U is a convergent open ultrafilter on X}
where b(x) is an open ultrafilter on X converging to x, for any x ∈ X , i.e., (x,b(x)) ∈ PX .

For an open subset U of X , define ˆ︁Ub = {x∈ X : U ∈ b(x)}. For what follows, the choice
of a section will be inconsequential, so for convenience we will write ˆ︁U instead of ˆ︁Ub.

Recall the following property:

Proposition 32. (Carlson and Porter 2018) Let X be a space, U an open set, and {Ui}n
i=1 a

family of open sets of X . Then:
(1) U ⊆ ˆ︁U ,
(2) ˆ︁U =∅ iff U =∅,
(3) ˆ︁U = X iff U = X ,
(4)

⋂︁n
i=1

ˆ︁Ui = ˆ︂⋂︁n
i=1 Ui,

(5)
⋃︁n

i=1
ˆ︁Ui = ˆ︂⋃︁n

i=1 Ui,
(6) X\ˆ︁U = ˆ︂X\clX (U),

Proof. For 1, notice that if x ∈U then U ∈ b(x), thus x ∈ ˆ︁U . For 2, if U =∅, then U /∈ b(x)
for all x ∈ X . Thus ˆ︁U = ∅. If ˆ︁U = ∅, then U = ∅ by 1. For 3, suppose ˆ︁U = X . Then
U ∈ b(x) for every x ∈ X and it follows that U = X . If U = X then ˆ︁U = X by 1. For
4, let x ∈

⋂︁n
i=1

ˆ︁Ui. Then Ui ∈ b(x) for every i = 1, . . . ,n. Therefore
⋂︁n

i=1 Ui ∈ b(x) and
x ∈ ˆ︂⋂︁n

i=1 Ui. The reverse inclusion follows from the superset property of a filter. For 5, let
x ∈

⋃︁n
i=1

ˆ︁Ui. Then x ∈ ˆ︁Ui for some i. Therefore Ui ∈ b(x) and
⋃︁n

i=1 Ui ∈ b(x). It follows
that x ∈ ˆ︂⋃︁n

i=1 Ui. Suppose x ∈ ˆ︂⋃︁n
i=1 Ui. Then

⋃︁n
i=1 Ui ∈ b(x). If Ui /∈ b(x) for all i = 1, . . .n

then X\clX (Ui) ∈ b(x) for all i, contradicting that
⋃︁n

i=1 Ui ∈ b(x). Therefore Ui ∈ b(x) for
some i. It follows that x ∈ ˆ︁Ui and thus x ∈

⋃︁n
i=1

ˆ︁Ui. For 6, let x ∈ X\ˆ︁U . This is equivalent
to U /∈ b(x), which in turn is equivalent to X\clX (U) ∈ b(x). Finally this is equivalent to
x ∈ ˆ︂X\clX (U). □

Proposition 33. X is n-Hausdorff iff for distinct points x1, . . . ,xn ∈ X there exists open
subsets Ui containing xi ∈Ui for every i = 1, . . . ,n such that

⋂︁n
i=1

ˆ︁Ui =∅.

Proof. If X is n-Hausdorff, then for distinct points x1, ...,xn ∈ X there exists open subsets
Ui containing xi for every i = 1, ...,n such that

⋂︁n
i=1 Ui =∅, but then

⋂︁n
i=1

ˆ︁Ui = ˆ︁∅=∅. The
converse follows as U ⊆ ˆ︁U every open subset U of X . □

The following represents a new characterization of n-qH-closed spaces.

Proposition 34. X is n-qH-closed iff for every A ∈ [X ]<n−1 and a family U of open subsets
of X such that X \A⊆

⋃︁
U, there exists V ∈ [U]<ω such that X =

⋃︁
V∈V ˆ︁V .
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Proof. Suppose X is n-qH-closed, then for every A ∈ [X ]<n−1 and a family U of open
subsets of X such that X \A⊆

⋃︁
U, there exists V∈ [U]<ω such that X =

⋃︁
V∈VV ⊆

⋃︁
V∈V ˆ︁V .

Conversely, X =
⋃︁

V∈V ˆ︁V = ˆ︂⋃︁
V∈VV =

⋃︁
V∈VV by Proposition 32. □

Definition 35. (Carlson and Porter 2018) Let A be a subset of X . Define ĉ(A) = {x ∈ X :
for every open subset U of X containing x, ˆ︁U ∩A ̸=∅}. We say that a subset A is ĉ-dense
in X if ĉ(A) = X . We define the ĉ-density of X , denoted by dĉ(X), as the smallest cardinality
of a ĉ-dense subset of X .

We observe that cl(A)⊆ ĉ(A) and therefore a dense set in a space is also ĉ-dense. Con-
sequently, dĉ(X)≤ d(X) for any space X .

We can prove the following for an n-Hausdorff space X , which is an improvement of
Proposition 28 of (Bonanzinga 2013). We omit the proof because it follows step by step the
proof of Proposition 28 of Bonanzinga (2013).

Proposition 36. Let X be an n-Hausdorff space, then |X | ≤ dĉ(X)χ(X).

Proof. Let D be a ĉ-dense set such that |D|= dĉ(X) and let κ = χ(X). For all x ∈ X , let Nx

be a neighborhood base at X such that |Nx| ≤ κ . For all U ∈Nx, let x(U,D) ∈ ˆ︁U ∩D and
D(x) = {x(U,D) : U ∈Nx}. Then |D(x)| ≤ |D|κ .

Define φ : X →
[︁
[D]≤κ

]︁≤κ by φ(x) = {ˆ︁U ∩D(x) : U ∈ Nx}. We show the cardinality
of each fiber of φ is finite. By contradiction, assume there exists an infinite fiber φ−1(φ(x))
of φ . Since X is n-Hausdorff, by Proposition 33 there exists F = {x1, · · · ,xn} ⊆ φ−1(φ(x))
and neighborhoods Ui ∈ Nxi of xi for i = 1, . . . ,n such that

⋂︁n
i=1

ˆ︁Ui = ∅. Then φ(x1) =

. . .= φ(xn) = φ(x). For i = 1, . . . ,n, ˆ︁Ui∩D(xi) ∈ φ(x) and therefore ˆ︁Ui∩D(xi) = ˆ︁Vi∩D(x)
where Vi ∈ Nx. Let V =

⋂︁n
i=1 Vi. Then ˆ︁V ∩D(x) ̸= ∅. This contradicts that

⋂︁n
i=1

ˆ︁Ui = ∅.
As each fiber of φ is finite, we have that |X | ≤ (|D|κ)κ = dĉ(X)χ(X). □

Recall the following

Theorem 37. (Bonanzinga et al. 2014, Theorem 3.1) Let n≥ 2 be finite, X be a set, Y ⊆ X
and for each x ∈ X , H(x) = {V (α,x) : α < κ} be a collection of subsets of X containing x
which is closed under finite intersection. Assume the following:

• (n-H) if x1, ...,xn ∈X are distinct, then there exist α1, ...,αn < κ such that V (α1,x1)∩
...∩V (αn,xn) =∅ (n-Hausdorff condition)
• (C) for every function f : X→ κ , there exists A∈ [X ]≤κ such that Y ⊆

⋃︁
x∈A V ( f (x),x)

(cover condition)
Then |Y | ≤ 2κ .

Definition 38. (Carlson and Porter 2018) For a subset A of X , define ˆ︁L(A,X) as the least
cardinal κ such that for every cover V of A by sets open in X there exists W ∈ [V]≤κ such
that A⊆

⋃︁
W∈W ˆ︁W . Set ˆ︁L(X) = ˆ︁L(X ,X).

Of course, for every space X , ˆ︁L(X)≤ L(X), where L(X) is the Lindelöf number of X .
We can prove the following:
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Theorem 39. If X is n-Hausdorff, then |X | ≤ 2ˆ︁L(X)χ(X).

Proof. Let κ = ˆ︁L(X)χ(X) and Bx = {B(α,x) : α < κ} an open neighborhood system of
x. Consider H(x) = {V (α,x) : α < κ and V (α,x) = ˆ︂B(α,x)}. Of course H(x) is closed
under finite intersections and satisfies condition (n-H) of Theorem 37. We want to show
that also condition (C) is satisfied. Let f : X → κ be a function. {B( f (x),x) : x ∈ X} is an
open cover of X and by ˆ︁L(X) ≤ κ , there exists A ∈ [X ]≤κ such that

⋃︁
x∈A V ( f (x),x) = X .

Applying Theorem 37 we have |X | ≤ 2κ . □

Corollary 40. If X is n-Hausdorff, then |X | ≤ 2L(X)χ(X).

The previous result improves the following one holding in the class of T1 spaces.

Corollary 41. (Bonanzinga 2013) If X is a T1 n-Hausdorff space, then |X | ≤ 2L(X)χ(X).

Corollary 42. (Arhangel’skii, 1969; see (Hodel 1984)) If X is Hausdorff, then |X | ≤
2L(X)χ(X).

Corollary 43. If X is n-H-closed, then |X | ≤ 2χ(X).

Proof. It follows from Proposition 34 and Theorem 39. □

Corollary 44. (Dow and Porter 1982) If X is H-closed, then |X | ≤ 2χ(X).

In the papers by Bella and Cammaroto (1988) and Cammaroto et al. (2013) there are
several open questions worthy of study in the area of n-Hausdorff spaces.
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