
Universitá degli Studi di Messina
Dipartimento di Ingegneria

Dottorato di Ricerca in Ingegneria Civile Ambientale e della Sicurezza

Curriculum in Scienze e Tecnologie, Materiali, Energia e Sistemi Complessi per il Calcolo

Distribuito e le Reti SSD INF/01

Ciclo XXXVI

Applications in the Cloud Edge Continuum:
Environment, Challenges and Directions

AUTHOR:

CHRISTIAN SICARI

HEAD OF THE DOCTORAL SCHOOL:

Prof. Gaetano Bosurgi

ADVISOR:

Prof. Massimo Villari

Accademic Year 2022-2023

i

Abstract

Continuum Computing is a recent term born to refer to the capacity to smoothly integrate

Cloud, Fog, and Edge Computing to let applications run wherever they can better exploit the

characteristics of the infrastructure to perform better, faster, or more efficiently. Computing at

the Continuum is not trivial for many reasons. First, because applications are not thought

to be Continuum native, but just Cloud or Edge native, and second, because a Continuum

infrastructure is composed of heterogeneous and highly distributed nodes, but applications

need infrastructure transparency to work properly everywhere in the Continuum. In this

regard, the use of containers and orchestrators helps, but those latter are usually heavy

and unsuitable for high-constrained Edge devices. Moreover, internet use is huge in highly

decoupled infrastructure and even transmitting sensitive data; therefore, keeping Continuum

secure is challenging. All those conditions and challenges make the Continuum hard to

define, standardize, and implement. In this thesis, we will go through all those aspects that

make the realization of Continuum Computing hard, and for all of them, we will propose one

or more suitable solutions that will be extensively discussed, designed, and tested. Ultimately,

we will even analyze scenarios where Continuum Computing is needed and how our work

can help satisfy those needs.

Keywords: Continuum Computing, Cloud Edge Continuum, Serverless Computing, Function

as a Service, Serverless Workflows, Osmotic Computing, Urgent Computing.

Contents

Index ii

Earlier Publications x

1 Introduction 1

1.1 Scientific Contributions . 3

1.2 Structure of the Thesis . 5

2 Background 7

2.1 Cloud, Edge and Fog Computing . 7

2.2 Cloud Edge Continuum . 9

2.3 Microservices and Orchestration . 9

2.4 Serverless Computing . 10

2.5 Osmotic Computing . 10

3 Guaranteeing Cooperation in Public and Private Cloud and Edge Infrastructures 14

3.1 Introduction . 14

3.2 Background . 15

3.3 Workflow Engine Characteristics and Principles 17

3.3.1 State . 17

3.3.2 Event . 18

3.3.3 Workflow . 18

3.3.4 Workflow Manifest . 19

ii

CONTENTS iii

3.4 Architecture . 20

3.5 Conclusion . 22

4 Deploying Continuum Native Applications 24

4.1 OpenWolf: a Serverless Workflow Engine for Native Cloud-Edge Continuum 25

4.1.1 State of the Art . 25

4.1.2 Motivation . 25

4.1.3 OpenWolf Engine . 26

4.1.4 Performances . 34

4.1.5 Conclusion . 38

4.2 Event-Driven FaaS Workflows for Enabling IoT Data Processing at the Cloud

Edge Continuum . 39

4.2.1 Use Case and Related Work . 40

4.2.2 Background . 42

4.2.3 Architecture . 44

4.2.4 Performance Analsyis . 49

4.2.5 Summary . 54

4.2.6 Conclusion . 55

5 Guaranteeing Security and Privacy in Continuum Environments 56

5.1 Secure-by-Design Serverless Workflows on the Edge-Cloud Continuum Through

the Osmotic Computing Paradigm . 57

5.1.1 Related Works . 58

5.1.2 Threats Analysis and Mitigation . 60

5.1.3 Benchmarks . 66

5.1.4 Conclusions . 75

5.2 A Distributed Peer to Peer Identity and Cloud Edge Continuum Applications 75

5.2.1 Related Work . 76

5.2.2 Design . 79

5.2.3 Implementation . 82

5.2.4 Use Cases . 84

5.2.5 Smart City Use Case . 85

5.2.6 Rural Area Use Case . 86

5.2.7 Conclusion . 88

CONTENTS iv

6 Discovering and Addressing Applications in a Continuum Infrastructure 89

6.1 Introduction . 89

6.2 State of the Art . 91

6.3 Motivation . 93

6.4 Design . 97

6.4.1 Three dimensional Geo Codes . 98

6.4.2 EPC as MEL Names . 99

6.4.3 OCE-DNS Infrastructure . 100

6.4.4 RR Types . 102

6.5 Implementation . 103

6.5.1 Enabling Technologies . 103

6.5.2 OCE-DNS Infrastructure Deploy . 104

6.5.3 RR Keys structure . 104

6.5.4 CoreDNS configuration . 106

6.6 Performance Evaluation . 107

6.6.1 Testbed Setup . 107

6.6.2 Discussion . 111

6.7 Conclusion . 112

7 Orchestrating Applications in the Continuum 113

7.1 Introduction . 113

7.2 Related work . 114

7.3 System model . 116

7.3.1 Middleware Unit (MidU) . 118

7.3.2 Monitoring Unit (MonU) . 119

7.3.3 Planning Unit (PlaU) . 120

7.3.4 Tolerancer description . 120

7.4 Performance evaluation . 124

7.4.1 Testbed and experiments . 125

7.4.2 Result discussion . 125

7.5 Conclusion . 129

8 Use Cases of Computing at the Continuun 130

8.1 OpenWolf: Serverless Workflow Engine for AI on Continuum 131

8.1.1 Smart City Use Case . 131

CONTENTS v

8.1.2 Design a Workflow using OpenWolf . 132

8.1.3 Performances . 134

8.1.4 Conclusion . 134

8.2 TEMA: Event-Driven Serverless Workflows Platform for Natural Disaster

Management . 135

8.2.1 State of the Art . 136

8.2.2 Architecture . 138

8.2.3 Conclusion . 142

9 Conclusion and Future Works 145

Bibliography 148

List of Figures

1.1 Research questions and presented works mind map 6

2.1 Cloud, Fog and Edge pyramid . 8

2.2 Osmosis phenomenon . 11

2.3 MELs classification. 12

2.4 SDMem in Osmotic Computing . 12

3.1 State structure . 17

3.2 Workflow example . 19

3.3 Workflow Engine architecture . 21

3.4 Event data model . 22

4.1 Sequential Function composition workflow . 27

4.2 Example of Workflow in data analysis . 28

4.3 Workflow state graph in the Continuum . 30

4.4 OpenWolf architecture . 32

4.5 OpenWolf agent activity diagram . 33

4.6 Synchronous vs asynchronous function execution time in OpenFaaS 36

4.7 Sequential workflow execution time in OpenWolf 37

4.8 Sequential and parallel workflow execution time comparison in OpenWolf . . 37

4.9 Workflow execution time in OpenWolf in different infrastructures 38

4.10 Urgent computing decision stage and reactions 41

4.11 Function spreading on Continuum . 45

vi

LIST OF FIGURES vii

4.12 Enhanced Rpuslar architecture overview and peers’ message exchange 45

4.13 Best RPulsar’ CT on continuum tiers increasing payload size 51

4.14 Ideal RPulsar request duration vs real one on increasing payload 51

4.15 RPulsar RT with one single request at time . 52

4.16 Enhanced RPulsar’s RT increasing parallel requests 53

5.1 MEL design in OpenWolf . 61

5.2 Function isolation . 64

5.3 Message encryption workflow . 65

5.4 Infrastructure SDMem using VPN . 66

5.5 Average Serverless Function Execution Overhead 68

5.6 Sequential vs parallel workflows execution time comparison 70

5.7 Plaintext workflow execution, sequential parallel comparison 73

5.8 Ciphered workflow execution, sequential parallel comparison 74

5.9 Centralized IAM architecture . 79

5.10 Authorization and access flow . 80

5.11 Distributed IAM architecture . 81

5.12 Osmotic IAM architecture . 84

5.13 Smart City scenario for the Osmotic IAM . 85

5.14 Rural Area scenario for the Osmotic IAM . 87

6.1 Transparent migration of a MEL . 95

6.2 Virtual vs real MEL position . 97

6.3 RR update . 101

6.4 OCE-DNS architecture . 102

6.5 OCE-DNS infrastructure . 104

6.6 OCE-DNS experiment setup . 108

6.7 10 DNS requests per MEL . 109

6.8 100 DNS requests per MEL . 109

6.9 1000 DNS requests per MEL. 110

7.1 Tolerancer system model . 117

7.2 Tolerancer node connections . 118

7.3 Tolerancer’s Migrator message exchange . 124

7.4 Time to restore in three different Tolerancer clusters 126

LIST OF FIGURES viii

7.5 Comparing the time to restore in three different Tolerancer clusters 127

8.1 AI Workflow on OpenWolf . 133

8.2 Workflow AI performance comparison on Continuum 135

8.3 TEMA platform architecture . 143

List of Tables

4.1 Cluster’s nodes characteristics . 35

4.2 OpenFaaS and OpenWolf parameters for the tesbed 35

4.3 Cluster nodes characteristics for Enhanced RPulsar testbed 50

5.1 Cluster’s nodes characteristics for the Osmotic Workflow testbed 67

5.2 OpenFaaS and OpenWolf parameters for the Osmotic Workflow testbed . . . 67

5.3 Sequential in-clear Workflow execution time summary 70

5.4 Sequential ciphered Workflow execution time summary 71

5.5 Parallel in-clear execution time summary . 71

5.6 Parallel ciphered execution time summary . 71

6.1 OCE-DNS testbed setup . 109

7.1 Tolerancer Cluster’s nodes characteristics. 125

7.2 Tolerancer Clusters configurations . 126

ix

Earlier Publications

This thesis is the outcome of the doctoral degree I started three years ago. It is based

on selected works (listed below) already published, accepted and under review papers in

scientific conferences and journals.

[1] Sicari, C. et al. (2024). Toward the Edge-Cloud Continuum Through the Serverless

Workflows. In: Savaglio, C., Fortino, G., Zhou, M., Ma, J. (eds) Device-Edge-Cloud

Continuum. Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-031-

42194-5_1

[2] C. Sicari, L. Carnevale, A. Galletta and M. Villari, "OpenWolf: A Serverless Workflow

Engine for Native Cloud-Edge Continuum," 2022 IEEE Intl Conf on Dependable, Auto-

nomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl

Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology

Congress (DASC/PiCom/CBDCom/CyberSciTech), Falerna, Italy, 2022, pp. 1-8, doi:

10.1109/DASC/PiCom/CBDCom/Cy55231.2022.9927926.

[3] Sicari, C., Balouk-Thomer, D., Parashar, M., & Villari, M. Event-Driven FaaS Workflows

for Enabling IoT Data Processing at the Cloud Edge Continuum The 16th IEEE/ACM

International Conference on Utility and Cloud Computing (UCC23).

[4] Gabriele Morabito, Christian Sicari, Armando Ruggeri, Antonio Celesti, Lorenzo Carnevale,

Secure-by-design serverless workflows on the Edge–Cloud Continuum through the

Osmotic Computing paradigm, Internet of Things, Volume 22, 2023, 100737, ISSN

2542-6605, https://doi.org/10.1016/j.iot.2023.100737.

x

LIST OF TABLES xi

[5] C. Sicari, A. Catalfamo, A. Galletta and M. Villari, "A Distributed Peer to Peer Identity

and Access Management for the Osmotic Computing," 2022 22nd IEEE International

Symposium on Cluster, Cloud and Internet Computing (CCGrid), Taormina, Italy, 2022,

pp. 775-781, doi: 10.1109/CCGrid54584.2022.00091.

[6] Christian Sicari, Antonino Galletta, Antonio Celesti, Maria Fazio, Massimo Villari, An

Osmotic Computing Enabled Domain Naming System (OCE-DNS) for distributed ser-

vice relocation between cloud and edge, Computers & Electrical Engineering, Volume

96, Part B, 2021, 107578, ISSN 0045-7906.

[7] A. Al-Dulaimy, C. Sicari, A. V. Papadopoulos, A. Galletta, M. Villari and M. Ashjaei,

"TOLERANCER: A Fault Tolerance Approach for Cloud Manufacturing Environments,"

2022 IEEE 27th International Conference on Emerging Technologies and Factory Au-

tomation (ETFA), Stuttgart, Germany, 2022, pp. 1-8, doi: 10.1109/ETFA52439.2022.9921606.

[8] Sicari, Christian & Carnevale, Lorenzo & Galletta, Antonino & Villari, Massimo. (2022).

OpenWolf: Serverless Workflow Engine for AI on Continuum. 1st International School

on Internet of Things & Edge AI: Computing, Communications and Systems, Sept 8- 12,

2022, Falerna (CS), Calabria, Italy .

[9] C. Sicari et al., "TEMA: Event Driven Serverless Workflows Platform for Natural Disaster

Management," 2023 IEEE Symposium on Computers and Communications (ISCC),

Gammarth, Tunisia, 2023, pp. 1-6, doi: 10.1109/ISCC58397.2023.10217920.

CHAPTER 1

Introduction

One of the most disruptive innovations in the Information Technology World is repre-

sented by the introduction of Cloud Computing. The idea behind Cloud Computing is based

on resource virtualization that allows, in a nutshell, hosting multiple virtual infrastructures

in one or more real ones, accessing them by the internet, and dynamically changing the

available resources. With the promise of saving money, many companies abandoned local

data centers to adopt the cloud infrastructure services provided by the major tech big players.

Just some years later the advent of the Cloud, the Internet of Things (IoT) rapidly increased

in popularity and even its application cases, like smart monitoring, environment monitoring,

disaster prediction, and many others. These use cases share a common workflow involving

IoT and Cloud: sensors produce data, data are sent to the cloud, the cloud computes the

data, sometimes running a machine learning algorithm, then the result is sent back to the

stakeholders. In this chain of processes, we can highlight three different downsides:

1. intensive network usage: network bandwidth easily gets congested by the intensive

use of it, falling in the impossibility of using it.

2. No real-time computation: sending data to the cloud and waiting for the response

has a cost that increases, increasing the size of data we need to transfer and receive,

and therefore, the reaction time to some data is really slow, sometimes making the

computation useless.

3. Absence of data privacy: mostly for local law constraints, we could need to compute

1

2

and store data in a delimited geographic area; by using the cloud, this is never possible.

These limits introduced computation capacity close to the data at the network’s edge.

This intermediate level has been called Edge Computing and runs lightweight computations,

forwarding the heaviest to the cloud infrastructure. For a while, Edge Computing has been

considered a good solution to absolve the above-mentioned problems because being located

close to the data sources, the network usage is limited, the result is near real-time, and the

computation is done in the same domain area of the data source.

From around 2020, the new challenge is letting the cloud and the edge infrastructure

smoothly work together, called Cloud Edge Continuum Computing, or just Continuum. As

highlighted in [10], this continuity must be more guaranteed at the application level than at

the infrastructure. Continuum native application, in particular, should be:

1. high decoupled: a monolithic application cannot be split into parts by design, so it

should entirely run in the cloud or in the edge. High-decoupled applications, usually

based on microservices or in Function as a Services (Faas) functions, are naturally split

into parts. Each part can be tailored to run in the cloud or edge, depending on the

application constraints.

2. As architecture-independent as possible: cloud and edge infrastructures differ in many

aspects, like the computation capacity or the network bandwidth. These aspects invali-

date the performance of the running application but not the operability. Some other

aspects, like the CPU or OS architecture, can make it impossible to run some appli-

cations or pieces of them. For this reason, applications should be independent of the

infrastructure where they are run.

3. Decoupled from data: continuum applications should be moved among the available

infrastructure to guarantee QoS and resource load balancing, but when applications

bring data, this process becomes harder. For this reason, the application business logic

and the data location should be located in different places to move the business logic

without touching the data.

The Cloud Edge Continuum Computing’s challenges are the goals of this thesis work; in

particular, in this broad scenario, the research questions we focus on are:

RQ1 How to guarantee cooperation in public and private Cloud and Edge infrastructures?

RQ2 How to deploy Continuum native applications?

§1.1 − Scientific Contributions 3

RQ3 How to guarantee security and privacy in Continuum environments?

RQ4 How to discover and address applications in a Continuum infrastructure?

RQ5 How to orchestrate applications in the Continuum?

RQ6 What are possible use cases of computing at the Continuum?

1.1 Scientific Contributions

In this Section, we will shortly answer the just pointed research questions. Then, for each

question, we will forward to the right chapters to extensive read about our solutions and

related research.

RQ1: How to Guarantee Cooperation in Public and Private Cloud and Edge Infrastructures?

Contribution: defining a guideline architecture to design and build Continuum native

applications

We learned that the FaaS is a good approach to deploy applications on the cloud and on the

edge, and in particular, the Faas workflows are a good option to make these applications

continuum native. On the other hand, we ignored that vendor-locking producers mostly

provide cloud infrastructures and serverless services, making it harder to integrate with

other providers or open-source solutions. Considering these issues, we tried to provide a

common architecture for serverless cloud-edge workflow suitable for private and open-source

solutions, aiming to make integrating these different contexts easier. We extensively answered

this question in Chapter 3.

RQ2: How to deploy Continuum native applications?

Contribution: Composition of FaaS-based application orchestrated in heterogenous

infrastructures

We can affirm that Docker convinced the industrial and scientific community that the best

solution to deploy applications everywhere passes through the Linux containers. Linux con-

tainers, nowadays, are no longer deployed on bare metal servers, but orchestrators like

Kubernetes, Mesos, and Nomad are used to deploy them and control their life-cycle over

a clusterized environment composed of cloud as well as edge infrastructures. Due to the

complexity these orchestrators reach nowadays, Serverless and, specifically, FaaS have been

put on top of them to do these jobs. We have seen in containers, orchestrators, and serverless

the opportunity to build multi-architecture applications able to be spread, synchronized,

and relocated in the cloud and the edge, guaranteeing, in the end, the continuum of the

§1.1 − Scientific Contributions 4

service. Even with those tools, we still have to find a way to design complex and Continuum

Native applications by binding functions. In Chapter 4, we proposed two ways to do that.

The first one, called OpenWolf is the first open-source scientific workflow serverless engine

based on Kubernetes, OpenFaas, and other open-source solutions. OpenWolf allows defining

somewhat industrial workflows, which means the steps inside are well-defined and known,

and then an initial raw object is processed following the workflow. On Continuum, work-

flows can be prone to dynamicity, which means who produces, who consumes, and how to

consume data continuously changes. OpenWolf cannot shape these characteristics. Because

of that, we proposed a second solution based on the RPulsar engine, extending it to work on

Continuum using FaaS. This engine, unlike OpenWolf, lets bind functions by the dynamic

match of profiles between producers and consumers. Each binding shapes a workflow in the

Continuum.

RQ3: How to guarantee security and privacy in Continuum environments?

Contribution: applying the Osmotic Computing principles to the deployment systems we

adopted in RQ2.

There are many security aspects to consider when dealing with applications on the cloud and

edge. From an application perspective, Authentication, Authorization, and Accountability

(AAA) are the fundamentals needed to guarantee the minimum requirements of a basic

trustable service. In distributed and connected environments, other aspects must be consid-

ered, like network security or the transmission of sensitive data. We tried to cover all those

aspects, proposing two works described in Chapter 5. In particular, firstly, we tried to secure

the infrastructure and the code execution. We did that by improving the OpenWolf project

using the Software Defined Membrane (SDMem), to keep secure connections and access to

private data. Then, we addressed the Authorization and Authentication issues in unstable

Continuum environments, where policies can continuously get updates and then must be

propagated. We did that by proposing an Osmotic Identity Manager, eventually consistent

among a Peer IDM Network, and we integrated it into the previous Osmotic Infrastructure.

RQ4: How to discover and address applications in a Continuum infrastructure?

Contribution: Proposing a geohash-based DNS to locate and discover services

In some dynamic environments, such as smart cities, services provided to the citizens are

dynamic, related to a specific area or target, then prone to change or move; for that reason,

locating and reaching them can be hard. In this scenario, we proposed a geographical-based

DNS, called OCE-DNS. This distributed infrastructure based on the principles of the Osmotic

Computing that will be discussed later is described in 6, and it allows exploring and reaching

§1.2 − Structure of the Thesis 5

out to services, applying DNS standard queries using three-dimensional geo hashes as FQDN.

RQ5: How to orchestrate applications in the Continuum?

Contribution: using and customizing container-based orchestrators

Container orchestrators are the standard de facto to deploy and manage cloud applications,

but this is not true on the edge. In highly constrained devices, orchestrators are prone to

fail or overload the devices, making it impossible to run further applications on them. For

these special environments, where the edge infrastructure is abroad but constrained, we

developed Tolerancer. Tolerancer is a peer-to-peer light orchestrator composed of two units

called Monitoring and Middleware Unit; the latter makes possible the communication and

the sharing of information between devices, and the first one analyzes and reacts to failures

or overloads in the system. This project is argued better in 7.

RQ6: What are possible use cases of computing at the Continuum?

Contribution: providing different use cases where computing at the Continuum in-

creases the quality of the service

In recent years, computing at the Continuum has become a hot topic due to the several

use cases involving cooperation between the Cloud and the Edge. In Chapter 8, we discussed

those use cases and presented two works. In the first one, we used OpenWolf to deploy and

manage a deep learning pipeline to train and analyze images from smart cameras installed on

a city street in real-time. The second work focused on Urgent Computing use cases like river

flooding, forest wildfire, etc. Those themes are the main focus of the European Project TEMA,

which aims at providing efficient systems to prevent and control the territory. We contributed

to this project, designing a highly decoupled heterogeneous architecture to efficiently analyze

data from IoT sensors using serverless workflows.

This thesis’s topics, challenges, and solutions are summarised in Figure 1.1.

1.2 Structure of the Thesis

The Thesis structure tries to link each research question to a chapter to improve readability.

In Chapter 2, we provide the background knowledge needed to understand the further work,

then the core of this thesis work is discussed between Chapters 3 and 8, in particular:

In Chapter 3, We proposed a guideline architecture to design build and deploy Continuum

Native applications.

§1.2 − Structure of the Thesis 6

Figure 1.1: Research questions and presented works mind map

In Chapter 4, we discuss OpenWolf and Enhanced RPulsar to deploy applications on the

Continuum.

In Chapter 5, we discuss the security threats regarding deploying applications on the

Continuum and propose Osmotic Computing solutions to mitigate them.

In Chapter 6 we propose an Osmotic computing-based solution to locate and relocate

applications on Continuum.

In Chapter 7 we discuss Tolerancer, a micro orchestrator for applications running on

constrained infrastructures.

In Chapter 8, we wrap up all the works, discussing two real scenarios where our solutions

have been used.

Each core Chapter has an introduction to what we want to address there and includes one

or more works. Each work is organized using a common structure as follows: 1. introduction;

2. review of the state of the art; 3. discussion about the background and specific technolo-

gies; 4. design and implementation of the system; 5. performance evaluation; 6. conclusion

summarising specific contribution.

Finally, Chapter 9 concludes this thesis work and lights the future research directions.

CHAPTER 2

Background

This thesis aims to provide solutions to enable the Cloud Edge Continuum, that is, the

ability to guarantee the continuity of the computation among different computation layers.

Before doing that, we must discuss the building blocks that drove us to the Continuum’s

challenges. For this reason, we shortly introduce some important concepts, such as Cloud,

Edge and Fog Computing, Serverless Computing, and Osmotic Computing. All those terms

will be extensively used, and to better understand our work, it is important to understand

how they work, what advantages they provide, and their disadvantages and issues.

2.1 Cloud, Edge and Fog Computing

Cloud Computing is the evolution of traditional data centers; it allows to virtualize

hardware and software resources, such as servers, storage areas, and networks that can be

provisioned on-demand with different quality of service and cost in remote data centers.

Historically, Cloud Computing is characterized by five key points, that are: • on-demand

self-service; • broad network access; • resource pooling; • fast elasticity; • measured service;

The service models that a cloud provider are many, and they continuously increase, but

basically, the officially recognized ones are:

• Software as a Service (SaaS): which provides out-of-the-box applications such as remote

storage;

7

§2.1 − Cloud, Edge and Fog Computing 8

• Platform as a Service (PaaS): which provide platforms that let host specific kind of

applications, like, for example, Heroku to host code;

• Infrastructure as a Service (IaaS): which provides resources used to build virtual ma-

chines, VPS, storage areas, and so on;

Cloud Computing is powerful because it makes it possible to provide high-performance

resources at any time, paying just the cost of the real, but this model does not fit use cases

where it is still important to bring the computation as close as possible to the data, reducing

network latency and improving the response time. Edge Computing is thought to absolve

these issues. In edge computing, the storage and computation are performed on devices

located at the network’s edge rather than on a centralized server or in the cloud. Edge

computing can be used with cloud computing, with the cloud being used for more resource-

intensive tasks and edge devices handling more localized, real-time processing.

Fog Computing has been recently located in the middle between Cloud and Edge. Fog

computing typically acts as a broker that deploys computing resources at the network edge

and connects them to a central cloud-based infrastructure. In some cases, the Fog layer

can even act as a middle computation layer, providing near real-time computation to the

edge infrastructure without involving the cloud. Typically, the Cloud, Fog, and Edge are

represented in figure 2.1

Figure 2.1: Cloud, Fog and Edge pyramid

§2.2 − Cloud Edge Continuum 9

2.2 Cloud Edge Continuum

As we understand from the previous section, Cloud, Fog, and Edge are different compu-

tation and storage layers organized in a hierarchy mainly based on their location. These three

layers are not supposed to be traversed in a specific order, and they are not supposed to be

used the time together; some applications could require using just one or two of them, and the

choice may change over time, depending on many different factors like the required quality

of the service, the emergency of the obtaining a result, or the traffic in the network. The

Cloud Edge Continuum challenge is to spread, locate, relocate, and synchronize applications

to where they are needed. Continuum, in some way, wants to split the application parts

from which they are executed to have a unique big computation infrastructure that is used

dependently on the current needs. Unfortunately, there are no unique solutions or standards

to create a Continuum environment, but there are some paradigms, like Osmotic Computing,

and some architectural models, such as the microservices and the Serverless, that can be

exploited, as we will see, to create it.

2.3 Microservices and Orchestration

The Microservice architecture is a software design model that structures an application

as a collection of loosely coupled, independently deployable services. Each microservice is

in charge of a specific task while interacting with other services using light communication

protocols. Microservices can be deployed, scaled, and updated independently, making build-

ing, testing, and maintaining complex systems easier, especially using some containerization

tools, like the Docker containers, that can inbox an entire service in a unique and independent

unit.

However, managing microservices can become challenging as the number of microser-

vices grows. At this point, orchestration is used. Microservice deployment, scaling, and

interaction coordination are all handled automatically through orchestration. Utilizing a

system that can automatically plan and manage the deployment of microservices across a

cluster of servers, such as Kubernetes or Docker Swarm, is often required.

Managing microservices’ configuration, keeping an eye on their well-being, and taking

care of service discovery and routing are all part of the orchestration. Orchestration can assist

in ensuring that microservices are consistently available and operating properly, even if the

application changes over time, by automating these processes.

§2.4 − Serverless Computing 10

2.4 Serverless Computing

Function as a Service (FaaS) and Serverless Computing, are cloud computing architectures

in which the provider administers the infrastructure and automatically allots and adjusts

the resources required to operate and manage specific functions or applications. Thanks to

serverless computing, developers may concentrate on building code without worrying about

the supporting infrastructure.

Code is run in a serverless architecture responding to events like HTTP requests, database

updates, or queued messages. Each function runs in its own container, which the cloud

service provider immediately creates when the function is invoked. The function runs only

for the length of the event, and the cloud provider deallocates the container when the function

completes. Serverless computing can make the development process simpler, which is another

advantage. Developers can concentrate on writing code and creating applications because

they do not have to worry about administering servers or infrastructure. This can assist

businesses in reducing time to market and raising the general caliber of their apps.

However, there are also drawbacks to serverless computing, including vendor lock-in, a

greater need for expertise in maintaining distributed systems, and possibly higher operating

expenses for particular workloads.

Serverless computing is considered a natural evolution of microservice architecture

because it increases the concept of "decoupled application", but unlike microservices architec-

ture, the presence of an orchestrator is required to let it properly work.

2.5 Osmotic Computing

Osmotic computing is a new computing paradigm that seeks to enable seamless, dynamic

resource sharing across multiple devices and clouds. In osmotic computing, devices and

clouds are connected through channels that enable the exchange of computational resources,

such as processing power, memory, and storage.

Osmotic Computing aims to standardize what is currently happening with orchestrations

and Faas but still improve it, letting application be Continuum native.

The concept of osmotic computing is inspired by the natural phenomenon of osmosis,

where fluids move across a permeable membrane to achieve equilibrium. In osmotic comput-

ing, computational resources are similarly exchanged between devices and clouds to achieve

a balance of resources across the network.

§2.5 − Osmotic Computing 11

One of the key benefits of osmotic computing is that it can help address the challenges of

traditional cloud computing, such as data latency, network congestion, and security concerns.

By enabling dynamic resource sharing across devices and clouds, osmotic computing can

improve performance, reduce costs, and enhance data privacy and security.

Osmotic computing is still an emerging area of research, and many challenges must

be addressed before it can be widely adopted. These challenges include developing new

algorithms and protocols for resource allocation and management, addressing security and

privacy concerns, and ensuring compatibility across different devices and clouds.

Despite these challenges, osmotic computing has the potential to revolutionize the way

we think about the Cloud Edge Continuum and enable new applications and use cases that

were previously impossible. With its focus on seamless, dynamic resource sharing, osmotic

computing could pave the way for a new era of distributed computing that is more efficient,

resilient, and adaptable than ever before.[11]. As the name itself suggests, this paradigm

is inspired by the chemical phenomenon of osmosis, which consists of the diffusion of

the particles of a solvent from the region with its highest chemical potential to that with

the lowest chemical potential when the diffusion of the solute is prevented by means of a

semi-permeable membrane.

Figure 2.2: Osmosis phenomenon

Similarly, microservices should move within an Osmotic Membrane in Osmotic Comput-

ing to find a configuration that satisfies given requirements (i.e., quality of service). Osmotic

Computing defines a lot of terms and concepts, but we mainly focus on (i) MicroElements

(MELs) and (ii) Membrane. The first ones are software or data abstractions and are classified

according to their nature [12] of MicroService (MS) or Microdata (MD), as shown in Figure

2.3. They are furthermore divided into MicroOperationalServices (MOS) and MicroUserSer-

§2.5 − Osmotic Computing 12

vices (MUS) and between MicroOperationalData (MOD) and MicroUserData (MUD). More

specifically: (i) MOS can be associated with operative systems; (ii) MUS can be associated

with user applications; (iii) MOD stores configurations for MSs; and (iv) MUD stores user

data.

Figure 2.3: MELs classification.

While MODs are usually sharable between different applications, MUDs are designed to

be accessed by the owner (i.e., a user, an MS, or an application) to ensure privacy. Osmotic

Computing defines a concept of intra-membrane that isolates the MS/User space and MUD

from the outside, satisfying the objectives O1 and O2.

The Osmotic SDMem is a virtual environment based on the underlying infrastructure

(Cloud or Edge resources). Inside this environment, MELs are isolated from the rest of the

world. Indeed, they can migrate through the osmotic nodes without interacting with external

infrastructure. The Osmotic Membrane acts as a filter to limit how MELs can be migrated

and under which constraints [13].

Figure 2.4: SDMem in Osmotic Computing

SDMem allows each organization to enable the grouping and filtering of MELs[14] based

on their properties and purposes when organized like a federated ecosystem. SDMem allows

§2.5 − Osmotic Computing 13

MELs to migrate according to constraints identified in the membrane, guaranteeing isolation

of one system from another [15]. An SDMem is instead a security component that Osmotic

Computing introduces to guarantee privacy and confidentiality for authorized interactions.

Firstly, a MEL can interact only with the MELs in the same SDMem, satisfying the Objective

O3. Moreover, the SDMem guarantees a network privatization that isolates the connections

from the rest of the cluster, satisfying the Objective O4. Ultimately, any point-to-point message

is confidential by design, which means that another MEL in the same SDMem cannot access it,

satisfying the Objective O5. Thus, SDmem allows isolating nodes in a federated environment;

in that way, MELs can only move through other nodes that are part of the same SDMem.

At the same time, it allows the isolation of different membranes (i.e., creating computation

context) and, therefore, the MELs of which it is composed to prevent unexpected interaction.

CHAPTER 3

Guaranteeing Cooperation in Public and Private Cloud and Edge

Infrastructures

FaaS is emerging as the prominent solution for making simpler, faster, and architecture-

independent software deployment on Cloud and Edge tiers. This new trend has partly been

used in Cloud-Edge Continuum applications that need to run functions over different nodes

to respect some defined QoS parameters, like data closeness or high-performance computing.

Unfortunately, FaaS has some lacks that hardly allow adding the ’Continuum’ aspect to an

Edge-Cloud environment due to the absence of a transparent architecture environment, a

tier-aware scheduler, and mostly a capacity to combine in a complex relationship different

functions in a Continuum native serverless workflow. Until now, Cloud and Edge providers

can offer solutions to deploy and run functions, and some can even build similar workflows.

Unfortunately, those providers did not share a standard or a guideline architecture; therefore,

integrating them to build hybrid workflows is somewhat impossible. We aim to provide a

reference architecture for deploying, composing, and making environment-aware serverless

workflows composed by FaaS functions spread over the Continuum.

3.1 Introduction

Deploying software at the Continuum is considered challenging for many reasons, such as

architecture dependency, host federation, and global resource balancing, [16], [17]. However,

the serverless paradigm was recently born to make these problems surmountable. Faas

14

§3.2 − Background 15

engines are typically based on an orchestrator (i.e., Kubernetes), which is able to manage

multi-architecture containers and load balance and federate resources [18]. Serverless and

FaaS paradigms are widely used in cloud-only applications, but thanks to their flexibility,

some recent works are emerging with the purpose of deploying functions into the edge of the

network for lightweight problems [19], [20], [21]. For example, FaaS can be used for isolated

and low-decoupled tasks, but it is not ideal for complex and coupled applications due to the

impossibility of easily composing and integrating functions [22]. These drawbacks generate

issues for continuum environments where, typically, applications are coupled in data-driven

workflows with many tasks connected among different computing tiers [23, 24, 17].

In this chapter, we propose i) new research guidelines for serverless orchestration in the

cloud-edge continuum paradigm and ii) a reference blueprint for the standard creation of a

FaaS-based workflow orchestration. Specifically, we determine principles, definitions, a refer-

ence architectural model, and data structures that are useful for defining and orchestrating

serverless workflows. This baseline architecture will be used to design OpenWolf, which is

described in Section 4.1, and it will be used in Section 8.1 to deploy a deep learning workflow

for image classification in a Smart City scenario, considering five steps: (i) collection, (ii)

transformation, (iii) training, (iv) inference, and (v) plotting.

3.2 Background

The Continuum Computing aims to make a collaboration between the cloud and edge

tiers in order to distribute near real-time processing on the edge and massive processing on

the cloud [25]. Continuum faces several challenges related to different topics (i.e., security,

scheduling) such that actual solutions [10] need to be re-engineered to become suitable for

the Continuum Computing.

Recently, serverless computing has emerged as a solution for distributing small functions

using containers intending to react to external triggers (i.e., cronjobs, HTTP calls, message

queue systems) [26]. This new paradigm was well received by the scientific community,

which tries to exploit it for orchestrating functions over the Continuum Computing [27]

by using different orchestrators, such as Kubernetes, [28], Nomad [29], [30], and more [31].

Moreover, FaaS is used in the Continuum Computing to make development, deployment,

and automatic balancing easier thanks to the underlined orchestrators [32, 33, 34].

The combined use of cloud-edge continuum and serverless pointed out the problem of

composing functions, which means the capacity of concatenating functions for creating more

§3.2 − Background 16

complex applications. Authors [35] proposed three principles of serverless as (i) black-box

functions, (ii) substitution, and (iii) double billing, which attempt to explain that composing

FaaS application could be considered an anti-pattern. However, we do not agree with that

statement.

The term workflow was used as a generic term for describing a well-defined organization

of tasks connected in order to transform one or more inputs to a given output. In scientific

literature, this term muted to Scientific Workflows, which is described [36] as a way to deal

with data and pipelined computation steps in different application fields (i.e., bioinformatics,

cheminformatics, ecoinformatics, geoinformatics, physics), without mastering a computer

science background. For example, Kepler is a workflow grid-based, later extended [37] to

support distributed computing on grid computing. Almost in parallel, the Pegasus system

[38] was proposed to abstract the workflow as an ensemble of independent tasks. Such

technology continued to have a progressive evolution, keeping track of newer ones, such

as grid [39], [38], cloud [40], containers [41], and [42]. Going towards the last five years,

workflows gained new popularity because of the increasing use of cloud computing and

Serverless. Indeed, the latter was widely adopted for designing and implementing work-

flows [43]. Perez et al. [44] designed a framework for executing Linux-based containers in

a FaaS platform (i.e., AWS Lambda). Jiang et al. [43] integrated the scientific workflow into

the main FaaS providers in order to exploit the serverless paradigm and make easier the

implementation for end users (i.e., scientists). Skyport [45] was instead a brilliant idea for

creating black-box-based workflows, by means of an engine able to compose workflows as

soft virtualized software (i.e., Docker containers). Recently, the workflow has become more

sophisticated and accurate. It is not a programming pattern or a software architecture de-

sign, but a computational on-premise engine that defines, stores, and deploys a composition

of black-box functions [46]. Hyperstream [47] is a domain-specific tool to deploy Machine

Learning (ML) algorithms that are automatically fired by some incoming streaming data.

One step ahead in this direction was moved in [48], where the authors proposed a Workflow

Engine Server (WES), which is a back-end engine used to store functions and workflows and

run them when triggered by an event. Such an engine introduces workflow modularity and

a validation schema, but it lacks integration with external systems and expandability with

other functions. One of the most autonomous engines has been instead presented by Lopez

et al. [49] with Triggerflow, a trigger-based orchestration of serverless workflows. It lacks a

user-friendly workflow editor, a data schema for the functions, and an event global registry.

However, Triggerflow has clear strengths, such as a mechanism to fire triggering-based

§3.3 − Workflow Engine Characteristics and Principles 17

Figure 3.1: State structure

workflow, an asynchronous communication channel, and a serverless model. A different

approach for workflows was, instead, presented in [50], where authors propose R-Pulsar, a

cloud-edge engine able to trigger functions according to an interesting matching algorithm

based on a decoupled Associative Message (AR) selection already presented in [51]. This

helps in matching producers and consumers, as well as taking actions, such as running a

function and starting a data production [52]. The above-mentioned approaches prove good

flexibility mostly when related to ML [53], but the utilization of serverless is still not totally

well exploited.

3.3 Workflow Engine Characteristics and Principles

In this Section, we put the stakes of the proposed workflow engine architecture, and we

define the dictionary of terms that are used in the remainder of this Chapter, i.e., i) state, ii)

event, iii) workflow, iv) manifest

3.3.1 State

The main component of the architecture is the state. It mainly encapsulates a function

and all the information related to it. It is stateless, which means the running state is unaware

of other states interacting with it, and therefore, the state behavior can not change based

on previous executions. As shown in Figure 3.1, the state is composed of i) metadata and (ii)

a function. The latter code includes the state’s business logic and is encapsulated inside a

container.

The metadata includes four pieces of information: state description, handler instructions,

input, and output schema. Specifically, they are described as follows:

State Description contains the state identifier, name, service description, and service class.

They are used to classify the service quickly.

§3.3 − Workflow Engine Characteristics and Principles 18

Bootstrap Instructions are run for instantiating a state inside the Workflow Engine. These

could contain the code to build an image, set the environment variables, or run a docker

container.

Handler instructions are run every time a state is triggered. These validate the input schema,

run a function using the passed and parsed parameters, wait for the function result,

and finally parse results with a format compliant with the output schema.

Input/Output Schemas contains the schema of the acceptable input and the schema of the

provided output. They are essential for creating compatible state chains.

Often, Workflows also contain the connectors, a special state that simply maps a state’s

output to the next states’ input, according to their input/output scheme. It is created on-

premise during the workflow design, and it does not require an input and output predefined

schema since they change according to the workflow where they are located.

3.3.2 Event

An event is the only entity that can be processed in a workflow; it is originally sent

from outside and then processed inside the workflow. All changes applied to an event are

separately stored in a data lake, while the last version of the event is propagated through the

workflow states. An event is composed of both immutable and mutable data. The immutable

data includes:

Event ID identifies the event uniquely and is managed directly by the workflow engine.

Workflow ID refers to the workflow that is processing/has processed the event.

The mutable data are generally updated by the workflow engine and by the states that

process the event. This includes:

Status is a value in the following domain: ⟨ Started, Processing, Error, Processed ⟩.

Data is the last state’s output.

Timestamp represents the date and time the last transformation has been completed.

3.3.3 Workflow

The workflow diagram in Figure 3.2 represents how states interact. The workflow starts

when the first node is triggered by an external event, i.e., action 1 in Figure 3.2, carrying on a

§3.3 − Workflow Engine Characteristics and Principles 19

data payload. Any event is directly connected to a State (action 2) and therefore to a Connector

(action 3). Connectors act as conciliators for filtering events with a specific state.

Figure 3.2: Workflow example

The first event is unique and mapped one-to-one to a single workflow execution. This

avoids overlaps with other events that follow the same workflow. Naturally, when an event

passes through the States, it modifies its data according to the output of the previous state.

Any link is allowed within the workflow, such as many-to-many, many-to-one, one-to-

many. However, they must start and finish with only one state. The triggering condition

must be explained when a many-to-one relationship (action 5 in Figure 3.2) is defined. In this

regard, the condition may follow the boolean algebra, i.e., using AND for combining two or

more events that must be received before firing the next one or using OR for combining two

or more events according to the fact the only one of them is enough for firing the next state.

The workflow diagram shown in Figure 3.2 is an example of an e-commerce scenario,

where customers are notified by email and a short message system as soon as a product

they are interested in is again available. Furthermore, the workflow is triggered by a web

notification that says a given product is available again. The workflow fetches the users

interested in this item using the State J0, J1, and J2, then fetches the users’ email and telephone

numbers. Finally, the State J3 is used to notify the users. In this scenario, three connectors are

used. Two connectors make the J0’s output compatible with the J1 and J2’s input. The last

one maps the J1 and J2’s output instead of the J3’s input.

3.3.4 Workflow Manifest

To describe a workflow within a schema, we propose a manifest based on YAML format.

The manifest translates in processes what was designed, i.e., in Figure 3.2.

§3.4 − Architecture 20

1 name : <workflow−name>

2 c a l l b a c k U r l : <uri −where−to −send− r e s u l t >

3 s t a t e s :

4 < s t a t e −id >:

5 func t ion :

6 r e f : <re f −to −funct ion −id >

7 conf ig :

8 key : value

9 s t a r t : t rue

10 handlers :

11 <handler −id >:

12 endpoint : <endpoint −to −funct ion >

13 conf ig :

14 key : value

15 workflow :

16 < s t a t e −id >:

17 a c t i v a t i o n : <Boolean Equation >

18 i n p u t F i l t e r : < j q command>

19 o u t p u t F i l t e r : < j q command>

Listing 3.1: Workflow Manifest example

As shown in the listing 3.1, the manifest has i) a name, ii) a callback URL where sending

the result, and three more sections, such as iii) States, iv) Handlers, and v) Workflow.

States lists and describes all the statuses of the workflow. For each state, we define a name,

handler, and a global key-value configuration for the handler.

Handlers describes all the handlers called within the states. This attribute determines how

to call the handler and the basic configurations that may be overwritten in the States’

parts. The separation of States and functions sections allows multiple times the same

handler in different states.

Workflow describes how the states interact. We determine which previous states have trig-

gered each state and how to transform inputs and outputs. This part acts as a connector.

3.4 Architecture

Figure 3.3 shows the reference architecture for managing a serverless workflow. It is a

four-layered architecture composed of i) infrastructure, ii) federation, iii) serverless, and iv)

service layers. All layers are described as follows.

§3.4 − Architecture 21

Figure 3.3: Workflow Engine architecture

The infrastructure layer contains the bare-metal nodes in the Continuum Computing

environment. Nodes may have different geographical locations, architectural characteristics,

and distribution. The federation layer creates communication interoperability among the nodes

of the infrastructure layer. It comprises an overlay network that connects nodes with a

Message Oriented Middleware (MOM), intending to exchange data over the overlay itself.

The serverless layer provides FaaS features to the underlined layer, i.e, the service layer. It uses

a container orchestrator for deploying functions among the federation. It includes a function

repository for storing the functions in the system, a compiler to build the same function in all

the architecture available and compatible, and a gateway used to trigger the functions. The

service layer is, instead, the top layer of the architecture. It adds the capability of composition

to the serverless layer. The service layer is composed of an Event History Database (EHD),

a Workflow repository, and a single agent. The EHD stores a permanent history of events

transformation within the engine. Indeed, an event changes its mutable content when it

is the input of a state. However, if a workflow is composed of n-states, the initial event

will have n changes. Thus, the EHD stores all the n changes, along with the initial content.

Furthermore, we had to consider a Status History array field in the event data structure, as

shown in Figure 3.4. This approach allows to: i) keep track of the event history, ii) keep track

§3.5 − Conclusion 22

of the event transformation, iii) log every change, and iv) recover any workflow state. The

workflow repository stores the manifests files that contain the workflow descriptions according

to the structure defined in Section 3.3.4. The Broker coordinates the service layer and, more in

general, the overall infrastructure. It basically is in charge of receiving the external events

and intercepting the execution of a function inside a triggered state, recognizing that it uses

the proper workflow manifest in the workflow repository, and then updating the EHD for

saving the actual data coming from the events or the states.

Figure 3.4: Event data model

3.5 Conclusion

In the era of serverless and microservice architecture, workflows are slowly going to gain

popularity as a tool to mix serverless services and deploy them in order to compose complex

functions in modern engine infrastructure based on the Cloud.

Historically, workflows are recognized as a computation chain where the processes

involved depend on the specific field where they are acted. In the last two years, this term

has started to appear in different fields, like microservices, FaaS, and cloud-edge continuum.

In some way, the scientific community shares the idea that workflows enable the cooperation

between functions, services, and in general network hosts.

This trend is fully reasonable since we managed to deploy functions and services every-

where, just to think of the new concept of the ”Internet of Everything“. However, we did not

manage to link these capabilities together. To try to reach this scope, different open-source

and enterprise providers proposed different ”linking services“, that have been called FaaS or-

chestrators. These are of course valid products but do not trust a standard, are not integrable

and each of them does not absolve at all to all the requirements a functioning workflow could

ask.

§3.5 − Conclusion 23

In this scenario, we started from scratch, defining the workflow concept. Therefore, we

first determined what the elements involved in workflows, i.e., jobs, and events, and how they

are related together. After that, we defined a design schema for workflows with clear terms,

figures, and data models. Finally, using these tools, we proposed a reference architecture for

the management of a workflow platform over a cluster.

This work can be considered a starting point for the serverless workflow field, but we

still have to deal with different challenges, like i) designing the security aspects of the engine,

ii) designing the fault tolerance aspects on the nodes, iii) implementing a workflow engine

able to respect this reference architecture. All these challenges will be faced in the remaining

chapters of this thesis.

CHAPTER 4

Deploying Continuum Native Applications

From our introduction, we understood that it is still impossible to build FaaS native appli-

cations without a Cloud broker that coordinates the functions on the continuum. Therefore,

FaaS usage is limited to very simple and specific jobs. In this chapter, we brush up on Scien-

tific Workflow using the FaaS paradigm to realize full Native Serverless Workflows-based

applications.

We will face this challenge by designing two different platforms. The first is discussed

in Section 4.1. In this work, we define a custom Workflow Manifest DSL used to describe

function interactions; then, we describe the implementation of an agent able to deploy

architecture-independent functions and coordinate them according to the Manifest. Finally,

federating the Cloud-Fog-Edge tiers in a single Continuum environment, we allow functions

to take advantage of the Continuum tier’s characteristics where they are deployed. This

project is called OpenWolf, and its repository is published on GitHub, under GNU General

Public License v3.0, and is based on the reference WES architecture we described in Chapter

3.

The second approach we used to define continuum native distributed workflow is dis-

cussed in Section 4.2. In this work, we generate dynamic workflows using a distributed

broker able to match IoT producers and Serverless Functions producers and consumers by

the use of a profile data rule engine. This project enhances an already existing research project

called RPulsar, and improves it letting it spread functions instead of no-scalable pieces of

code in the Continuum.

24

§4.1 − OpenWolf: a Serverless Workflow Engine for Native Cloud-Edge Continuum 25

4.1 OpenWolf: a Serverless Workflow Engine for Native Cloud-

Edge Continuum

Recently, many works have been raised with the aim of enabling continuum computing,

namely the ability to connect and orchestrate by events data computation between Cloud,

Fog, and Edge for keeping a good QoS, i.e., network latency, computational power, and

data locality. Many interesting solutions were proposed to solve the Continuum problem

using proactive or reactive approaches. The Serverless paradigm has also established itself

as a potential solution for designing continuum native applications, and in Chapter 3 we

have already defined a reference architecture based on the Faas to deploy workflows on the

continuum.

In this Chapter, using the concepts inherited from Chapter 3, we make use of the Serverless

paradigm to (i) enable Faas over the continuum tiers, and (ii) solve the problem of composing

complex functions-based architecture proposing a many-to-many workflow engine. In the

following, we define the design, development, and validation of an Open Source Serverless

Workflows Engine called OpenWolf, able to compose functions among the constrained

Continuum tiers according to a workflow manifest. Source code has been published on

GitHub1 under GNU GENERAL PUBLIC license.

4.1.1 State of the Art

In Chapters 2 and 3 we have already argued the challenges of the Continuum, that is

the ability to bring the computation at any infrastructure level (i.e. cloud, fog, and edge),

and we have seen as the Serverless can help on this aim. Building Faas-based applications

means building workflows, but as pointed out in [35], the three principles of serverless

are (i) black-box functions, (ii) substitution, and (iii) double billing, cannot be respected in

functions workflows. Even in these constraints, interesting works [33] and [53] have emerged

with the scope of moving Cloud workloads as close as possible to the Edge using FaaS

composition. However, the computation is focused on a use case and does not allow for

building a general-purpose serverless composition model.

4.1.2 Motivation

A good opportunity for developing Continuum native applications is given by Serverless

and FaaS platforms, which allow developers to focus on business logic applications (i.e.,
1https://github.com/christiansicari/Open-Wolf-Serverless-Workflow

https://github.com/christiansicari/Open-Wolf-Serverless-Workflow

§4.1 − OpenWolf: a Serverless Workflow Engine for Native Cloud-Edge Continuum 26

function), demanding building, deployment, and API exposition to the platform itself. This

seems to be a way to enable the continuum, but some challenges still need to be solved. First

of all, Serverless does not guarantee architecture transparency. Indeed, it is not possible to

transparently deploy functions over x64 platforms in Cloud and Fog, while ARM architectures

are used in Edge.

Secondly, general-purpose applications are composed of several tasks related to different

relationships, such as (i) following, (ii) dependency, and (iii) mutual exclusion. Therefore,

they can be strictly sequential or parallel.

Recently, many projects aimed to implement FaaS workflow using open-source projects.

However, the repositories are unmaintained or rarely updated, such as [54], [55]. Other

projects, such as OpenWhisk, allow only the implementation of sequential function chains

that are not enough for a general-purpose Workflow execution.

Using the principles and concepts defined in Chapter 3, this work aims then to exploit

the Scientific Workflows principles when applied to Faas, to make the continuum happen. To

achieve this, we outlined a roadmap as follows:

• defining a workflow manifest model to describe the workflow structure both in terms

of involved processes, complex process relationships (one-to-many, many-to-one), used

functions, and Continuum constraints;

• federating the Continuum computing layers in a single (high-level) homogeneous

cluster built with heterogeneous computers/devices;

• providing the cluster with a Function Provider able to deploy and invoke function at

any Continuum layer, considering also deployment constraints;

• building platform-independent functions usable at any Continuum’s tier;

• enhancing FaaS platform with a composition engine able to (i) trigger workflows, and

(ii) orchestrate the functions outputs’ flow to the correct next function(s) in the workflow

manifest.

4.1.3 OpenWolf Engine

In this section, we present the OpenWolf engine, an open-source project developed with

the purpose of defining a new way for bringing computation at any tier of the Continuum,

orchestrating and composing FaaS for implementing complex applications workflows.

§4.1 − OpenWolf: a Serverless Workflow Engine for Native Cloud-Edge Continuum 27

The Serverless Workflow

As widely explained, a scientific workflow is a composition of processes and data that

shape more complex applications. FaaS acts as scientific workflows’ building blocks, but we

have to manage functions to design workflows that can:

• support single/multiple trigger(s);

• support many to many relationships between functions;

• support data pre- and post-processing filters;

• support parallel and sequential process execution;

To the best of our knowledge, the most used open-source Serverless engines (i.e. Open-

FaaS and OpenWhisk) do not natively realize such workflows, allowing only sequential

composition of functions without data pre-and post-processing, as shown in Figure 4.1.

Figure 4.1: Sequential Function composition workflow

Instead, OpenWolf is designed to match all the above-mentioned properties, drawing

workflows like in Figure 4.2. Figures 4.1 and 4.2 suppose a simplified road traffic inference

based both on collected images and information related to the air quality. The difference is

significant at a glance because in Figure 4.2 a single function can either trigger multiple ones

(one-to-many) or wait to receive inputs from one or more previous functions (many-to-one).

In these examples, the key difference is given by the functions that show data. In the first case,

this waits for non-related functions, whereas, in the latter case, this fires once their inputs are

ready ad then respects the real task dependency. This helps avoid any non-required waiting

time.

Workflow Manifest

Typically, we need to use a Domain Specific Language (DSL) to describe a domain-

specific structure. However, considering the young age of serverless workflow, any DSL

§4.1 − OpenWolf: a Serverless Workflow Engine for Native Cloud-Edge Continuum 28

Figure 4.2: Example of Workflow in data analysis

has been established as a standard so far. A very interesting project in this field is given

by the Cloud Native Computing Foundation (CNCF), which is currently maintaining the

Serverless Workflow Project2. This project proposes a vendor-neutral, open-source, and fully

community-driven ecosystem for defining and running DSL-based workflows that target

the Serverless technology domain. Inspired by this, we defined a custom workflow manifest

composed of three parts and reported its structure in the listing 4.1.

1 name : <workflow−name>

2 c a l l b a c k U r l : <uri −where−to −send− r e s u l t >

3 s t a t e s :

4 < s t a t e −id >:

5 func t ion :

6 r e f : <re f −to −funct ion −id >

7 conf ig :

8 key : value

9 c o n s t r a i n s :

10 key : value

11 s t a r t : t rue

12 f u n c t i o n s :

13 <funct ion −id >:

14 platform : openFaaS

15 endpoint : <endpoint −to −funct ion >

16 conf ig :

17 key : value

18 workflow :

19 < s t a t e −id >:

20 a c t i v a t i o n : <Boolean Equation >

21 i n p u t F i l t e r : < j q command>

2https://serverlessworkflow.io/

§4.1 − OpenWolf: a Serverless Workflow Engine for Native Cloud-Edge Continuum 29

22 o u t p u t F i l t e r : < j q command>

Listing 4.1: Workflow Manifest format in OpenWolf

The functions part contains all the function definitions that are consumed in the workflow.

In each definition, we need to indicate at which URL it can be triggered and the default

configuration parameters. The URL is provided by the Serverless provider (in this case, only

OpenFaaS) when we deploy a function, the parameters instead depend on the function

business logic, OpenFaaS typically allows us to send them using the HTTP headers that will

be translated in environment variables.

Furthermore, we can add scheduling constraints to the function, a very useful property

for selecting the right Continuum tier where the function will live.

The states part contains the set of the workflow’s building blocks. They are used to envelop

a function and can be triggered only once for each execution. For each state, we need to

specify which function is triggered when the state is active and the configuration of custom

parameters that override the default ones previously declared as a function parameter.

The workflow part defines the rules that link the states together. For each state that com-

poses the workflow, we need to give the action function, which is a boolean combination

of the other states, and when it is verified it tells the OpenWolf agent to trigger the State.

Moreover, each state output could be not compatible with the input of the next State in

the workflow, for this reason, we need to filter them. We do that using the inputFilter and

outputFilter properties, enhanced with JQ instructions. JQ is a command-line utility that is

thought to extract information like grep or awk, but it is specialized on JSON documents.

In summary, the manifest shapes the state interconnections, state dependencies, and their

deployment over the Continuum. Therefore, we visualize the workflow as a dependency

graph as designed in Figure 4.3.

Event Data Structure

The output returned by the state/function when this terminates its execution is defined

within the event data structure. This is expressed using a JSON format, in which the main

properties are called ctx and data.

The ctx represents the event context and it is composed of the workflowID, which refer-

ences the workflow to which event it belongs, the execID, which distinguishes the different

executions of the same workflow, and the state, which references the state that has returned

the event.

§4.1 − OpenWolf: a Serverless Workflow Engine for Native Cloud-Edge Continuum 30

Figure 4.3: Workflow state graph in the Continuum

The data property, instead, is the function’s output itself and, unlike the ctx that is read

and set by the workflow agent (we will see it later), the function fully manages this.

An event example is proposed in the listing 4.2, which is fired by State C in the workflow

shown in Figure 4.2.

1

2 {

3 " c t x " : {

4 " workflowID " : " in ference − t r a f f i c " ,

5 " execID " : " in ference − t r a f f i c . 1 2 3 " ,

6 " s t a t e " : "C"

7 } ,

8 " data " : {

9 "AIQ " : 47 ,

10 " S c a l e " : "EU"

11 }

12 }

Listing 4.2: Workflow Event data model

OpenWolf Architecture

From the architectural point of view, we have to federate the Continuum layers, that is,

creating a single computing cluster that collects every node in the Continuum and manages

them with the same interface. This process allows the orchestrate and composition of the

functions, as well as the spread of them in the Continuum. For federating the Continuum, we

used K3S, a Kubernetes distribution mainly thought to be executed in unattended, resource-

§4.1 − OpenWolf: a Serverless Workflow Engine for Native Cloud-Edge Continuum 31

constrained, remote locations or inside IoT appliances, even maintaining all the Kubernetes

features. K3S is mainly used in Edge environments, in fact, it can be run in ARM64 and

ARMv7 architectures, but it also supports x64 platforms. Indeed, this requires very accessible

system characteristics with only 1 GB of RAM and 1 CPU installed. K3S can then be easily used

to federate a Continuum environment by installing an agent in each node of the Continuum.

Over K3S nodes, we have to install a Serverless Engine to build, deploy and trigger

functions. We chose to use OpenFaaS because of the capabilities to (i) build functions for

multiple architectures at one time, using Docker’s Codex, (ii) integrate with Kubernetes,

(iii) natively use Kubernetes features such as node selectors, affinity, and anti-affinity for

conditioning the function schedule, and (iv) support synchronous and asynchronous function

invocations. These features allow us to develop a single function and make it automatically

suitable for deployment at any Continuum tier.

The cluster architecture is also provided with a Redis instance that is used to store the

workflow manifests and the workflow execution’s information. Finally, the OpenWolf Agent,

from inside the K3S cluster, works as a bridge between the components, coordinating them

and the workflows’ functions.

The overall architecture is finally shown in Figure 4.4.

The OpenWolf Agent

To achieve the composition, OpenWolf has to ensure that any event will follow the correct

path in the workflow it belongs to and then trigger the correct states in the workflow with

a proper transformation of the right income event. The OpenWolf agent is deployed as a

standalone stateless microservice inside the Kubernetes Cluster we used to run the serverless

functions.

The Agent exposes two interfaces. The first one is a public interface used to trigger a

workflow from the external. The second one is closed inside the Kubernetes cluster and it

is used as a callback URL for each asynchronous function triggered by any workflow. By

doing that, the agent intercepts all the events belonging to a workflow, extracts the context

information, and uses it for fetching all the workflow and current execution information.

Therefore, it triggers the next states in the manifest, forwarding the right received event with

the updated ctx property. This process is described more concisely in the activity diagram in

Figure 4.5.

§4.1 − OpenWolf: a Serverless Workflow Engine for Native Cloud-Edge Continuum 32

Figure 4.4: OpenWolf architecture

§4.1 − OpenWolf: a Serverless Workflow Engine for Native Cloud-Edge Continuum 33

Figure 4.5: OpenWolf agent activity diagram

§4.1 − OpenWolf: a Serverless Workflow Engine for Native Cloud-Edge Continuum 34

4.1.4 Performances

In this section, we present the results obtained while validating the architecture shown in

Section 4.1.3. Our tests focused on five different challenges:

1. Asynchronous vs Synchronous Calls: OpenFaaS and many other Serverless platforms

give the possibility to call a function in the foreground, waiting for the response (syn-

chronous), or in the background, receiving the response using a callback (asynchronous).

For scalability and resource usage reasons, OpenWolf needs to use only asynchronous

calls, then we need to ensure that they guarantee comparable performances with the

synchronous versions.

2. Low latency during the chaining: Typically FaaS runs standalone, whereas OpenWolf

gives the possibility to organize functions in complex workflows. To achieve this, we

need the agent to intercept the functions’ output and recursively trigger new functions.

This process requires a few steps that could decrease the overall system performance.

Therefore, we want to understand what delay the agent adds to the system.

3. Linear dependency between states number and execution time: OpenWolf is thought

to execute general-purpose workflows, this means that the number of the state to

triggers could vary. Therefore, we want to ensure that increasing the workflow’s state

number, OpenWolf does not collapse, that is guaranteeing a linear execution time.

4. Parallelization Capacity: Unlike classical FaaS providers, OpenWolf is able to simulta-

neously trigger many functions at once, then join their outputs in a unique function.

This kind of parallelization should improve the overall system performance, then we

are interested in comparing a sequential behavior versus a parallel one.

5. Scalability at the Continuum: OpenWolf gives the possibility to run multiple functions

at the Continuum, building complex Continuum Native Serverless Applications. This

feature can be used only if the Fog and the Edge do not represent a bottleneck for the

entire application, therefore we will go to test the same workflows run in a full Cloud/

full Edge environment and in the Continuum, in order to compare their behaviors.

System Testbed

OpenWolf has been tested using a five-node Kubernetes cluster, composed of two nodes

in the Cloud tier, one node in the Fog tier, and two nodes in the Edge tier. In the Cloud tier,

§4.1 − OpenWolf: a Serverless Workflow Engine for Native Cloud-Edge Continuum 35

we run two different machines in an Openstack environment, where we run OpenFaaS’s

Gateway, Prometheus, Authentication Server, Kubernetes Master, and a Redis instance. In

the Fog, we used a single workstation, where we run both the OpenWolf ’s Agent, OpenFaaS’

Nats, and Queue Manager. All these components are in charge of exchanging data between

Cloud and Edge, sending and delivering messages to functions and agents, for this reason,

we put them in the middle between the Cloud and the Edge tiers. Finally, we used the

Edge tier to host only the OpenFaaS’ edge functions deployed in the workflow. The systems’

characteristics are summarised in the table 4.1. All tests reported in the following are based

on a workflow composed of custom Hash functions, that once receive a data payload return

the input’s SHA256. About the platform, OpenFaaS can be configured with many parameters

to have the best performance considering many environmental constraints. Our one is the

result of many tests carried out with the scope to get an optimal configuration for any tier,

and we reported it in table 4.2.

Instances Tier Model CPU Memory
Operat-
ing
System

2 Cloud Openstack VM
Intel Xeon 4.0 GHz,
8-core

32 GB
Debian
11

1 Fog Workstation Intel i7 4.4 GHz, 4-core 8 GB
Ubuntu
20

2 Edge Raspberry Pi 4
ARM64 SoC 1.5GHz,
4-core

4 GB
Rasp-
berry OS
ARM64

Table 4.1: Cluster’s nodes characteristics

Parameter Value Condition
Queue Workers 1 Ever
Function replicas State references States Number < 60
Function replicas (State References)/2 States Number ≥ 60
Max_inflight Equal to functions replicas Ever

Table 4.2: OpenFaaS and OpenWolf parameters for the tesbed

Results

The first test we carried out aims to compare the synchronous and asynchronous execution

time of Hash functions by using a webhook URL and an internal cluster logger. The webhook

URL is a typical OpenFaaS concept, when a function is called asynchronously, its result

is sent as POST payload to the webhook URL. We repeated this test by running the same

§4.1 − OpenWolf: a Serverless Workflow Engine for Native Cloud-Edge Continuum 36

function in the Cloud and Edge tiers, executing 30 tests for each tier. The results are shown

Figure 4.6: Synchronous vs asynchronous function execution time in OpenFaaS

in Figure 4.6. There is a really small gap between the synchronous and the asynchronous

calls, which is under 2%. This is true for both tiers, with worse performances on the Edge

one, as could be forecast. These results highlight that asynchronous function calls do not

degrade performances, both considering deployment on Cloud and Edge. Moreover, Edge

functions require more time than Cloud functions, however, given that the difference in terms

of execution times is small, this does not generate bottlenecks in the workflow.

As often said, OpenFaaS allows running sequential workflows, composed of only two

functions. In contrast, OpenWolf can be used to sequentially chain an undefined number of

functions, overcoming the OpenFaaS’ limits. Therefore, in the next test, we tried to design

multiple sequential workflows in order to verify the scalability guaranteed by OpenWolf .

We measured the time needed to execute an entire sequential workflow with an increasing

number of states. In this case, the bottleneck might be given by the agent that might not

manage to consume and deliver all the events in time.

As we see in Figure 4.7, we tested OpenWolf using nine different workflows composed

of 3 to 90 states, increasing by 10 states at a time. As wished, the workflow’s execution

times increase linearly with the number of states, the ratio of states/execution time has an

average value of 1,29Hz and a maximum value of 1,59Hz. These tests confirm a clear linear

dependency between the number of the states and generally a quite low latency during the

sequential function chaining.

The next test measures how much time we could save if we would have triggered multiple

§4.1 − OpenWolf: a Serverless Workflow Engine for Native Cloud-Edge Continuum 37

Figure 4.7: Sequential workflow execution time in OpenWolf

states at once, instead of running them one by one. Therefore, we compared the execution

time of running the same workflow’s states both in sequence and parallel. The results are

shown in Figure 4.8. The tests have been carried out considering an increasing number of

workflow states, from 3 to 90 and the FaaS parameters used are the same as reported in table

4.2. As shown in the Figure running the same workflow in parallel requires about 40% of the

sequential time, then giving a great time-saving.

Figure 4.8: Sequential and parallel workflow execution time comparison in OpenWolf

Our last test compares the execution time of multiple parallel workflows when they

are totally executed in Cloud, Edge, and the Continuum. We still used the configurations

§4.1 − OpenWolf: a Serverless Workflow Engine for Native Cloud-Edge Continuum 38

reported in the table 4.2, but in the Continuum environment the functions have been equally

spread among all the nodes, in all the tiers. The distribution among the tiers regards only

the functions, OpenFaaS’ components, and OpenWolf agent that have been deployed in the

Cloud/Fog as said before.

Figure 4.9: Workflow execution time in OpenWolf in different infrastructures

Performance differences in Cloud and Edge are given by two factors: (i) the computation

capacity of the node that runs the function and (ii) the latency generated by the OpenWolf

’s agent to contact the node that runs the function. The first factor is quite mitigated by the

simplicity of the function we used in the test, the second factor is mitigated by the network

topology we used, with the OpenWolf agent in the Fog, equally distant from the Cloud and

the Edge. Given that, we expected comparable performance in any tier and in the Continuum.

Figure 4.9 confirms that, in fact, even if a Cloud function guarantees better performances than

an Edge, the percentage time increment is on average under 21%. In the Continuum instead,

of using also the Fog as a computational tier, we get in general an execution time that is in the

average between the Cloud, and the Edge, with a percentage time increase with respect to the

Cloud around 15%. The deployment in the Continuum does not affect the execution time.

4.1.5 Conclusion

In this Chapter, we presented OpenWolf , a general-purpose Serverless Workflow Manage-

ment System. We aimed to build a system able to exploit the FaaS paradigm for composing

complex scientific workflows and connecting one or more functions distributed over the

Cloud-Edge Continuum. We then federated a Continuum environment using a heteroge-

§4.2 − Event-Driven FaaS Workflows for Enabling IoT Data Processing at the Cloud Edge
Continuum 39

neous Kubernetes Cluster based on K3S, then we deployed over it OpenFaaS, a popular

serverless platform, and we used it to build architecture-independent functions. Finally, we

designed and developed a Workflow Agent, a small microservice able to parse Workflow

Manifest files and then intercept and forward functions’ data according to the workflow

structure.

Our novelty is mainly given by the marriage between Serverless and Scientific Workflow

that until now has been only mentioned but never documented. We made this possible by

improving the actual serverless platforms giving the possibility to describe the workflow

through a Manifest. Furthermore, we managed complex function graphs composed of one-

to-one, many-to-one, and one-to-many relationships with the Workflow Agent, overcoming

the actual open-source serverless platform limits.

4.2 Event-Driven FaaS Workflows for Enabling IoT Data Processing

at the Cloud Edge Continuum

The Internet of Things (IoT) is one of the biggest data sources on the internet, and

nowadays, it is used to serve many different use cases, such as smart cities and environment

surveillance[56], sports [57], healthcare[58], and Industry 4.0 (IIoT) [59].

IoT data often requires real-time processing when the data is time-sensitive and requires

immediate action; this means that data is processed as it is generated rather than stored for

later analysis, but deciding what and when data coming from one or more sensors must be

consumed in real-time or later can frequently vary depending on many factors like Quality

of Service (QoS) constraints, human or consumer needs, or the data itself.

Starting from those constraints, the concept of Continuum Computing arose with the

aim of taking advantage of the well-known cloud, fog, edge, and IoT infrastructures to run

data analysis algorithms when they best fit at a specific moment [30], considering factors

like network latency [60], energy [61], data location[62], and pipeline optimization [24].

Unfortunately, as highlighted in the scientific literature [10, 63], Continuum native apps do

not exist, and we need to redesign everything that is supposed to be run on the Continuum.

At the moment Continuum Computing is affected by some problems, such as:

1. inability to dynamically react to an environment, application, or data change;

2. inability to keep an application stateless and therefore relocatable without data loss;

§4.2 − Event-Driven FaaS Workflows for Enabling IoT Data Processing at the Cloud Edge
Continuum 40

3. inability to profile the behavior of a specific task and then forecast its needs in the

future.

Recently, R-Pulsar[50] has been introduced to address the first listed issue. This continuum-

native framework, in fact, can federate IoT, edge, and cloud infrastructures, binding data

and data consumers using an advanced profile match system and relocating both data and

analysis using a dynamic rule engine system able to capture the change in the data and react

accordingly.

To address the remaining two issues, we need to introduce and use Function as a Service

(FaaS), as we already did in OpenWolf.

In this work, we aim to address the previously highlighted challenges in the field of

Continuum Computing together. We do that using RPulsar to federate the infrastructure,

orchestrate the computation, and react to some changes in the data or on the environment,

but we upgrade it, providing a distributed Faas layer that lets to define, deploy, relocate, and

analyze functions. Indeed, the contribution of this work consists of providing a framework

to:

1. compute at the Continuum using FaaS functions;

2. monitor and analyze functions when executed on different environments with different

data and configurations;

3. dynamically react to a change in the data, or in the environment, adapting and relocating

functions on the continuum.

4.2.1 Use Case and Related Work

This research was driven by a typical scenario in Urgent Computing for IoT: detecting

fires in vast and remote regions. The objective is to enable emergency services to swiftly and

effectively identify areas that are safe, at risk of fire, or already engulfed in flames.

The initial step involves detecting the presence of smoke in the affected zones using air

analyzer sensors. Subsequently, the collected data is preprocessed at the edge of the network,

utilizing the computational resources available on board to analyze its content and determine

if any additional postprocessing is necessary. If further processing is required, the data is

transmitted to the cloud for change detection analysis. This analysis can involve comparing

the data to historical records or simply for storage purposes.

§4.2 − Event-Driven FaaS Workflows for Enabling IoT Data Processing at the Cloud Edge
Continuum 41

Figure 4.10: Urgent computing decision stage and reactions

Related Work

Many recent works addressed the continuum problem from an architectural point of

view; in [64] proposed a data-driven model to publish and compute data everywhere, where

basically the continuum problem is addressed statically by deploying a consumer in a specific

node without having the chance to move around. A similar idea is proposed in [18] The

authors propose a custom pub/sub broker with relocatable consumers, but even in that

case, the data storing location does not have any optimization. In [65] authors tried to take

advantage of Kubernetes to manage a cloud edge federation, and then by the use of a custom

scheduler, they locate pods, trying to optimize the network latency between the pods that

are supposed to communicate. This approach has become popular, but Kubernetes still force

the continuum to be a centralized master-slave architecture, and the optimized parameters

take care of the network bandwidth. In [66] authors propose a federated learning approach

to schedule tasks from a task queue. Unfortunately, as highlighted by the authors themselves,

knowing the nature of the task is not trivial, and predicting the best location can often be

hard. Analyzing the history to find a better placement for a task is a strategy also adopted in

[67] The authors here propose a scheduling algorithm based on the declaration of the needed

data and the coupling degree with other tasks to try to optimize the request performances.

Authors even keep a history of the previous execution and the target QoS, to better provide a

kind of feedback to the next schedules.

This part of the State of the Art highlights the need to know the task to execute to

understand how to deal with it. Unfortunately, generic process tasks are not easy to classify

§4.2 − Event-Driven FaaS Workflows for Enabling IoT Data Processing at the Cloud Edge
Continuum 42

unless they do not belong to a specific domain of tasks. Using the FaaS at this point would

allow knowing the task by the function it is running, and this might help the task accounting.

Using FaaS at the continuum is still considered a novelty, but recently some works with this

aim have been proposed.

In [68] authors extended the work already discussed in [64], enhancing the Fiware-based

infrastructure with Faas capabilities at the Fog layers. authors here easily profile functions

but do not take advantage of that to better locate data or computation. In [69] authors still

use Fiware stack to subscribe Faas platform ad at the edge of the network, but the replication

of different Faas drops the bottleneck of having a single gateway, moreover, data are not

scaled since they are duplicates in all the context brokers where they are needed. In [70]

authors extended the work in [65], adapting the geo-scheduling used for Kubernetes’s pods

to OpenFaas’ ones. This approach guarantees a reliable scheduler, but the presence of a

Kubernetes cluster might be too stressful for constrained edge devices.

In [71] authors propose a data-declaration-based algorithm to schedule OpenWhisk-based

functions; the idea of considering where the data are is good for knowing where to compute,

but it doesn’t guarantee any flexibility to the system. Furthermore, OpenWhisk is not well

supported on constrained arm devices, and this might be problematic for edge computing

[72]. Finally, the network-based scheduler has been used again, even for Faas scheduling in

A [73] but this approach does not learn from the knowledge and just uses a static dataset to

place a function at the edge better statically.

Finally, in [4], the authors propose to use an optimized Serverless Workflow engine built

on Kubernetes to spread functions at any scale. In this project, functions can be scaled and

deployed everywhere, as defined by the user, but still, Kubernetes might be hard to stand at

any scale.

4.2.2 Background

RPulsar

The R-Pulsar system has been introduced with the purpose of gathering and analyzing

data for applications that span both the cloud and the edge of the network. Its main goal

is to extend cloud capabilities to edge devices, enabling them to collect and analyze data

closer to the source and respond autonomously to local events. Initial investigations have

focused on building upon and expanding the Associative Rendezvous (AR) interaction

model, adapting it to support data-driven IoT applications. The AR paradigm facilitates

§4.2 − Event-Driven FaaS Workflows for Enabling IoT Data Processing at the Cloud Edge
Continuum 43

content-based decoupled interactions, where interactions are defined in terms of semantic

profiles rather than names. These interactions offer programmable reactive behaviors, serving

as the core services for data-driven workflow executions and decision-making. The disaster

recovery use case was utilized to validate and evaluate these extensions, and the extended

AR model was employed to support workflow topologies triggered and scheduled based on

the content of data streams.

Considering that IoT applications require processing large volumes of streaming data

through complex workflows in a timely manner, solely relying on cloud resources becomes

impractical. Therefore, leveraging resources closer to the edge becomes crucial, although

these resources are typically limited in capabilities. Consequently, it becomes necessary to

balance the quality, immediacy, and cost of data processing in a context-aware manner. A

rule-based system is utilized to address this challenge, where all relevant knowledge is

encoded into a set of If-Then rules.

R-Pulsar adopts a distributed architecture using an overlay network, where each node

within the overlay network is referred to as a Rendezvous Point (RP). The system comprises

five layers: the location-aware self-organizing overlay, the content-based routing layer, the

serverless messaging layer, the memory-mapped data processing layer, and the programming

abstraction layer.

The location-aware self-organizing overlay, which incorporates location awareness, serves

as an abstraction for the layers above it. With just one function exposed to the other layers, it

is able to drive AR Messages to the closest RP to the data source.

The Content-based Routing Layer builds upon the location-aware overlay to facilitate

message routing between clients of R-Pulsar. It leverages the underlying infrastructure to

direct messages efficiently.

The Memory-mapped Streaming Analytics Pipeline is responsible for consolidating data

from various sources, processing it, and making it accessible for further utilization.

The Serverless Messaging Layer enables the deployment and execution of code fragments

as a reaction to some specific bound events without requiring the explicit specification of IP

addresses.

The rule-based programming abstraction layer empowers the construction of IoT applica-

tions and the decision-making process regarding when data should be sent to the cloud for

subsequent postprocessing. Importantly, it eliminates the need for developers to manage any

underlying infrastructure.

§4.2 − Event-Driven FaaS Workflows for Enabling IoT Data Processing at the Cloud Edge
Continuum 44

Dynamic Faas scheduling

The weak points of a system such as OpenWolf that we described in Section 4.1, are the

static assignment of a workflow function in a tier that is specified at the beginning of the

manifest or otherwise decided by OpenWolf during the workflow bootstrap and the hardness

of dynamically connecting new incoming functions to some previous ones. Unfortunately, as

even highlighted in section 4.2.1, the urgency of a specific computation can vary according to

the incoming new data, the system overloading, or because some external change, therefore

being stuck on a function schedule, does not reflect the need of moving a function according

to the urgency. Moreover, in reaction to some new data, the system may require to use of new

functions in the same workflow, and this would require the application of a new workflow

manifest, then wasting time, or even just changing the function invocation parameters.

In contrast, RPulsar natively supports both dynamic bindings of new producers and

consumers and the possibility of reacting to some change in the data or in the system state.

On the other hand, RPulsar does not support FaaS and, consequently, all the benefits it brings.

Rpulsar and OpenWolf are clearly complementary works; indeed, the aim of this work is

to resolve the weak point of one with the strong point of the other.

To do that, we kept all the RPulsar core that lets us dynamically associate producers and

consumers, but we changed the shape of a consumer that now is designed as a function

wrapper, which contains the function reference it is supposed to run, as well as the function

configuration that overwrites the default ones. At that point, the consumer can also act as a

producer, which serves the function output as system data, and then more consumers can be

bound with it. Doing that, a manifest is no more needed because the definition of a Workflow

is implicitly done by the binding of producers and consumers. From RPulsar, we have even

kept the rule engine, but we modified it in order to support the Function monitoring system,

as well as the reactions that can be generated, for example, running a function in the edge

instead of the cloud if the data, the required QoS, or the current system overloading change.

4.2.3 Architecture

Architecture Overview

The engine we designed in this work starts with the basic infrastructure that RPulsar

already provides, but it also adds some peculiar components that are required to allow the

spread and coordination of functions as well as the management of the data produced and

consumed in a workflow. As we can see in Figure 4.12a, the architecture is composed of three

§4.2 − Event-Driven FaaS Workflows for Enabling IoT Data Processing at the Cloud Edge
Continuum 45

Figure 4.11: Function spreading on Continuum

(a) Architecture overview (b) ARMessage exchange sequence diagram

Figure 4.12: Enhanced Rpuslar architecture overview and peers’ message exchange

§4.2 − Event-Driven FaaS Workflows for Enabling IoT Data Processing at the Cloud Edge
Continuum 46

layers: Infrastructure Layer, Workflow Layer, and Application Layer.

Infrastructure Layer The infrastructure layer includes all the hardware and primary services

used in RPulsar, such as IoT devices and sensors used to capture and send data on RPulsar,

and the Continuum infrastructure composed of edge, fog, and cloud nodes. Independent

of their type, Continuum nodes are composed of a hardware part (embedded processors,

workstations, and data centers) and a service part composed of a serverless platform and/or

a storage area.

The Serverless Platform is the core of the project, and we implemented it using OpenFaaS.

OpenFaaS is an open-source serverless platform that lets one build, deploy, and manage

functions using Kubernetes or faasd. OpenFaas is composed of:

1. The gateway that lets us invoke functions or use API to interact with OpenFaas;

2. NATS that collect asynchronous function requests;

3. Prometheus which provides metrics about the running functions;

The Storage Area is realized using Minio, an S3-compatible object storage, and it plays

a critical role in providing a space where functions can store and retrieve input and output

data that, in turn, are used by all the functions in the triggered workflow. The Rule Engine

at the Service Layer determines which storage area has to be used as well as where to run a

function.

The Workflow Layer The Workflow Layer can be considered an abstract layer since it is not

composed of components or hardware like the Infrastructure and the Applications layers,

but it is shaped by the interaction of those layers. This layer is composed of the functions and

the objects that are available during the life cycle of a workflow. Each function is represented

using the fn symbol, and they are double linked with one (or more) object represented with

the obj symbol, and both are connected to the Infrastructure Layer. These links exist because

each object belongs to one or more functions; on the contrary, a function consumes and

produces objects. This map between functions and objects is not hidden to the final users

who submit data consumers to RPulsar. The Rule Engine determines the Workflow Layer and

Infrastructure Layer links, which locates and relocates functions and objects to satisfy some

given constraints. In this case, this mapping is hidden to the final users, who are not interested

in where functions and data are located but in the satisfaction of the QoS parameters they

§4.2 − Event-Driven FaaS Workflows for Enabling IoT Data Processing at the Cloud Edge
Continuum 47

defined. Of course, functions interact with each other according to their profile matches, and

this implicitly creates a FaaS workflow.

The Application Layer The Application Layer contains all the services needed to design,

trigger, and adapt a workflow over the infrastructure layer, and it is composed of the Data

Log, the Function Repository, the Enhanced Proxy, the Rule Based Engine, and the Data

Consumers.

The Data Log is a distributed MongoDB instance, and each peer contains the sets of

information related to the continuum host where they are installed. Each peer is filled with

the information that the Enhanced Proxy can provide about the function’s execution that

happened in that node, and it can be queried to build metrics-based scheduling rules.

The Function Repository is a centralized service used to publish, version, and retrieve

functions that can be used immediately on any node at the Infrastructure Layer. Functions are

stored using pre-configured docker container images that allow building functions in Python,

Java, Golang, Javascript, and Ruby. Each function can be cross-compiled and published for

different architectures, like armv7, armv8, amd64, or ppc64le. The deployment of a function

on a node will be successful if the right architecture image is available. Using a single Function

Registry improves the code reusability, letting share functions among all the RPulsar users

instead of using custom code at any time.

The Enhanced Proxy redirects the requests to a function to the Infrastructure node where

that function is run for that specific workflow. In this way, we avoid directly interacting with

a function, and then hiding the composition of the Infrastructure Layer. This proxy, while

forwarding the requests and the responses to and from a function, asynchronously queries

the Prometheus instance installed in the Serverless Platform where the function has been run

and stores the fetched metrics in the Data Log to be used by the Rule Engine.

The Rule-Based Engine is the highest level service component that takes advantage of all the

previous components to let the final users define rules that drive the position and relocation

of a specific function inside a workflow. Those rules can be based on one or more of these

factors:

• Incoming data;

• current loading of the system;

• History about previous similar jobs.

§4.2 − Event-Driven FaaS Workflows for Enabling IoT Data Processing at the Cloud Edge
Continuum 48

The policies can be evaluated at any new incoming data, then letting RPulsar dynamically

spread and optimize the computation (and storage) on the Continuum when needed.

1 i f (payload < 5) {

2 invokeFunction (f a a s=FZoneX , f =funct ion , data=payload , c fg=config , zone_out=SX

)

3 } e l s e {

4 invokeFunction (f a a s=FZoneY , f =funct ion , data=payload , c fg=config , zone_out=SY

)

5 }

Listing 4.3: RPulsar’s rule based on payload

In the listing 4.3, we define a rule that selects a node where to run a function based just

on the content of the payload. Depending on the value and the meaning of this value, we can

define where to compute and where to store the function’s output.

1 node=Datastore . ge tMetr i cs ("TTR < 10 s " , " 1d") . s o r t ("TTR : ASCENDING") [0]

2 invokeFunction (f a a s=node , f =funct ion , data=payload , c fg=config , zone_out=node .

c l o s e s t ())

Listing 4.4: RPulsar’s rule based on system metrics

In the listing 4.4, instead, we are accessing the datastore to find the list of nodes where

the Time to Respond (TTR) has been less than 10 seconds in the metrics collected in the last

day, then we retrieve the first node from this list. The invocation of the function will then use

the retrieved node to run the function, and it will store the function’s output in the closest

storage zone.

Message Exchange

RPulsar is able to build and activate Workflows using an advanced Pub/Sub model based

on the matching of producers’ and consumers’ profiles. This process is deeply explained in

[50], but we needed to modify them in order to include the use of the FaaS.

To start a workflow, we need producers and consumers to exchange ARMessages in the

order shown in Figure 4.12b. Producers and Consumers do not know each other, then they

just interact with an RPulsar node (RP), which will create a communication channel between

them later. In the figure, the Consumer C1 sends a NotifyData message, This message is used

to let RP know that it is interested in data that has a profile p1, and when it receives it, it will

apply a foo() function on it, providing a result with a p2 profile (C1 will become a producer

§4.2 − Event-Driven FaaS Workflows for Enabling IoT Data Processing at the Cloud Edge
Continuum 49

too then). Afterward, a producer (P1) sends a NotifyInterest message to RP, saying that it can

send data with p1 profile.

RP notices that C1 is interested in consuming P1’s data; namely, there is a match. RP

then activates the Rule Engine and schedules the C1’s foo() function on one of the Serverless

Platforms (OF) and the Object Storage (OS) to use in the Infrastructure Layer. RP will use the

OpenFaas API to deploy the function on the scheduled node, it will receive back the endpoint

to use to invoke the function. When the OF is ready, RP will send a NotifyMatch message to

P1, then P1 will start to produce and send data. Finally, RP will invoke the function on OF

sending the P1’s data in the payload. Once executed, the function will store the result on the

OS and inform RP that the computation is completed. If a new consumer C2 interested in

data with profile p2 will appear, this workflow restarts, but this time the producer will act

from C1, instead of sending directly the data will tell RP the OS address where the data are.

4.2.4 Performance Analsyis

To test the improvement we have brought to this new version of RPulsar, we have set

up a Continuum scenario where RPulsar is in charge of publishing and consuming IoT data

using FaaS functions. In the scenario we considered, we aim at consuming sensor and camera

data from the SAGE platform 3 to detect the presence of smoke. To publish sensor data, we

will locate an RPulsar producer at the Edge of the network, while a second RPulsar node

will consume it using a function that can be located in any FaaS Zone. In this testbed, we

considered three zones located at the edge of the network where data are even produced, in

the cloud, specifically in a High-Performance Data Center, and in one in the fog, namely in

the middle of the route between the edge and cloud zones.

More details about those zones are given in the table 4.3.

Performance experiments

In this section, we have performed a set of experiments to compare the proposed process-

ing approach with a traditional approach in which the stream processing is located in a fixed

location at the core of the infrastructure.

We are interested in two metrics, the Computation Time (CT) and the Request Time

(RT). The CT metric measures just the time to execute the function on the payload and get

a result; it does not include any other task. The RT measures the time elapsed from when a

3https://sagecontinuum.org/

§4.2 − Event-Driven FaaS Workflows for Enabling IoT Data Processing at the Cloud Edge
Continuum 50

Tier CPU
Mem-
ory

Operat-
ing
System

Location

Network
Upload
Speed to
Server

Network
Download
Speed from
Server

1 Edge

Cortex-
A72
4-cores 1.8
GHz

8 GB
Ubuntu
18.04
Aarch64

CloudLab
Utah
Datacenter

17.6
Gbits/sec

17.6
Gbits/sec

1 Fog

Intel
i7-5930K
12-cores
3.50GHz,

32 GB
Ubuntu
22.04
Amd64

SCI
Institute,
Utah

543
Mbits/sec

542
Mbits/sec

1 Cloud
Intel Xeon
54-cores
2.00GHz

254
GB

Ubuntu
18.04
Amd64

Gigabit
P2P
CloudLab
Clemson

407
Mbits/sec

406
Mbits/sec

Table 4.3: Cluster nodes characteristics for Enhanced RPulsar testbed

request is started to when the result is sent back to the client. Indeed, this metric involves

the CT, as well as the network card’s ability to compress and decompress the request, and

the network bandwidth used to transfer the data from the client to the serverless platform.

These two metrics are obtained from the Data Log component and can even be used to build

performance-oriented deployment rules, as seen before.

We tested the Edge-Fog-Cloud Serverless environment, considering two main parameters:

the payload size and the number of concurrent requests. Regarding the payload size, we

have considered two different kinds of datasets, the lightweight, composed of five payloads

of sizes 100KB, 200KB, 300KB, 400KB, and 500KB; and the medium weight, composed of five

payloads of size 1MB, 1.5MB, 2MB, 2.5MB, and 3MB.

We selected these two datasets among all the possible choices because those are the

smallest that allow us to demonstrate a change of behavior in terms of performances between

the cloud, the fog, and the edge nodes. With respect to concurrent requests, we considered 11

different use cases, from 1 request at a time to 100. Even in this case, these values allow us to

study a change of behavior in the computation layer.

The first simple test is shown in Figure 4.13. The test lets us see the difference in terms

of hard computation on all three zones when they compute heavier payloads. As totally

expected considering the resources described in table 4.3, the edge zone performs worse

than cloud and fog zones for any payload size, and the gap between the zones increases,

increasing the payload size by a super linear factor.

Fog and cloud zones, instead, keep comparable performance results for any payload size.

§4.2 − Event-Driven FaaS Workflows for Enabling IoT Data Processing at the Cloud Edge
Continuum 51

Figure 4.13: Best RPulsar’ CT on continuum tiers increasing payload size

Figure 4.14: Ideal RPulsar request duration vs real one on increasing payload

§4.2 − Event-Driven FaaS Workflows for Enabling IoT Data Processing at the Cloud Edge
Continuum 52

(a) Enhanced RPulsar’s RT in a single request with small dataset

(b) Enhanced RPulsar’s RT single request with medium dataset

Figure 4.15: RPulsar RT with one single request at time

Using the data we collected using the results shown in figure 4.13, together with the

network latency between the tiers that we have measured using iperf3 tool 4, and reported

in table 4.3, we can estimate the ideal RT value even for different payloads size. Those ideal

value has been compared with the real one, and the result is shown in figure 4.14. In the figure

is clear that real performances are in general worse than ideal ones, in particular for cloud

and fog, the delta between real and ideal is constant. That’s not true in the edge where real

and ideal performances are very close as long as the data computed are small, but as soon

as we take into account the medium-weight datasets, the real value strongly decreases the

performances, increasing the delta difference between it and the ideal value. This behavior

lets us expect that the edge layer might in general perform better when the workload is light,

especially because of the low use of the network, but it might rapidly change in the presence

of heavier work, has we we are going to test soon.

In figure 4.15, we measured the RT, when just one request was sent per time on all three

4https://github.com/esnet/iperf

§4.2 − Event-Driven FaaS Workflows for Enabling IoT Data Processing at the Cloud Edge
Continuum 53

(a) Enhanced RPulsar’s RT on increasing requests with 500KB payload

(b) Enhanced Rpulsar’s RT on increasing requests with 3MB payload

Figure 4.16: Enhanced RPulsar’s RT increasing parallel requests

tiers. Figure 4.15a shows the performance guaranteed using the small dataset. Here, despite

the tests shown in figure 4.13, the edge dominates both the performance of cloud and fog;

in fact, the involvement of the network that is needed to send the data away from the edge

outweighs the time needed to compute the data, producing the shown result.

Subfigure 4.15b instead represents the same information in figure 4.15a, but using the

medium-weight dataset. Results shown here totally revert to what was said previously; in

fact, in the edge, we are no longer able to efficiently compute incoming requests, performing

overall worse than both the cloud and the edge. Respect the previous figure, it is absolutely

interesting even to analyze the stability at the edge; in fact, while for small payloads, all the

tests run on the edge have almost the same performances, we see many more outliers and

bigger interquartile ranges for bigger payloads.

Figure 4.16 wants to analyze the scaling capabilities on the three tiers, showing the RT

when the payload size is fixed and the requests arrive with an increasing parallel factor.

In the subfigure 4.16a, the payload is fixed to 400KB; here, the cloud and edge highlight

§4.2 − Event-Driven FaaS Workflows for Enabling IoT Data Processing at the Cloud Edge
Continuum 54

both a stabler behavior than the fog. In particular, the cloud node does not significantly

change its RT, while the edge node requires 16 times more to complete 100 requests than one.

Despite that, all the executions are close to the median value, and outliers are rare. Fog node,

instead, has the worst performance of both cloud and edge, but also, many executions are far

away from the median value, making the expected value not reliable.

Finally, subfigure 4.16b analyzes the scaling property when the payload size is fixed to 3

MB. We have already demonstrated that the edge performs the worst under these conditions;

in the presence of concurrent requests, this behavior is even accentuated. In fact, from the

figure, we can see overall worse performance on edge at any scale, but also a high instability

in the results, which can be derived by the huge interquartile ranges in the box plots. The

stability of a result is a key point to be considered when some urgent computing is running.

In this figure, for example, considering 100 parallel requests, the best median value we can

achieve is in the edge that should give a response in 832 ms, against the 2845 ms in the cloud

and 3465 in the fog. If we take into account even the outliers and the highest values in the

boxplots, we can see that Edge and Fog might perform in the worst case much worse than

Cloud. Due to that, if guaranteeing a result in a specific time range is critical, the reliability in

the cloud is much higher. On the other hand, if we aim to respond as soon as possible, and

the risk of not respecting this deadline is acceptable, the edge might serve this goal better.

4.2.5 Summary

In those tests, we aimed to measure the performances that a continuum environment

can guarantee when provided with multiple independent serverless layers spread among

the cloud and the edge. We have taken into account the scaling factor, measured as the

ability to keep the same performances even in the presence of an increasing demand for

computations or data to compute. Our results comply with the current state of the art in

the continuum field; we have highlighted the advantage of using edge infrastructures to

compute low demand and small computations, taking advantage of a near-zero network cost

that balances just sufficient computation powers. Cloud instead, as expected, has highlighted

better performances for high demand and heavy requests. All of those data are available in

the Data Log, and therefore they can be used to write proper scheduling auto-balanced rules.

§4.2 − Event-Driven FaaS Workflows for Enabling IoT Data Processing at the Cloud Edge
Continuum 55

4.2.6 Conclusion

In previous works, RPulsar has been presented as an edge native tool used to design

and deploy IoT-centric event-driven workflow through a powerful profile match engine that

automatically connects generic data producers and consumers. Afterward, following the

prominent rise of the FaaS open-source platforms, we tried to exploit them to take advantage

of them to design and deploy continuum native workflows connecting FaaS functions by the

use of a distributed broker called OpenWolf.

In this work, our aim was to adapt the flexibility of RPulsar to implicit design workflows

to the OpenWolf potentiality to spread and reuse functions at any Continuum tier. We did that

using RPulsar baseline to build a connected distributed Continuum environment; then we

modified the producers and consumers’ profile structure to provide even a function reference

used to publish as well as consume data. Unlike any generic tasks, the FaaS functions shape

a clear task domain, and foreseeing their behavior is easier if there is a function execution

history to query. Because of that, we even improved the RPulsar Rule Engine to use the

execution history to choose where to run a function in order to ensure a given QoS.

Once those updates have been realized, we deeply tested and discussed this new RPulsar

version to measure the behavior of a continuum environment under different levels of system

stress, using a smoking detection use case as a scenario.

CHAPTER 5

Guaranteeing Security and Privacy in Continuum Environments

This Chapter focuses on the security issues that affect the Continuum Native applications.

Previously, we demonstrated that serverless workflows are a suitable solution for deploying

continuum native applications. Thanks to a definition of standard architecture, private and

public cloud, and edge infrastructure can cooperate to build very performing infrastructures.

With OpenWolf, we have carried out the first open-source project to enable Continuum

Computing, but many challenges related to different security aspects have not been discussed,

like unsafe communication channels, the privatization of the data, or the injection of malicious

code. In subsection 5.1, we address all those problems and even others, applying the already

discussed Osmotic Computing principles to the OpenWolf’s workflows, finally realizing

secure by design continuum native computation workflows. Once those updates, we will

validate again OpenWolf, even demonstrating a performance improvement with respect to

the previous version.

Following, we will address the Authorization and Authentication issues in highly unstable

but also dynamic Continuum environments. In subsection 5.2 we will find a solution to

authenticate, authorize, and propagate dynamic access policy to workflow applications,

keeping soft consistency between Identity Manager’s (IDm) peers connected in an unstable

Continuum infrastructure. This component will be tested in two different smart environment

scenarios.

56

§5.1 − Secure-by-Design Serverless Workflows on the Edge-Cloud Continuum Through the
Osmotic Computing Paradigm 57

5.1 Secure-by-Design Serverless Workflows on the Edge-Cloud

Continuum Through the Osmotic Computing Paradigm

OpenWolf [2] has been presented as the first open-source serverless engine capable of

composing functions using three main components: a workflow manifest, a Kubernetes

heterogeneous cluster, and a Broker Agent. OpenWolf aims to bring the serverless at the

Continuum layer, but this leads to some problems related to the environment’s security,

such as the definition of a secure overlay network for federating both the Continuum nodes,

storage, and transmission of sensitive data. These contents have been treated in the field of

distributed computing, but to the best of our knowledge, no one argued it for a serverless

Continuum environment.

A universal approach for dealing with these aspects was proposed in the Osmotic Com-

puting paradigm [11], that we deeply described in the Chapter 2. We believe that OpenWolf

is a good starting point for the development of a Cloud-Edge continuum system because it

easily manages distributed function-based applications spread over Cloud and Edge. Nev-

ertheless, as well as in many other Continuum computing engines, it raises some security

threats that, in this work, we aim to solve through the Osmotic Computing paradigm. In this

chapter we aim to address the following security aspects:

O1 Secure storage for sensitive data, which assures that confidential information is not

disclosed to unauthorized individuals.

O2 Secure and authorized secret distribution, because serverless applications are dis-

tributed across the Cloud-Edge Continuum, and, in a so complex environment, defining

a way for distributing secrets is crucial.

O3 Functions access control, which guarantees that the interaction between functions is

under control, disallowing malicious functions can inject forbidden invocations.

O4 Communication security between nodes that prevents unauthorized parties from

gaining understandable access to the communication, granting that the object of the

communication is delivered to the expected receiver. This is also a complex security

aspect in a serverless environment because serverless functions, which are spread

across the Edge-Cloud Continuum, are deployed by a serverless function provider.

Indeed, serverless workflows, composed of serverless functions, imply many internode

communications, and it is impossible to a priori know on which particular node the

serverless functions will be deployed or executed by the serverless functions provider.

§5.1 − Secure-by-Design Serverless Workflows on the Edge-Cloud Continuum Through the
Osmotic Computing Paradigm 58

O5 Message security, that consists in the process of isolating any communication between

the components of an application, mainly through the encryption of messages of

the exchanged data. In the case of a serverless environment, the entities exchanging

messages are serverless functions that, by definition, are unaware of being part of a

particular application. For this reason, guaranteeing message encryption is challenging.

The main scientific contributions of this research are:

• identifying security vulnerabilities of the existing OpenWolf implementation;

• implementing the Osmotic SDMem concepts to improve serverless security in the

Cloud-Edge continuum;

• validate the implemented features with a non-secure implementation of OpenWolf, in

terms of system execution time and resource utilization.

5.1.1 Related Works

When Serverless technologies are adopted, applications can be managed without the need

to develop a server from scratch. By doing so, the service provider handles some security

aspects. Recently, many works have been proposed addressing different aspects of the field

of security in Serverless environments. In [74, 75, 76], authors underlined the fact that even if

Serverless applications do not run on a managed server, they continue to execute code. If this

code is not written securely, the application may be exposed to traditional application-level

attacks. In particular, the security risks associated with serverless are summarized in ten

points, such as i) code injection [77], ii) broken authentication, iii) sensitive data exposure,

iv) XML external entities, v) broken access control [78], vi) security misconfigurations, vii)

cross-site scripting, viii) insecure deserialization [79], ix) using components with known

vulnerabilities, and x) insufficient logging and monitoring. In addition to that, it should be

taken into account that applications are highly scalable in a serverless environment, and

many parallel computations can be triggered. For this reason, even a single bit leak could

cause problems, as it could be used to obtain access to secure data [80].

In a serverless environment, there are two main security drawbacks [80]. On one hand,

the security level strictly depends on the features given by the vendor. On the other hand,

if insecure code is used for serverless functions, the attack surface is extended. Thus, the

authors accurately suggested how to choose the vendor service, paying particular atten-

tion to the quality of the code and introducing continuous monitoring of the production

§5.1 − Secure-by-Design Serverless Workflows on the Edge-Cloud Continuum Through the
Osmotic Computing Paradigm 59

environment. Researchers are suggesting approaches to improve the security mindset of

the consumer, applying specific actions, such as a) introducing a culture of collaboration, b)

creating security-by-design architectures [81], c) introducing threat modeling and limitation

of authorization [82], d) implement secure coding standards [83], and e) automate secure

deployment systems, exploiting continuous monitoring [84]. Such approaches are required

in a Serverless environment to ensure comprehensive security controls based on multilevel

protection [85].

In the fields of authentication and authorization, external request permissions should

be verified for all the functions at the workflow entry point. This allows malicious requests

to be blocked as early as possible, thanks to an authentication and authorization system

based on the decoupling of authentication from execution with the use of a message-oriented

middleware [86, 5], and using JSON Web Token (JWT) and Oauth2 protocol for authentica-

tion, authorization and access control in a serverless environment [87]. In [88], the authors

proposed a dynamic and self-adapting approach for data access and protection during its

whole lifecycle in the Cloud-to-Edge continuum. This solution was proposed to protect data

in applications deployed in the continuum but not for sequential and parallel serverless

workflow executions. However, a similar approach could also be adopted for this kind of

application. In the field of resource isolation, the greatest challenge is represented by the weak

isolation of lightweight virtualization systems, aided by virtual machines and containers to

isolate functions and contexts [85, 76]. Containers’ security strictly depends on the underlying

operating system (i.e., a breached container instance can easily trigger an operating system

vulnerability); whereas virtual machines (VMs) ensure better isolation, but they are more

resource-consuming.

Nevertheless, different solutions for a lightweight and secure execution have been pro-

posed in recent years: Amazon introduced FireCracker [89] in 2018, a new hypervisor that

uses microVMs for deploying serverless functions; Google developed gVisor in 2019 [90] to

completely isolate serverless function deployed in containers from the host operating system.

However, even if functions are isolated by being deployed using containers, malicious code

can still trigger the execution of prohibited functions. Thus, it is not sufficient to isolate the

software execution, and some network isolation should be introduced. In the field of data

protection, encryption is necessary to protect data both in idle and transit. Moreover, some

key management services are needed to handle application secrets [85], such as cryptographic

keys.

Serverless is mainly born as a natural evolution of the microservice architecture that typi-

§5.1 − Secure-by-Design Serverless Workflows on the Edge-Cloud Continuum Through the
Osmotic Computing Paradigm 60

cally runs in the Cloud, but it is common to find Edge deployment [18, 91, 92]. Unfortunately,

the security risks of serverless on distributed environments are poorly treated. In [93], the

authors proposed a Multi-Cloud Performance and Security (MCPS) Brokering framework

for resource allocation of a set of workflows across federated Multi-Cloud infrastructures.

However, even if it is possible to introduce security constraints in selecting the nodes for

the computation, it is limited to Cloud infrastructure and only uses VMs. Therefore, it does

not use lightweight virtualization solutions, such as containers, and does not support Edge

nodes. Another proposal for a secure scheduling system of workflows was made in [94],

where some security constraints were introduced for the scheduling of jobs in a four-tier

environment composed of IoT sensors and devices, mist resources, fog resources, and Cloud

resources. Such a solution does not have an implementation for serverless computing, but its

applicability could be really important for that field.

5.1.2 Threats Analysis and Mitigation

According to the above-mentioned background in Osmotic Computing, we borrow the

concepts of MELs and SDMem to implement a secure execution of serverless workflows

on a Continuum environment, merging into OpenWolf components (i.e., OpenFaaS and

Kubernetes). Below, we identify the main threats and discuss of to mitigate them.

Data and Communication Privacy

When OpenFaas builds and deploys a function, it is encapsulated within a container

that Kubernetes includes in a pod, acting as MS. Even if Kubernetes includes the concept

of secret, it is not good enough to guarantee data privacy, since this is stored in plain text,

and its access is not regulated by any policy. In this regard, while implementing MOD and

MUD, we need to use Hashicorp Vault, which is used to store encrypted secrets (aes-gcm

256 bit). Therefore, a client needs to get authentication and authorization according to the

secret’s policies before accessing the secret. This feature satisfies the Objective O1. Even if

Hashicorp Vault encrypts data, this could be stolen during the transmission from the Vault to

the Pod. Therefore, we use the Vault Injection to deploy a vault container in the same pod

where the function container lies. In this way, data are encrypted locally. This feature satisfies

the objective O2.

When OpenWolf deploys the function on Kubernetes, the Vault injection happens trans-

parently. Therefore, the function container does not need to directly access secret data.

§5.1 − Secure-by-Design Serverless Workflows on the Edge-Cloud Continuum Through the
Osmotic Computing Paradigm 61

In Kubernetes terms, running a container that supports another one in the same pod is

called the side-car pattern. In our case, we are adding a container that lets the function pod

act like an Osmotic MEL, guaranteeing privacy and security to confidential data; for this

reason, we call this container Osmotic Sidecar. Figure 5.1 shows how the function, the sidecar,

and Vault work together.

Figure 5.1: MEL design in OpenWolf

Basically, to enable the sidecar in any Function we have to follow four steps: i) enabling

Vault; ii) defining a role in Vault; iii) associating a role to a function/pod; iv) granting

permission to a role for accessing a secret.

Malicious FaaS Invocation

SDMem acts as Kubernetes tuning. Specifically, it allows constraining, isolating, and

protecting MELs in a Continuum environment. In the OpenWolf architecture, this can be

ensured by exploiting the network features of Kubernetes, which are i) the interaction with

the pods’ deployment phase and ii) the pod’s network ingress/egress network rules.

Function interactions are ruled by the Manifest, which describes how each function sends

data to others in the Workflow. Unfortunately, this approach does not prevent a malicious

function from invoking other functions by hard coding its address and bypassing OpenWolf,

which instead could notice an unattended connection attempt. SDMem is then designed

to allow only legal interactions and reject any others. The implementation of the SDMem

on OpenWolf is based on two features of Kubernetes: (i) Namespaces and (ii) Network

Policies. Usually, OpenFaaS deploys any function in the same namespace, but we changed

§5.1 − Secure-by-Design Serverless Workflows on the Edge-Cloud Continuum Through the
Osmotic Computing Paradigm 62

this behavior to add an ad-hoc namespace that contains all the pods that belong to the same

membrane, and these pods can interact using their relative proxy interface placed in ad-hoc

separated namespaces. To do that, we denied by default any ingress policy to the OpenFaaS

gateway, with the exception of the OpenWolf agent and the proxy. The agent can access

the allowed functions running in another namespace that accepts ingress traffic from those

functions. An example of a policy applied to the OpenFaaS gateway is shown in the listing

5.1.

1 apiVersion : networking . k8s . io/v1

2 kind : NetworkPolicy

3 metadata :

4 name : faas −gateway−pol i cy

5 namespace : openfaas

6 spec :

7 podSelector :

8 matchLabels :

9 app : gateway

10 policyTypes :

11 − I ng res s

12 i n g r e s s :

13 − from :

14 − namespaceSelector :

15 matchLabels :

16 kubernetes . io/metadata . name : openfaas

17 − namespaceSelector :

18 matchLabels :

19 kubernetes . io/metadata . name : openwolf

20 − namespaceSelector :

21 matchLabels :

22 app : nginx

Listing 5.1: Policy applied to the OpenFaaS gateway

An example of a policy applied to the proxy is, instead, shown in the listing 5.2.

1 apiVersion : networking . k8s . io/v1

2 kind : NetworkPolicy

3 metadata :

4 name : proxy−group1−network−pol i cy

5 namespace : proxy−group1

6 spec :

7 podSelector : { }

8 policyTypes :

§5.1 − Secure-by-Design Serverless Workflows on the Edge-Cloud Continuum Through the
Osmotic Computing Paradigm 63

9 − I ng res s

10 i n g r e s s :

11 − from :

12 − namespaceSelector :

13 matchLabels :

14 kubernetes . io/metadata . name : openfaas

Listing 5.2: Policy applied to the proxy

The behavior we shaped is given in Figure 5.2, where we graphically show how Network

Policies works, basically rejecting any interaction that does not belong to the same membrane

and that does not pass through the proxy.

§5.1 − Secure-by-Design Serverless Workflows on the Edge-Cloud Continuum Through the
Osmotic Computing Paradigm 64

(a) Function Gateway Isolation

(b) Proxy Namespace for MEL isolation

Figure 5.2: Function isolation

§5.1 − Secure-by-Design Serverless Workflows on the Edge-Cloud Continuum Through the
Osmotic Computing Paradigm 65

Message Security, instead, consists of the encryption of the data exchanged between

functions linked in a workflow. As we already mentioned, cryptography is a transparent

option for the functions which are unaware of how data arrives at the destination. On the

other hand, encryption and decryption must happen in a protected environment to avoid

data theft. To respect those constraints, we generate a key encryption secret for each function

and then deploy this secret both in Vault within the function’s Osmotic sidecar and in the

agent, as shown in Figure 5.3. The Osmotic sidecar injects the key into the function container

that uses it for encrypting the function’s output before it reaches the pod. The Agent instead

decrypts data with the same key stored in its own vault, and it encrypts this data with the

key of the next function in the workflow manifest. This satisfies the Objective O5.

Figure 5.3: Message encryption workflow

Even if the pods’ interaction is protected by message encryption, the communication is

not protected. SDMem isolates and protects by design any data exchange at the network

level to prevent sniffing of encrypted data that could be decrypted with a brute force attack.

OpenWolf manages the Continuum Network Federation using the Kubernetes Container

Network Interface (CNI), allowing the deployment of a WireGuard VPN Server and a

Wireguard VPN client in each Kubernetes node, isolating the network communication from

the external and then preventing stole of data, as shown in Figure 5.4. The default CNI of

Kubernetes is flannel, which operates via an IPv4 overlay network. Each node in the cluster

is associated with a dedicated subnet on which to internally allocate IP addresses. When a

POD is started, the Docker bridging interface on each node allocates a dedicated address for

each container. The PODs within a single host communicate through this bridge, while in the

case of communication between PODs in different hosts, Flannel applies an "encapsulation"

of the frames in UDP and performs routing to the correct destination. However, we have

preferred to use a different CNI, such as Calico. Unlike Flannel, it does not stand out for its

simplicity but for performance, reliability, and versatility. In fact, Calico’s spectrum of action

extends not only to the aspect of connectivity but also to security and network management.

Calico does not use an overlay network but configures a layer 3 network using the BGP

protocol for the correct routing of the packets (encapsulation is not required), with an evident

§5.1 − Secure-by-Design Serverless Workflows on the Edge-Cloud Continuum Through the
Osmotic Computing Paradigm 66

performance gain as well as facilitation in case of debugging. Moreover, Calico implements a

tunnel to secure the communication channel used by nodes. In this regard, it uses Elliptic

Curve Cryptography (ECC), a type of public key cryptography based on elliptic curves

defined on finite fields. This also satisfies the Objective O4.

Figure 5.4: Infrastructure SDMem using VPN

5.1.3 Benchmarks

Experiments about the security-enhanced features implemented in our OpenWolf pro-

totype are described in this Section. Compared to its original implementation, tested in a

previous work [2], we expect to appreciate an overall performance deterioration (especially in

the execution time) due to the encryption and decryption phases applied in both sequential

and parallel workflows. However, the security benefits are worth this drawback. In the fol-

lowing paragraphs, different performance metrics are analyzed and compared, such as the (i)

Time to Respond (TTR) also called Execution Time, and the (ii) CPU and RAM usage, consid-

ering both a variable number of states and different key encryption lengths, in a full-Cloud,

full-Edge, and Continuum environment in both sequential and parallel configurations.

System Testbed

The Osmotic version of OpenWolf has been tested using a three-node Kubernetes Cluster,

composed of one node in the Cloud tier, and two nodes in the Edge tier. The OpenFaaS’s Gate-

§5.1 − Secure-by-Design Serverless Workflows on the Edge-Cloud Continuum Through the
Osmotic Computing Paradigm 67

way, Prometheus, Authentication Server, Kubernetes Master, OpenWolf Agent, OpenFaas’

Nats, Queue Manager, and a Redis instance have been deployed in the Cloud environment,

while the Edge is left empty, but available at hosting functions. Table 5.1 contains the infor-

mation about our Continuum environment. Both Cloud and Edge are suitable to host all the

OpenWolf and OpenFaas’s components, as well as the functions that compose the workflows

we used to make the test assessments. In the next sections, we compared the behavior of

OpenWolf in terms of response time and resource utilization when deployed in three envi-

ronments: full-Cloud, full-Edge, and continuum. In the full-Cloud test assessments, all the

OpenWolf components as well as the functions that compose the workflows are deployed in

the Cloud nodes, other tiers are still federated in the Kubernetes cluster, but they are idle.

In the full-Edge environment, the opposite happens, with all the architecture components

and functions deployed just in the Edge nodes. Finally, in the Continuum environment, the

OpenWolf components are deployed in the Cloud, while the functions are fairly distributed

among all the nodes.

The systems’ characteristics are summarized in table 5.1, while the OpenWolf parameters

are summarized in table 5.2.

Instances Tier Model CPU Memory
Operating
System

1 Cloud Openstack VM
Intel(R) Xeon(R)
Gold 5218 CPU @
2.30GHz, 2-core

4 GB Ubuntu 20

2 Edge Raspberry Pi 4
ARM64 SoC
1.5GHz, 4-core

4 GB
Raspberry OS
ARM64

Table 5.1: Cluster’s nodes characteristics for the Osmotic Workflow testbed

Parameter Value Condition
Queue Workers 1 Ever
Function replicas State references States Number < 60
Function replicas (State References)/2 States Number ≥ 60
Max_inflight Equal to functions replicas Ever

Table 5.2: OpenFaaS and OpenWolf parameters for the Osmotic Workflow testbed

Encryption Overhead

The first test compares the execution time of a dummy function both in Cloud and Edge

with and without encryption for input and output data. The encryption algorithm adopted

for evaluation of the metric is the Advanced Encryption Standard (AES), a symmetric key

§5.1 − Secure-by-Design Serverless Workflows on the Edge-Cloud Continuum Through the
Osmotic Computing Paradigm 68

block cipher algorithm. The block has a fixed size (i.e., 128 bits) and the key can be 128, 192,

or 256 bits. The use of the AES algorithm is justified by the fact that it is used as a standard by

the government of the United States of America and can in fact be used to protect classified

information. Specifically, a 128-bit key is sufficient for the SECRET level, while 192- or 256-bit

keys are recommended for the Top secret level. AES makes 10 rounds for a 128-bit key, 12

rounds for a 192-bit key, and 14 rounds for a 256-bit key. Therefore, the tests were carried out

considering an increasing key length (i.e., 128, 192, and 256-bit keys).

Figure 5.5: Average Serverless Function Execution Overhead

Analyzing the performance of the system when processing plaintext, as shown in Figure

5.5, we evaluate that an Edge node requires 175% more to execute the same function with

respect to the Cloud node. When cryptography is applied, the Edge execution time is around

260% times the Cloud one. This constant behavior is motivated by the fact that cryptography

is a near-unit cost, independent of the key dimension for a small range of keys. This is

confirmed by the fact that Cloud and Edge encryption execution time takes respectively 100%

and 260% more respect the plaintext execution, regardless of the key size.

Parallel and Sequential Workflow Execution Time

OpenWolf is able to build complex functions relationships thanks to the use of the

Serverless Workflow DSL. The simplest serverless combination is chaining, where each

workflow function follows the previous one. With respect to OpenFaaS and OpenWhisk,

OpenWolf is also able to run parallel functions at once and then join them later. This possibility

can be time-saving, as already demonstrated in the previous works, but the cipher capabilities

§5.1 − Secure-by-Design Serverless Workflows on the Edge-Cloud Continuum Through the
Osmotic Computing Paradigm 69

could badly affect the scaling factor from the sequential to the parallel execution due to

heavier resource work. In Figure 5.6, we compare the execution time of the same workflow

deployed both in sequential and parallel mode. In subfigures 5.6a, 5.6e, 5.6e, all messages are

exchanged in plaintext between functions. Instead, in subfigures 5.6d, 5.6f, 5.6d, messages are

encrypted using a 256-length key. Same results are even shown in the tables 5.3, 5.4 5.5, 5.6.

The results obtained with this test show a good scaling factor on all three configurations. In

the Cloud tier, a parallelized job can save from 48% of the time to 56% for a plaintext execution

and from 50% to 54% for a ciphertext one. This result is obtained using two computing nodes.

On the Edge, the improvements are similar to the Cloud. The plaintext execution saves from

54% to 64% of the time, while the ciphertext execution from 58% to 60%. Finally, thanks to

the use of more computation nodes and a greater parallelization factor in the Continuum

environment, a plaintext execution saves from 53% to 61%, while a ciphertext one from 62%

to 68% of the time.

§5.1 − Secure-by-Design Serverless Workflows on the Edge-Cloud Continuum Through the
Osmotic Computing Paradigm 70

(a) Plaintext TTR Comparison in Cloud (b) Ciphertext TTR Comparison in Cloud

(c) Plaintext TTR Comparison in Continuum (d) Ciphertext TTR Comparison in Continuum

(e) Plaintext TTR Comparison in Edge (f) Ciphertext TTR Comparison in Edge

Figure 5.6: Sequential vs parallel workflows execution time comparison

Tier/States 20 40 60 80 100
Cloud 5,095 9,323 14,427 19,743 25,719
Edge 12,658 25,554 38,694 52,256 65,196
Continuum 7,919 14,784 20,323 27,212 33,950

Table 5.3: Sequential in-clear Workflow execution time summary

Resources Utilization Comparison

The main differences between Cloud and Edge are given by closeness to data, cost, and

resource availability. In this test, we will focus on the latter factor to understand how CPU

§5.1 − Secure-by-Design Serverless Workflows on the Edge-Cloud Continuum Through the
Osmotic Computing Paradigm 71

Tier/States 20 40 60 80 100
Cloud 9,317 19,038 28,352 38,6984 48,789
Edge 32,983 66,805 100,835 133,193 167,219
Continuum 20,807 41,974 63,647 85,143 107,262

Table 5.4: Sequential ciphered Workflow execution time summary

Tier/States 20 40 60 80 100
Cloud 2,637 4,059 6,830 8,168 11,091
Edge 5,307 9,505 14,820 18,493 23,451
Continuum 3,650 7,149 8,214 10,826 13,411

Table 5.5: Parallel in-clear execution time summary

Tier/States 20 40 60 80 100
Cloud 4,634 9,361 13,891 17,793 22,125
Edge 13,902 25,446 40,067 49,961 66,601
Continuum 7,919 14,784 20,323 27,212 33,950

Table 5.6: Parallel ciphered execution time summary

and RAM are affected in both environments when different kinds of workflows are run

on. We compared OpenWolf with the cryptography feature enabled and disabled, using

workflows composed of increasing states. All states invoke the same function built to isolate

OpenWolf overhead from OpenFaas’s container management overhead. In Figure 5.7 we

compared the metrics when a sequential and a parallel workflow are run in three different

environments using plaintext data. Subfigures 5.7a and 5.7b confirm that the Cloud is better

than the Edge in terms of execution time for a sequential and parallel workflow, as this

performs 50% faster. The behavior at the Continuum is around the average point between

Cloud and Edge, and this can be guaranteed by a good load balancing among the resources.

As shown in subfigures 5.8a and 5.8b, the difference is in the gap between Cloud and Edge.

In fact, the Cloud is able to run up to 4x times faster than the Edge, which delay is related to

the encryption.

In Figures 5.7e and 5.7f we compare the CPU usage in the environments. Even in this

case, Cloud is faster than Edge because of a higher clock in the CPU. On the other hand, the

function parallelization involves all the cores of the Edge devices, increasing the overall usage.

When encryption is taken into account, as shown in Subfigures 5.8e and 5.8f, the differences

between Edge and Cloud decrease. This happens because Cloud nodes can still increase their

usage, while Edge nodes’ utilization is already at its max. This also explains the difference in

terms of execution time as commented before. In all the scenarios studied, the Continuum

environment records good performances, load balancing CPU usage proportionally with the

§5.1 − Secure-by-Design Serverless Workflows on the Edge-Cloud Continuum Through the
Osmotic Computing Paradigm 72

available nodes.

While we have seen better performances in terms of execution time and CPU utilization

in the Cloud, the memory usage, as highlighted in Subfigures 5.7c and 5.7d, is in the average

26% more used. Considering that just one function is run in each node and that OpenFaas

does not allow a zero-scale, this value is on average equal for any execution. Such a difference

is mainly led by resource-consuming containers when compiled for amd64 architecture [95]

even if idle. This is especially true when compared with a container compiled for arm64

architectures.

§5.1 − Secure-by-Design Serverless Workflows on the Edge-Cloud Continuum Through the
Osmotic Computing Paradigm 73

(a) TTR in-clear sequential Workflow (b) TTR in-clear parallel Workflow

(c) Memory usage in in-clear sequential workflow (d) Memory usage in in-clear parallel workflow

(e) CPU usage in in-clear sequential workflow (f) CPU usage in in-clear parallel workflow

Figure 5.7: Plaintext workflow execution, sequential parallel comparison

§5.1 − Secure-by-Design Serverless Workflows on the Edge-Cloud Continuum Through the
Osmotic Computing Paradigm 74

(a) TTR in ciphered sequential workflow (b) TTR in ciphered parallel workflow

(c) Memory usage in ciphered sequential workflow (d) Memory usage in ciphered parallel workflow

(e) CPU usage in ciphered sequential workflow (f) CPU usage in ciphered paralel workflow

Figure 5.8: Ciphered workflow execution, sequential parallel comparison

§5.2 − A Distributed Peer to Peer Identity and Cloud Edge Continuum Applications 75

5.1.4 Conclusions

In this work, we tried to identify and address the security risks involved in a serverless

environment over the Continuum. In particular, we highlighted five different threats that are:

i) the possibility to safely store secrets, ii) the ability to access them in a safe and authorized

way, iii) the flow control which means the ability to allow some functions interactions and

disallow others, iv) the capacity to guarantee a safe communication channel over the internet,

and finally v) the capacity of guaranteeing message privacy. To address all these aspects, we

followed the Osmotic Computing paradigm with the aim of providing a safe and balanced

distributed environment in which running applications composed of many tasks called

microservices and locating user and system data called MicroData. Osmotic Computing is

safe-by-design because involves a security abstraction called Software Defined Membrane,

which isolates applications and nodes. We dealt, therefore, with a real application of Osmotic

Computing inside OpenWolf, a workflow engine able to spread and coordinate serverless

functions deployed using OpenFaaS among the Cloud-Edge Continuum. In this regard,

we deeply changed the OpenWolf architecture, modifying the underlying Kubernetes used

both to build the federated network of Continuum and orchestrate the workflow functions.

We performed several tests comparing the implemented features with an unsafe version of

OpenWolf. In particular, we investigated metrics such as usage (i.e., cpu usage and memory)

and time to satisfy different-size workflows when running both in sequence or parallel.

5.2 A Distributed Peer to Peer Identity and Cloud Edge Continuum

Applications

In a continuum environment, built using the Osmotic Computing design pattern, MELs

smoothly move around the Osmotic nodes following scheduling rules that can depend on

performance, security, and availability aspects. These aspects have already been analyzed

in previous works[6][96], but no one paid attention to the fact that if the MELs migrate,

according to the Osmotic Paradigm rules, the accessing rule to the MEL might also need to

be up to date. In general, any IAM demands resource access management, which defines

roles and roles’ access to the resources. The IAM is typically a central node with its own

SQL database. This kind of architecture is hard to integrate into any Continuum/Osmotic

Infrastructure, which typically is based on a distributed architecture. All the challenges we

may meet using a classical IAM in an Osmotic Infrastructure are due to these architectural

§5.2 − A Distributed Peer to Peer Identity and Cloud Edge Continuum Applications 76

differences, and they could be:

• impossibility to spread the IAM among different nodes in a peer-to-peer fashion;

• impossibility to working with some nodes offline;

• impossibility to maintain consistency over the IAMs.

The novelty of our work is represented by the presence of an IAM tailored over an

Osmotic Infrastructure that tries to overcome the just mentioned limits. To do that, we will

design, implement and test a distributed peer-to-peer infrastructure able to work partially

offline with a soft consistency, equipped with a set of APIs that allows to dynamically change

the access to any MELs according to the requests of the Osmotic Infrastructure. To do that,

we will consider as Continuum baseline infrastructure, OpenWolf, the Faas-based continuum

engine presented in 4.1. This chapter will mainly focus on the infrastructure level, upgrading

the OpenWolf orchestrator instead of the OpenWolf engine itself.

5.2.1 Related Work

In the last years, several studies were focused on Security in microservices. The increase

in applications based on this architectural paradigm was one of the main reasons to deepen

the security in this field.

In the research work carried out [97] a recap of last year’s studies about security in mi-

croservices architecture has been made. In particular, the need to make microservices creation

and deployment secure emerges from the work. The research shows that the hotter topics

about security in microservices are related to triple-A management. Even [98] solutions about

security management in Microservices are treated. The paper has analyzed the security in

this kind of architecture at different layers describing how each issue is treated according

to the literature produced at that moment. Among the aspects faced, the solution proposed

for mutual authentication by Docker Swarm and Netflix is described. The work also talks

about the authorization mechanisms used in the microservices architecture. In this field, it

proposes some solutions in order to manage the authentication and the authorization of final

users in a microservices-based architecture. The solution proposed in the research exploits

a token approach by which transmitting the authentication and the authorization among

the microservices interested. A similar issue is treated in [99] which the main solutions for

end-user authentication and authorization inside microservices use-cases are described. The

main solutions, even in this case, foresee the utilization of a token (an example proposed is

§5.2 − A Distributed Peer to Peer Identity and Cloud Edge Continuum Applications 77

the JSON Web Token) or, more in general, to consider a dedicated microservice for user au-

thentication and authorization management (an SSO service). The solution proposed, even in

this case, is not really innovative and considers the Identity Manager a central element. Other

researchers have also discussed the authorization and authentication aspects of microservices.

In particular, [100] a solution for authentication and authorization management in microser-

vices is proposed. The architecture described in that work, exploiting the well-known defined

XACML flow, aims to implement a solution in Machine-to-Machine communication in which

the authorization policies are managed. The peculiarity of the solution proposed is the total

microservices approach used. Each element, already known in the eXtensible Access Control

Markup Language (XACML) standard, is containerized through the already validated Docker

technology. The work is interesting because realizes and tests a practice solution in which

microservices can manage authentication and authorization not only in a system provided

for the end-user. However, it has some limits. It does not face the problem of the Identity

Manager in this context. It remains a central element even in the microservices architecture

proposed. Security analysis in the microservices context was deepened in the work [101]. In

particular, in that paper, the security was analyzed according to different layers. On top of the

layers evaluated also the application layer was studied. The solution of authentication and

authorization in microservices applications was discussed, and some solutions were tested

and compared. The solutions considered were a little recap of the most used techniques

already discussed. They were related both to the network layer (like IP validation) and to

the application one (like secret transmission). The test does not consider some important

elements like an advanced authorization management system.

Another interesting work was realized [102]. In this work, a new authorization policy lan-

guage is developed. It is conceptually based on the XACML standard. It simplifies that

standard even using the JSON format to define the rule and the policy. This system allows

the implementation of the main authorization functionalities in a microservices architecture

through the "delegation" concept that characterizes the solution presented. Exploiting this

new concept, the process of authorization validation can be distributed, among different mi-

croservices, without sharing sensible data, within the whole architecture making the solution

really scalable and more secure. The case considered does not deep the distribution and the

position of Identity Manager inside the architecture. This element should be discovered since

the evolution of last year’s microservices has faced.

One of the most recent papers, [103], has studied all the research in the security field within

microservices-based systems. It reveals and recaps the main topic of the research considered.

§5.2 − A Distributed Peer to Peer Identity and Cloud Edge Continuum Applications 78

They are mainly related to authorization and authentication problems as we have already

seen.

The work presented in [11], described a new Computational Paradigm strongly based

on the Microservices concept, that is Osmotic Computing. That paradigm tries to federate

heterogeneous environments (like Cloud and Edge Computing) in order to make transparent

a unique "place", to deploy services, called Membrane. This federation foresees a possible

migration among the nodes federated in the membrane. This paradigm has introduced also an

evolution of classical Microservices named MicroElements. MicroElements are characterized

by the presence and management of Persistence Data, and they are the central element of

Osmotic Architecture. Some researchers have focused on the security of the MicroElements

inside the Osmotic Infrastructure. The [104, 105] basic principles of Osmotic Computing are

defined and the problem of authentication and authorization is presented. In particular, the

paper points out the problem related to an authentication distributed in all the federated

nodes. The work proposed in our paper wants to solve this problem through the solution

proposed.

In this regard, other researchers have focused their work on the decentralized management of

identity and access. For example, the research carried out [106] tries to design a decentralized

identity system that is based on classical credentials and that exploits Blockchain. It is a

conceptually good starting point for Decentralized Identity Management, but it is not enough.

It is based on classical credentials that are not many safe, and it is based on Blockchain. We

can find an evolution of decentralized identity management [107], a distributed Identity

Management is considered. In particular, this work takes inspiration from the Self-Sovereign

Identity approach [108]. to realize a distributed identity and access manager blockchain-based

in which personal data are encrypted through homomorphic encryption. The solution is

interesting but it seems a little bit not convenient for the end-user. Moreover, they are not

oriented in Microservices and Osmotic approach unlike the solution proposed by us.

A recap of the more important research on decentralized identity is described in [109].

The work shows all the most recent research about decentralized identity management

blockchain-based. All the solutions seen within that paper are interesting but all of them

are based on blockchains that could represent a third part element inside the Osmotic

Infrastructure. The solution proposed in our paper is strictly Osmotic compliant and allows

to manage authentication and authorization without third-party elements respecting the

Osmotic Architecture itself.

§5.2 − A Distributed Peer to Peer Identity and Cloud Edge Continuum Applications 79

5.2.2 Design

Typically IAMs, are deployed using an architecture similar to the one shown in Figure

5.9. In the figure, we represented two different nodes. The first node acts as a centralized

IAM, composed of a set of access rules and user and service data stored in a database, a

set of APIs for authenticating users and a proxy server used to forward the requests from

the client to the correct service that instead are stored in a second node, usually located in a

private network area. Typically access rules are represented like a sentence with the following

shape: "⟨ Subject⟩ can ⟨action⟩ on ⟨object⟩", In these cases, the actions are typically involved

in CRUD (Create Read Update Delete) set operations and the object is any available resource.

The subject depends on the security pattern followed, for example, RBAC or ABAC. This

topic is out of the scope of this chapter and for simplicity, we will consider starting now an

RBAC-based IAM.

Figure 5.9: Centralized IAM architecture

In this scenario, users use the IAM’s API to authenticate themself using their credentials,

and the IAM’s proxy to reach the services. The proxy will use the authentication information

provided by the client and the access rules stored to decide whether they can reach the

requested resource. This flow is well described in the sequence diagram in Figure 5.10. As

we see there are no interactions between the clients and the real requested resources, all

the messages in fact arrive at the Proxy and only the authorized ones are forwarded to the

resource. In an Osmotic Infrastructure MELs are spread among different Osmotic Nodes as

well as other Osmotic Components. Often, Nodes are not reachable between them, due to

§5.2 − A Distributed Peer to Peer Identity and Cloud Edge Continuum Applications 80

Figure 5.10: Authorization and access flow

network disconnection or security reasons related to the Osmotic Membrane [11]. Due to

that, tailoring a centralized IAM in this scenario is a high risk, since it may affect the usability

of some applications inside the Osmotic Infrastructure. For these reasons, we designed a fully

distributed IAM as shown in Figure 5.11.

In this new scenario, we have many Osmotic Nodes, and in all of them, an IAM is installed.

The IAM is still composed of the elements seen before, a database containing the user’s and

resource data, a set of access rules, a set of APIs, and a proxy service.

This time, the IAM is equally distributed among all the Osmotic Nodes, in a peer-to-peer

model. Each node must be able to work even if any of the others are unreachable; for this

reason, each IAM is in charge of guaranteeing secure access only to the local services installed

in the same node where the IAM is, and eventually to the others only if they are reachable, in

this way, a service becomes unreachable only if the entire node is unreachable. The different

IAMs instances need anyway to be synchronized because they need to know the rules to

access to service they are not hosting at this moment but they could later. To guarantee this

consistency, access rules, and user and resource data are stored in a peer-to-peer database

that accompanies the proxy. The consistency between the databases can be guaranteed using

§5.2 − A Distributed Peer to Peer Identity and Cloud Edge Continuum Applications 81

Figure 5.11: Distributed IAM architecture

a multi-version concurrency control pattern (MVCC). Finally, the data updates happen using

the APIs the IAM provided. These APIs can be consumed by the MELs or by the Orchestration

Engine, this depends on the implementation of the Osmotic Infrastructure, nevertheless the

implementation, each API instance is authoritative only for the Node where it is installed.

This behavior prevents any conflict during the data synchronization without compromising

the usability of neither infrastructure and applications.

This approach requires that we know the IP addresses of the Osmotic Nodes where the

services we need to contact are hosted, for usability constrain we cannot accept this. For

this reason, we put in our architecture a further layer represented by a Load Balancer. This

service can be deployed in replica in an SDN in order to guarantee high availability. The Load

Balancer just redirects the requests coming from a client to the correct service’s authoritative

node, guaranteeing transparency to the final user. Finally, thanks to the use of this element

we can easily reach any available Osmotic Node without caring about their real IPs. From

a client-side point of view, this new fully distributed approach is transparent, in fact, the

same flow described in Figure 5.10 is still valid. In the distributed approach, in fact, the client

still contacts a single access point which is the Load Balancer, this element will forward the

request to the correct resource authorities proxy, which will manage the authentication and

resource’s access flow.

§5.2 − A Distributed Peer to Peer Identity and Cloud Edge Continuum Applications 82

5.2.3 Implementation

Following the designed architecture shown in Figure 5.11, we are going to implement it,

in order to obtain a full working prototype.

The infrastructure we rely on is the same OpenWolf; in particular, we exploit the K3s

Kubernetes infrastructure to deploy and integrate our IAM. Thanks to this engine we can

easily deploy MELs using Pods, and we can orchestrate Pods using the Kubernetes APIs. We

managed the Osmotic IAM as a multi-container pod instanced like a daemon, namely a Pod

deployed in every node of the cluster.

We implemented the IAM using a distributed peer-to-peer database and a full stateless

process able to interact at any time with the local database instance. This process is in charge

of exposing API to interact with the security roles stored in the database and to proxy the

requests towards the requests MELs (once their access is permitted).

Database

Finding a database able to meet our requirements is not easy, since most common and

used SQL and NoSQL databases horizontally scale only using a master-slave model, like

MySQL and MongoDB for example, and often this means that all the writing operations

pass through the master and all the reading operations might need to be approved by the

Master. This approach does not fit our model since we need to write and read to/from any

node at any time. A good choice for our requirements is represented by CouchDB by Apache.

CouchDB is a document-oriented database, that can be deployed inside a Cluster using

a peer-to-peer approach. Each peer can contain a part of or an entire dataset, but it does

not require keeping a stable connection with the other peers continuously, data in fact are

considered eventually consistent, because peers will synchronize them as soon as possible,

without disallowing updating during network disconnection periods. Once the peers are

reachable again, they will use a consensus protocol that exploits the MVCC data model to

keep the last updated documents.

Finally, we are going to use CouchDB to store the accessing rules the resource, and the

user information.

API Set and Proxy

API and Proxy are both web services that need to interact with the same data components

and with the same transient data, for this reason in the implementation phase, we merged the

§5.2 − A Distributed Peer to Peer Identity and Cloud Edge Continuum Applications 83

API server and the Proxy into a single service that acts all the IAM operations we described

until now. This service needs first of all to authenticate and authorize users, and therefore

to update users’ data information inside the CouchDB instance hosted in the same node.

The service authenticates using a Role-Based Access Control and Cookies to maintain a

connection state. The APIs involved in this are identified as Authorization API.

Authorization APIs are used to guarantee secure access to the Security API. This new set

of APIs is in charge of updating the Access Rules which the node is authoritative.

Finally, Authorization and Security API are used by the Proxy for processing a request

coming from the internet. First of all, the Proxy fetches the cookie provided in the request and

sends it to the Authorization API which will reply by providing the role of the user who owns

the cookie, this role will be forwarded to the Security API with the address of the requested

resource, next the reply will tell the Proxy if the request is authorized or not. Finally, the

proxy will forward the request to the resource or will reject it, sending it to the client in the

first case the service’s response, or an error response in the second case. We implemented this

component by exploiting NodeJS, Express, Nano and SuperLogin packages node.

1. ExpressJS is a very famous framework used to manage an HTTP server using NodeJS;

it is used to authenticate and authorize users, expose API for updating the accessing

rules, and finally for proxying the requests to the MELs.

2. Nano is the official CouchDB’s Javascript library that allows database interaction;

3. SuperLogin is a quite popular microframework for Identity Management based on

CouchDB and NodeJS; it works also like Express middleware, enabling the authentica-

tion and authorization policies (customized by us in order to interact with the dynamic

rules).

Deployment

The distributed IAM needs of course to be integrated with the Osmotic Infrastructure

realised using Kubernetes. The proxy and the CouchDB node instance are strictly dependent

and they cannot work if the other one is stopped. For this reason, we used a multi-container

Pod to deploy the IAM, composed of the CouchDB instance, the Proxy instance and a single

run configurator that ensured that the proxy and database are well configured.

As we mentioned before, we need to deploy a single IAM instance in any Osmotic Node,

To do that Kubernetes provides a sort of Deployment method called DaemonSet. "Like other

§5.2 − A Distributed Peer to Peer Identity and Cloud Edge Continuum Applications 84

workload objects, a DaemonSet manages replicated Pod groups. However, DaemonSets

attempts to join a one-pod-per-node model across the entire cluster or a subset of nodes.

When you add nodes to a node pool, DaemonSets automatically adds Pods to the new nodes

as needed"[110].

Load Balancer

The Load Balancer is strictly related to the Osmotic Infrastructure implementation, in this

case, Kubernetes provides the Kube-Proxy which is installed on each Kubernetes cluster’s

node and acts as a proxy for UDP, TCP and SCTP communications. It is used as the entry

point for reaching the Osmotic Services, for this reason, any other further design choice like

the use of a service’s authoritative IAM is demanded from the IAM itself instead of from the

Load Balancer.

The final result is shown in Figure 5.12.

Figure 5.12: Osmotic IAM architecture

5.2.4 Use Cases

In this Chapter, we are proposing a solution for guaranteeing secure access to any appli-

cation deployed inside an Osmotic Infrastructure. To keep secure access to these applications,

we designed a Proxy that, through a series of rules, which are shared among all the nodes and

stored in a local database that, in an RBAC fashion, allows or denies access to the resources.

The first concern about Osmotic Computing regards the policy dynamic; in fact, in

§5.2 − A Distributed Peer to Peer Identity and Cloud Edge Continuum Applications 85

an Osmotic Infrastructure, any access rule might fast change due to service or network

constraints; for this reason, we provided our Proxy with a set of APIs that allows adapting

the proxy to the new rules.

The second constraint in Osmotic Computing is network disconnection. In a fully dis-

tributed environment, sometimes some nodes could be isolated from the other ones, but

this should not limit the use of the node itself. Since nodes share policies and data, they

should also be able to synchronize them as soon as they can interact again each other. For

overcoming this limit, our IAM has been also designed in an Osmotic fashion, decoupling it

into as many replicas as the nodes are and using a peer-to-peer database able to maintain an

eventual consistency and to synchronize it with the other database peers as soon as possible,

without denying the usability.

In this section, we will present two simple use cases where Osmotic Computing is applied

where the just-mentioned problems might present and how our solution solves them.

5.2.5 Smart City Use Case

Figure 5.13: Smart City scenario for the Osmotic IAM

Nowadays, Smart Cities are characterized by many common features, like distributed

access points, environment monitoring, tourism, and security tech services. For example,

smart video stream services are used to show some important city areas, museums, or parks

directly from the smartphone or video panel spread around the city. Cameras and video

§5.2 − A Distributed Peer to Peer Identity and Cloud Edge Continuum Applications 86

streams are also used to maintain some areas under control, and usually, these cameras are

used by the Municipality’s policy or any other security department [111]. Of course, in the

first case, access to the camera can be guaranteed to any public with or without authorization.

Instead, in the latter case, only the public, with proper authorization, should access the video

stream. These policies are quite static, but what happens if, under the eye of a public camera,

a crime happens, showing on a grand scale sensitive content? Unfortunately, this could be the

case of some terrorist attacks that happened last year in Europe, where the images traveled

around the World and have been shared on social media like Youtube and Facebook. As proof

of concept, consider Figure 5.13; we are describing an Osmotic node installed near a city

area with a cross street. This osmotic node runs a smart camera that records the scenes and a

video stream analyzer that recognizes the recorded events. The streaming video is shown on

the city’s public Facebook page. Unfortunately, an incident happens; hence the video stream

analyzer recognizes this event and immediately updates the Osmotic Proxy installed in the

same Edge node, restricting the video stream access only to Public Security City’s officers

and disabling the video stream on the city webpage. The use of an Osmotic IAM could have

solved this kind of inconvenience; in fact, as soon as a suspicious event would have been

detected in the video stream, automatically, the access to the video stream resource would

have been updated, and the camera would have been used only by a strict number of people

involved in the city’s security avoiding any dispersion of sensitive content.

5.2.6 Rural Area Use Case

A rural area or countryside is a geographic area that is located outside towns and cities,

where typically the provided services are very poor, and the connectivity is quite limited.

An interesting research topic that has been born in the last years regards the possibility of

enriching these areas with cheap Edge-based services able to provide first-need raw services

for healthcare, industrial automation, and document sharing. In this kind of space, typically

deployed meta-industrial services, or first-need services, like document sharing with other

areas in the same environmental conditions.

This work finds a concrete case in this situation. As we already said in our work, Identity

and Access Management is traditionally centralized. The approach proposed in our work

goes beyond this concept. By decentralizing these operations, our solution can represent a

valid alternative to the reality we are considering. A hypothetical private resource can be

protected in a Rural Area even if the Network service is not always efficient. In the typical

situation in which Authentication and Authorization are centralized, the Network service

§5.2 − A Distributed Peer to Peer Identity and Cloud Edge Continuum Applications 87

Figure 5.14: Rural Area scenario for the Osmotic IAM

absence could affect the resources’ private access. Indeed, the typical systems, in this situation,

do not allow resource access because they cannot verify the correct roles of the users, and,

in general, authorization operations cannot be performed. In a real use case in which our

solution is applied, the Authorization could not be conditioned by the global reachability of

the local nodes. For example, we can imagine different systems IoT-based like a typical Smart

Agriculture context that descends private data to the Edge Layer. The data detected could

not be available for all entities that can physically access the Edge because, for example, they

could be related to a particular Business advantage. Figure 5.14 shows the concrete context.

In Area 1, for example, the user wants to access a particular resource reachable in his area

only through a local connection because Internet access is not available. In typical situations,

the Identity and Access Management are not able to determine the authorization attributes or

the roles of the user, and it is not able to understand if the user can or not access the resource

because, normally, the Identity and Access Manager are centralized and placed in a remote

server only reachable via the Internet. As shown in the Figure, the architecture proposed in

this work solves this issue.

The Osmotic IAM solution we have described in this Chapter could be applied on the Edge

§5.2 − A Distributed Peer to Peer Identity and Cloud Edge Continuum Applications 88

Layer, relegating to the latter Authentication and Authorization operations. Even if the Local

Edge devices are not reachable worldwide, they can authenticate and authorize the permitted

users.

based

5.2.7 Conclusion

Osmotic Computing is a very interesting research topic that aims to integrate cloud, edge,

fog and IoT in a unique Computation environment where applications are free to move

following different concentration rules based on many internal and external parameters,

i.e. Continuum. This goal is really ambitious because can enable many different use cases

related to Security, DevOps and Smart Cities, but due to its complexity, many limits are

still not solved at all. Two of these limits regard the access policies for the application and

users and the resilience to network disconnection, the Osmotic Computing paradigm, in

fact, foresees that an application can evolve, changing the node that hosts it, the active

configurations (Micro Data) and the consumers. From an architectural point of view, Osmotic

aims to distribute the applications among different nodes with equal roles, but different

characteristics. This fully peer-to-peer design could fall into partial network disconnection,

where only a few nodes can communicate with each other and in many cases, this represents a

reason for some trouble. In the previous chapters, we already demonstrated how to distribute

and orchestrate the computation among the COntinuum using Faas Workflow protected

by the Osmotic Computing paradigm, but we have never dealt with the dynamicity of the

security aspects.

In this Chapter, we presented a new Osmotic Computing component that acts like a

Distributed Identity and Access Management. The IAM is itself a peer-to-peer component

thought to be run in every node of an Osmotic Infrastructure. It is designed to be resistant

to any network disconnection, in fact, each IAM instance works independently from the

other ones but synchronizes with others’ access rules and data as soon as the network allows,

therefore it keeps working at any time and guarantees authorized access to the Osmotic

Application at any time. To guarantee dynamic access policies for accessing the Osmotic

Applications, we enriched the IAM with a set of APIs authoritative for the node where they

are hosted, these APIs allow updating any rule inside the IAM and they can be consumed by

the Osmotic Engine, by the application or by external but trusted clients. Immediately, once a

rule is updated the IAM reflects it in the Proxy used to access the resources, and in parallel,

these rules are sent to the other node to keep synchronized over the entire infrastructure.

CHAPTER 6

Discovering and Addressing Applications in a Continuum Infrastructure

We know the Osmotic Computing paradigm that gives guidelines to deploy applications

able to auto-balance themself and smoothly move among all the available infrastructure

in a Continuum environment. We adopted these principles in our works, and as we see

in Chapter 4, we can deploy these kinds of applications using serverless workflows, but

we cannot locate and relocate them when they migrate. In this chapter, we address this

issue, proposing the Osmotic Computing Enabled Domain Name System (OCE-DNS), a

continuum native DNS able to reference MELs using the Extended Plus Codes, a three-

dimensional geocode algorithm defined by us. Experiments show that OCE-DNS guarantees

quick Resource Records (RR) readings and updates, thence supporting the management of

transparent Osmotic MEL migrations in a Continuum environment.

6.1 Introduction

In section 2.5, we introduced Osmotic Computing, a framework able to smoothly balance

the computation at the continuum. Some use case of this paradigm has been treated in [112],

[113], and usually, many of them involve smart city environments. A typical scenario is the

smart video surveillance controller installed in a city square. It could comprise web services,

sensors, and smart cameras with video streamers, analyzers, and collectors. These services

should allow for keeping the square under control, alerting if something happens, such as

peaks in audio sensor data, dangerous images recognized in the camera stream, or if a citizen

89

§6.1 − Introduction 90

reports something bad using the local web service.

Typically, in the beginning, the aforementioned services can be entirely run in an Edge

environment, but what if the surrounding environment abruptly changes its state? We could

have computation congestion in the video analyzer, the web server may no longer be able

to reply to all the requests; thus in brief, the square would no longer be under control. This

scenario should not happen in a continuum environment. In fact, the smart video surveillance

controller can be easily decoupled in a series of MELs interconnected over an isolated network.

As soon as a MEL goes under pressure or attack, it could be migrated into a Cloud node

where the computational resources are enough. In the end, all the MELs would return to

Edge when the environment returns to a quieter state. The issues on that are mostly two:

1. How can I discover services that are geographically bounded to a specific edge area if

they are not run on it?

2. How can I keep track of a service if it migrates?

3. How can the continuity of service guaranteed if a service migrates?

This chapter investigates how a decentralized naming system with advanced geocoding

capabilities can support osmotic orchestrator activities. Specifically, a geocode is a unique

code that represents a geographic entity that distinguishes it from others. A geocode-based

naming system for Osmotic Computing should satisfy three important requirements:

1. naming in human-readable form both MELs and whole Contiuum-based applications

using Uniform Resource Identifiers (URI) according to the geographical area, domain,

or workspace where they run;

2. discovering MELs and/or Continuum application’s services through the specification

of a particular geographical workspace;

3. reacting in real-time to MELs and application migration or relocation, properly updating

the naming reference.

Many works exist in the literature for naming geographical areas in a human-readable

fashion [114]. However, some of them create conflicts in geocodes [115], others do not allow

the definition of different size areas [116], and others are proprietary solutions [115] thus they

cannot be widely adopted or integrated into open source projects. The main contribution of

this Chapter is presenting Osmotic Computing Enabled-Domain Name System (OCE-DNS),

which is an innovative naming system that implements a distributed Resource Records (RR)

§6.2 − State of the Art 91

structure for storing geocodes related to MELs and whole Continuum applications. Also, we

introduce an OCE-DNS geocoding algorithm able to encode a geographical area that will be

associated with MELs or whole Continuum applications, thus identifying geographical areas,

domains, or workspaces even of different sizes.

Naming a MEL allows us to identify and reach it over the Internet. However, MELs

(as explained above) could migrate across the continuum within an SDMem. Migration

means that MELs change their physical locations, but without changing the workspace they

are serving. Thus, OCE-DNS implements a geolocalization aware naming to track MEL

deployment changes to guarantee performing Continuum native applications. This task is a

very challenging feature that avoids inconsistencies between the pointers of the DNS and the

Osmotic node where the MEL is physically migrated.

Our solution makes use of geographical and topological information associated with each

MEL to build a logical representation of MELs acting within an SDMem. This allows us to

reach each MEL through the well-known hierarchical DNS approach and, at the same time,

according to the geographic information associated with it [117].

Using a dynamic RR database, the OCE-DNS allows us to:

1. support MEL migration by properly updating the DNS entries and guaranteeing con-

sistency between the position of the Osmotic node running the MEL and the domain

name that points to the associated Osmotic service or application;

2. associate an Osmotic service or application to a geographical workspace by logically

mounting a Cloud service on the Edge and vice versa, thus enabling the virtual device

concept (i.e., virtual Edge devices actually running over the Cloud).

6.2 State of the Art

Several works proposed the use of Osmotic Computing for smart cities. An urban pol-

lution monitoring system based on Apollon, a piece of Osmotic Computing middleware

that integrates IoT sensors with Edge and Cloud resources has been discussed [118]. An

Osmotic city traffic system that allows autonomous vehicles to self-establish the priority

at intersections by exchanging information with a smart traffic management infrastructure

has been proposed [119]. Osmotic smart parking has been proposed in [120], where the

authors analyzed the applicability of Osmotic Computing for smart parking considering

different workloads. A piece of Osmotic Blockchain-based framework for smart cities has

§6.2 − State of the Art 92

been proposed [121]. It is composed of four layers: physical, Blockchain, Cloud, and Edge.

The Blockchain layer acts as a membrane that verifies the data integrity during the migration

from the Edge to the Cloud and vice-versa. All aforementioned works show possible use

cases for Osmotic Computing, discussing challenges and solutions from a theoretical point of

view. This work proposes a software component that supports managing Osmotic application

where MELs are migrated.

Privacy and security concerns of Osmotic Computing and possible solutions have been

discussed in [122], where the authors proposed the use of Secret Share techniques for storing

the images of MELs on Osmotic nodes without using central repositories. The work is

complementary to ours because the authors are not referring to running nodes but to their

images.

The authors employed Osmotic Computing as a tool in all the aforementioned works. In

this work, we discuss the OCE-DNS analyzing the time required for the propagation of the

information related to the resource migration.

In recent years, with the advent of Continuum Computing, more and more researchers

investigated how to minimize the delay in the propagation of information related to resource

migration. A comparison of four authoritative DNS systems has been discussed [123]. The

authors investigated the usage of resources and the response rate considering increasing

workloads. An investigation of Managed DNS (MDNS) has been discussed [124]. Considering

8 different MDNS, the authors analyzed the delay in the propagation of the information due

to a resource migration. The experiment proved that the propagation delay usually is 10

seconds. We think that the time required for updating current DNS systems are too high

considering Osmotic Computing infrastructures where, depending on the use case, the MELs

could migrate from one node to another one frequently, even more than once every second.

This chapter demonstrates that OCE-DNS can track any migration within 100 milliseconds,

even considering very dynamic environments.

Challenges and opportunities of DNS systems for IoT devices have been discussed [125].

Nowadays, one of the main challenges of these systems is related to resource transparency

because the users are unaware if the interaction among local devices takes place by using

remote services that could inject malware or redirect the communication to malicious hosts.

In our proposed work, the OCE-DNS is a component running inside the Osmotic membrane.

Therefore the security of the whole architecture is assured by it.

An inter-domain routing system for Mobile Ad Hoc Networks is discussed [126]. In

particular, the author proposed a communication protocol based on resource clustering and

§6.3 − Motivation 93

packet forwarding. Each resource, for the neighbor, will interact with a special node that acts

as local DNS. Despite the work being very useful for advancing the State of the Art because

it provides dynamicity and scalability to the system, the proposed idea cannot be employed

for Osmotic resources because the system works at the routing and not at the service level.

Instead, our work aims to use the standard internet network but use a host naming based

on the application the host is offering and on the area in which this application works. The

interaction between the nodes, therefore, takes place not only because the node exists in that

geographical area but because it offers the application we are looking for in that area.

A piece of middleware for parallel container migration has been proposed [127]. The au-

thors’ framework, by analyzing the available bandwidth, estimate the most suitable number

of containers that can be migrated in parallel to optimize both the stand-alone migration

time and the total migration time. Despite the work theoretically being suitable with Osmotic

Computing because the platform can interact with any container virtualization tool, in prac-

tice, this is not true because the time required for the resource migration is too high. That is,

on average, a single container needs more than 20 seconds to migrate. As we will discuss

in Section 6.6, OCE-DNS can track any migration within 100 milliseconds even considering

very dynamic environments.

A similar work for VMs has been proposed [128]. The authors investigated techniques

for reducing resource contention, they discussed the impact of workload characteristics on

migration time. The experiments show that the migration of a single VM Even, in this case,

the time required is too high considering the dynamism of Osmotic Computing.

6.3 Motivation

In the last years, with the advent of Big-Data, data mining techniques are becoming

increasingly useful for discovering insights into data and enhancing user experience in ser-

vices exploitation. Usually, data mining algorithms require a huge amount of computational

resources and, therefore, are run on the Cloud. The introduction of Edge computing devices

moved the computation power closer to end-users, thus reducing end-to-end delays in data

processing. However, Edge devices’ computational capabilities are still not comparable with

Cloud’s ones. Therefore, depending on the amount of data, some tasks have to be carried out

on the Cloud anyway. Continuum is born to provide continuity between Cloud and the Edge,

but the implementation of a Continuum environment is up to the developers and researchers.

Osmotic Computing is able to guarantee the Continuum of moving computation from the

§6.3 − Motivation 94

Cloud to the Edge and vice versa, according to the requirements of applications and avail-

able infrastructure. This is a very useful opportunity to support data mining requirements,

optimize computation activities, and reduce delays in computation.

MELs associated with a specific Osmotic application flow into a single logic ecosystem

called SDMem according to the rule defined by the orchestrator. These rules depend on many

factors from inside and outside the SDMem as security, network partition, load balancing,

process needs, etc. All these factors have an impact on the performance and functioning of

the MELs themselves.

One of the most important factors for the management of continuum services is the geo-

graphic workspace. It identifies the geographical location it operates, for example collecting

data from the surrounding environment, producing added-value information, and offering

services that make sense only in that particular location. Difficulties in knowing the geograph-

ical context of a MEL workspace limit a lot of the opportunities brought by the orchestrator.

Thus, orchestrator migration rules cannot take into consideration the geographical area in

which a MEL works and the relative impact at the application layer. For example, a migration

should or should not take place based on how close the node running the MEL is to the

specific context. Another example could be the opportunity to move a MEL closer to others

working in the same context.

A second issue related to the Continuum is naming services (MEL in the Osmotic dic-

tionary), that is the capacity to identify MELs inside a specific SDMem. This issue affects

the MEL migration process among different nodes in the same SDMem. Going in deep, an

Osmotic Infrastructure can enable the migration of MELs by exploiting different approaches.

MELs can be implemented through well-known software virtualization systems such as Con-

tainers. Available solutions to smoothly migrate MELs among osmotic nodes are orchestrators

such as Kubernetes. Less investigated approaches are based on the use of Overlay Networks

for the federation of SDMems. This last approach would lend itself even better to the Osmotic

paradigm as it is strongly decentralized and independent, not based on the capabilities of

a single orchestrator. Regardless of the approach used to enable an Osmotic infrastructure,

we need to ensure the transparency of the MELs migration. A MEL migration process can

be defined as transparent when the migration is not perceived by external clients who are

communicating with the MEL itself. It derives from the implementation of hot migration at

the infrastructure level, and the terms aim to emphasize that the user’s quality of experience

doesn’t suffer from MEL migrations. The most advanced orchestrators can guarantee this

transparency thanks to an intelligent request routing algorithm, but the naming systems

§6.3 − Motivation 95

are not, however, based on the geographical context of the MELs themselves, which instead

becomes crucial for the identification of the service and its context.

Transparency is necessary to ensure the continuity of communication with a MEL even

after its migration. Let’s consider the example in Figure 6.1. We consider three MELs running

Figure 6.1: Transparent migration of a MEL

into IoT, Edge, and Cloud nodes and providing different services. For example, at Time 0,

the IoT node is running a Traffic Monitor MEL. At the same time, an access request to this

MEL arrives in the system and is routed to the IoT node. At Time 0.5, the Traffic Monitor

MEL is migrated from the IoT node to the Cloud one, but this process needs time, and, thus,

access requests coming at that time are still routed to the IoT node that does not destroy the

MEL yet. At Time 1, the Traffic Monitor MEL is completely migrated from the IoT node to

the Cloud one. So, whenever a new access request arrives for the Traffic Monitor MEL, it is

automatically routed to the Cloud node. With this approach, the migration is transparent

since the client has sent a request for the same MEL, but the request has been automatically

routed to a different node.

This work, therefore, aims at providing geographical information about the context of

a MEL. This information should be used by the orchestrator and by any third client; in

particular, the orchestrator could define the migration rules according to the constraints

that a MEL monitor already provides, and the third client could use this information to

fetch, discover and interact with the MEL serving in the area the client is interested in. The

geographical context information should be provided as the name of the MEL itself to allow

identification of the MEL workspace and the MEL itself. The naming system should abstract

the real position of MEL inside an SDMem, to guarantee the MELs’ transparent migrations.

We can reformulate these problems in two points:

§6.3 − Motivation 96

1. Identification of a geographical context through a language understandable to humans.

2. A naming service for the MELs that can be derived by the workspace.

To do this, firstly, we intend to define a geocoding protocol that allows for identifying a

workspace context. This geocoding algorithm must have a hierarchical and variable precision

structure. The first feature will be useful for identifying prefixes in the code that remain

constant for a given area, making the memorization process easier. The second feature should

allow us to identify more or less large areas to identify size-variable workspaces.

To achieve this goal, we will use the Open Location Code, a geocoding algorithm capable

of generating codes called Plus Codes. We will slightly modify this algorithm to support the

geocoding of three-dimensional geographical points instead of two-dimensional points, we

will call these new codes Extended Plus Codes (EPC).

This will allow the identification of the workspace contexts of any MEL.

Finally, we intend to use as names for the MELs the EPC of the relative workspaces, and

we want to provide the MELs name using the OCE-DNS.

OCE-DNS, as part of the Osmotic Infrastructure, can inform the SDMem about the

workspace of the MELs inside it. Finally, this information can be exploited by the orchestrator

to properly update the migration rules.

The second problem we aim to solve, using the OCE-DNS, is to enable the transparent

migration of MELs inside the SDMem. To hide the MEL migration process, we need the

OCE-DNS architecture meet the following requirements:

• Dynamic Record Resource (RR) database;

• Frequent updates to RR entries;

• High availability;

• Low latency;

• High performance

The updates on the RR records, if properly synchronized with the osmotic migration, will

allow following the migration process of the MELs between the nodes, making this process

transparent.

In Figure 6.2, we are summarizing from a very high point of view the final result of our

infrastructure:

§6.4 − Design 97

Figure 6.2: Virtual vs real MEL position

1. we identify a three-dimensional area in the World with the EPC 8FCQ5G68+69ˆ10;

2. we associate to this EPC an URL, in this case, 8FCQ5G68y69e10.osmotic;

3. we use this domain name to point to the MEL serving this area;

4. If the MEL migrates from the physical workspace to a Cloud infrastructure, the domain

name follows this migration.

6.4 Design

In this section, we discuss the design of our three-dimensional geocoding algorithm that

allows us to express any three-dimensional geographic area in the world through a string of

variable lengths based on the area’s dimensions. Generated geocodes will be used to identify

the MEL workspace. We also present the design of the DNS infrastructure that meets the

requirements defined in the previous sections, which include a dynamic RR database, low

latency, high availability, and the ability to serve the geocodes as domain names for the MELs.

Using geocodes as names for MELs will allow the identification of the MELs themselves

by third parties, such as other MELs running inside or outside the same SDMem, or clients

that interact with MELs in the identified context. The MEL naming service can be done using

a DNS server that serves geocodes as DNS records associated with the proper MELs. This

approach allows explicitly provides clients with information about the context where a MEL

works and enables the service discovery based on the geocode. Also, the OOE benefits from

that since it can use the information derived by the geocoded names to adjust the migration

rules according to the already considered factors, like security, network, and so on.

§6.4 − Design 98

The just-described DNS infrastructure is the OCE-DNS.

6.4.1 Three dimensional Geo Codes

The geocoding algorithm should be able to produce geocodes that meet all the following

requirements:

1. usable as DNS names;

2. code length dependent on the dimension of the referred area, to represent different size

areas;

3. use of hierarchical structure;

4. representation of three-dimensional points;

5. offline working to guarantee the service even without external configurations.

We decided to start with the Open Location Code algorithm by Google, released with Apache

License 2.0. The Open Location Code Algorithm creates geocodes called Plus Codes. This

algorithm is based on a clear encoding of latitude and longitude information based on the

WGS84 standard. The algorithm works offline and does not require any external configuration.

Plus codes are generated following a Discrete Global Grid (DGG), and the output codes use

an alphabet of 20 digits composed of numbers and letters. The “+“ character (U+002B) is

used as a non-significant character to aid formatting, it is called formatter separator. The “0”

character (U+0030) is used as a padding character before the format separator. The minimum

length for a Plus code is 2 digits (precision: 2226 km), and the maximum length allowed is 15

digits (precision 4 x 14 mm). Finally, The algorithm uses two different approaches to calculate

the first ten digits and the last five. The first ten digits are produced in pairs, the algorithm

recursively encodes both latitude and longitude in base 20 using the area found in the DGG

during the previous iteration. For this reason, we cannot get an odd number less than 10

digits in length. The last five digits, on the other hand, are calculated one by one by encoding

the latitude in base five and the longitude in base four and, again the area found in the DGG

during the previous iteration. For this reason, we can calculate odd plus code only longer

than 10 digits.

Open Location Code (and other well-known geocode algorithms, such as Geohash or

what3words) only considers two-dimensional points because they provide geographical

referencing into a plan (longitude and latitude). However, this approach doesn’t allow

§6.4 − Design 99

localizing a resource considering the altitude. This aspect is critical when we want to use

geocoding in indoor and multi-floors environments, such as skyscrapers. For this reason

and to increase as much as possible the granularity of our naming service, we decided to

extend the geocode dimensional points to three. This information is not kept in the Plus

Codes, so we need to make a small change to the Open Location Code to also encode the

altitude of a certain area. Our idea is to concatenate the Plus Codes with the height expressed

as altitude from sea level, as suggested by the WSG84 standard, using the “ˆ” character

as altitude-separator. Finally, we refer to this new geocode format as EPC. As explained,

the Open Location Code allows you to define areas of different sizes, which allows you to

target entire cities, buildings, or rooms simply by varying the precision of the algorithm. The

precision on the height value is not variable, as the purpose of the EPC is to understand if

an identified area is located for example, on the first or second floor of the building or at

the bottom of a door rather than at its top. A precision set at 0.1 meters can be considered

sufficient to have this detail. Finally, as a convention, we decided to represent the altitude

from sea level in meters with one decimal digit using the dot "." character as the decimal

separator. Using this convention:

• 8FCQ5HR4+V3ˆ10 is a valid EPC;

• 8FCQ5HR4+V3ˆ5.5 is a valid EPC;

• 8FCQ5HR4+V3ˆ5.55 is a invalid EPC;

• 8FCQ5HR4+V3ˆ5,55 is a invalid EPC;

6.4.2 EPC as MEL Names

The EPC allows us to identify an area served by smart services, but we also need to

connect smart services to the area itself. To this aim, our idea is to use the EPC as domain

names associated with the MELs that are active in the area referred to the specific domain.

Using this approach, any third-party client will be able to identify the geographical workspace

of a MEL only using the MEL name itself. At the same time, the client can understand if a

workspace is covered by Osmotic Services just by pinging the relative EPC. Using EPC as the

MEL name is also a better approach than using other information stored in a RR database,

like, for example, TXT records or LOC records, because it allows one to directly associate the

MEL to its workspace without any further needed queries.

§6.4 − Design 100

From a practical point of view, EPC has to be compliant with the domain name encoding

constraints, which are:

1. domain length shorter than 64 characters;

2. domain alphabet composed only of alphanumeric characters (excluded the characters

“-” and “.”).

We must therefore replace the characters “+” and “ˆ”, which are not allowed, we can

replace them respectively with the alphabetic characters “y” and “e” that are not used in the

alphabet of the Open Location Code algorithm, thus they cannot create any collision.

6.4.3 OCE-DNS Infrastructure

One of the goals of this work is to grant a dynamic Osmotic environment where MELs

can transparently migrate inside an SDMem. The concept of transparent migration is critical

in Osmotic Computing because it guarantees that third clients that are communicating with

a MEL do not perceive a downtime for the MEL during its migration and they do not need to

update their configuration to keep the communication up with the MEL when the migration

has been completed.

The OOE is demanded to move the MEL inside the SDMem; the OCE-DNS, instead, is

demanded to create a reference to MELs according to the migration process thus the OCE-

DNS must be able to update the name refers to a MEL as soon as its migration is completed.

In practical terms, the OCE-DNS must adopt the behavior described in Figure 6.3. In the

figure are shown two different Osmotic nodes, respectively, with the IPv4 addresses 1.1.1.1

and 2.2.2.2. The figure also showed a MEL that offers traffic control in the area pointed out by

EPC 8FCQ6H33yXFe10. For the first time, the MEL is run on the first Osmotic node. Thus the

OCE-DNS associates the domain name 8FCQ6H33yXFe10.traffic.osmotic with 1.1.1.1 IPv4

address. In a second time, the MEL is completely migrated to the second Osmotic node; thus

the OCE-DNS table is updated to associate the domain 8FCQ6H33yXFe10.traffic.osmotic

with the IPv4 address 2.2.2.2. During the migration instead, the DNS record is unchanged,

since the MEL is no more available from the departure node only when the MEL is up and

running in the arrive node.

To enable the geographic naming using the just-defined EPC geocodes we need a DNS

server able to read these codes. The OCE-DNS system is decoupled into an RR database

that stores all the DNS records and a DNS server that resolves the DNS queries using the

RR database. Decoupling the database and DNS service is an important step that needs

§6.4 − Design 101

Figure 6.3: RR update

to be careful, in fact, a bad architecture or a not well-organized network topology could

generate high latency during the communication with the DNS server and the RR database,

this latency will be propagated to the final clients. The interaction between the MELs and the

Naming system should follow two different flows. The first flow starts from an authenticated

MEL that updates an RR entry exploiting the API that the RR database should expose. The

second flow starts even from MEL but is directed to the DNS server to solve any DNS generic

query. The DNS server, therefore, must be sensitive to any change to the RR database, it must

not include any concept of data caching to serve the newest data. This characteristic requires

that the TTL DNS record parameter is ignored or forced to zero. This behavior constrains the

DNS server to verify every time the value of a DNS record in the RR database, avoiding any

caching.

The proposed architecture is shown in Figure 6.4. In the figure, we distinguish the server

side above the figure and the client side, below the figure. The server side is composed of the

DNS server and the RR database, and they are deployed using a Micro Service architecture.

The RR database microservice is based on a replica set that grants high availability of the data.

The interaction between the RR entries and the database clients are enabled by APIs. The

DNS server is a single microservice able to reply only to DNS queries and to read data from

the RR database using the proper connector. Both the RR database and the DNS server are

deployed using Docker containers. This approach is naturally integrated with Micro Service

architecture since it is based on the concept of Single Container Single Service, thus granting

§6.4 − Design 102

high granularity, horizontal scaling, and easy deployment. We identify as OCE-DNS the

architecture composed of the RR database microservice and the RR database microservice.

Figure 6.4: OCE-DNS architecture

Figure 6.4 depicts also the interaction between the DNS server, the RR database and third

party clients. Basically, the DNS server can be queried by any external node that wants to

resolve a domain name, a client can be the final user or other MELs. In any case, The DNS

server will read the proper RR data in the database anyway. The update keys API are thought

to be used only by the interested MEL, or by a MEL orchestrator, this depends on the installed

Osmotic Infrastructure.

6.4.4 RR Types

The information that a DNS server can provide is varied and is classified according to the

type of RR stored in the DNS server database.

In particular, to save all the information about the real positioning of an Osmotic node

and the run position of a MEL, we intend to use the following RR types:

1. A record: to associate the IP address of the Edge node serving the data area to an EPC

domain name;

2. PTR record: to enable reverse DNS, then to get from the IP address to the domain name;

§6.5 − Implementation 103

3. SRV record: to indicate on which door the MEL we intend to contact is exposed;

4. TXT record: to associate the MAC address of the physical device installed in the area

identified by the EPC to an EPC domain name, if it exists.

6.5 Implementation

In this section, after a brief discussion of possible enabling technologies, we discuss the

OCE-DNS prototype implementation.

6.5.1 Enabling Technologies

Starting from the architecture proposed in section 6.4, we need to identify the enabling

technologies required for the installation of a database for the RR, and for the DNS server

capable to satisfy the OCE-DNS queries coming from the clients using the data stored in the

RR database. The RR database we intend to use is based on a Etcd 1 cluster. Etcd is a key-value

directory distributed storage. Etcd is deployed using a size variable replica master-slaves

cluster. The consistency in the cluster is granted using a Raft consensus, both for writing and

reading operations. Etcd allows, eventually authenticated, users, to read, write and watch

new and already existing keys, through the use of gRPC or HTTP API. In our case, we are

going to use the EPC as keys, and the values as the data of the RR.

The DNS server we intend to use in collaboration with the Etcd Cluster is the CoreDNS

server. CoreDNS is an open-source DNS server based on the concept of plugin chains.

Basically, it works like a simple DNS server that can serve RR records written in a generic

data storage, as a file, or to an external DNS or a key-value data store like Etcd. CoreDNS

works by defining several zones, each zone can be served using different plugin chains.

Plugins can offer several services that allow them to generate a response, and communicate

with other services or information useful for the next plugin in the chain. CoreDNS can be

easily integrated with the Etcd cluster using the proper plugin, thus all the queries sent to

the CoreDNS can be solved inside the Etcd cluster by the use of the Etcd connector plugin.

CoreDNS can use the Domain Name System Security Extensions (DNSSEC) to implement

network security functionalities. In our architecture, this could ensure that updates arrive

only from trusted MELs.

1https://etcd.io

§6.5 − Implementation 104

6.5.2 OCE-DNS Infrastructure Deploy

Starting from the architecture shown in Figure 6.4, we can personalize it to include the

proposed enabling technologies in section 6.5.1. The result is shown in Figure 6.5, where we

replaced the DNS server with the CoreDNS component, and the generic RR database server

with a two-node Etcd cluster, finally APIs used to interact with the RR database have been

replaced with the Etcd native gRPC and REST APIs.

Figure 6.5: OCE-DNS infrastructure

All the components shown in Figure 6.5 are packaged inside Docker containers according

to the design choices. We run a two-node Etcd cluster. This configuration is not resistant

to any failure in the cluster, but it allows the splitting of the traffic between the two nodes.

Such a configuration reduces the latency during the raft consensus since there are few nodes

to synchronize. In the section 6.6 we will compare the behavior of the cluster in terms of

performance, changing the size of the cluster.

Any node of the Etcd Cluster can be queried by passing through the default TCP port

2379, in our configuration only the CoreDNS server needs to query the Etcd Cluster so we

can bind the communication to the local network.

6.5.3 RR Keys structure

The key-value couples in the Etcd cluster act as the Record Resource of the DNS server, in

particular, every key is read by CoreDNS as a domain name, and the JSON formatted body

contains all the information that allows generating the relative RR entries, like A records,

§6.5 − Implementation 105

PTR records and SRV records.

Etcd adopts a flat key storage system starting from version 3 of the API, this means that

the division into the path of the keys is purely logical and there is no physical connection

between a key and its apparent father key, this happens because the concept of directory key

has been removed. This approach has been adopted to improve system performance, but

requires greater care in saving keys, as it could create collisions when CoreDNS accesses the

keys. The main constraint that derives from this structure in key management is that it is not

possible to store two keys where one is completely contained in the other, in fact, CoreDNS

would return the values of the requested key and all those that contained it. These conditions

are the key structure used to store the RR records in the Etcd cluster explained below.

Keys for SRV and A Records SRV and A RR are used to associate to a given domain the

port number where the service is exposed and the IP of the host is pointed by the given

domain. This information is strictly related since if MEL is migrating, it should update

the IP address of the host where it is going to run, and the port where MEL is listening

that could change during the migration. Etcd allows storing these two pieces of infor-

mation in the same key. The key, in this case, is the domain name we want to associate

with the MEL running on the Osmotic Node. The key structure uses the following pattern:

/Osmotic/⟨ClassOfTheService|NumberOfService⟩/⟨EPC⟩, where

• EPC is the Extended Plus Code that gives the workspace of the MEL;

• ClassOfTheService indicates the kind of the service that is running, it is used to classify

and distinguish the service that is covering the same workspace;

• NumberOfService is used to enumerate the services of the same class that is working

in the same context;

• Osmotic is the root domain base.

The JSON value of this key must contain the host field and the port field. The host

field will be read by CoreDNS when it will receive a type A DNS query for the domain

EPC.ClassOfTheService|NumberOfService.osmotic; the port field instead, will be read when

the CoreDNS receives an SRV DNS query for the same domain.

Keys for PTR Records PTR records become very useful to reverse an IP address to a given

domain name. This information could be used to get the services that are running in a

§6.5 − Implementation 106

given host. For this kind of records, the keys must use the following pattern: /ocedns/arpa/in-

addr/⟨first ip block⟩/⟨second ip block⟩/⟨third ip block⟩/⟨fourth ip block⟩. The JSON value of this key

must contain the host field with the domain name as the value.

Keys for TXT Records TXT record is a trick used to store the MAC address of the device that

is physically installed in the area we are pointing to with the EPC in the given domain name.

CoreDNS can serve as TXT RR any key under the root key where the value is a JSON with the

text field fully filled. Unfortunately, we cannot store the same key information for SRV, A, and

TXT records, because CoreDNS is not able to manage all the information together yet, so we

need to use a second key pattern as follows: /osmotic/mac/ClassOfTheService|NumberOfService/EPC.

We want to remark that is not possible to put the mac special keyword as the last element in

the key, since all the other keys will become fully included in this key, creating conflict.

6.5.4 CoreDNS configuration

CoreDNS can be configured to serve multiple zones, i.e. domains. In our case, we have to

configure the .osmotic zone and the 0.0.0.0/0 zone. The first zone is for resolving all domains

ending in .osmotic, the second is for resolving reverse DNS PTR queries. Currently, we set

that all the IP addresses must be searched within Etcd, but if we already knew that Osmotic

nodes belong to a given subnet we could configure the Reverse DNS in a more precise way.

Both zones can follow the same CoreDNS plugin chain, of which the most important is

the Etcd plugin. The latter requests input the URLs of the Etcd cluster nodes to query the

DNS record search. In the plugin chain, we deliberately avoid the use of the cache plugin,

as suggested by the CoreDNS template configuration. This allows us not consider the TTL

value in the RR database, forcing the CoreDNS to check every time the value of a DNS record

in the Etcd cluster. The example configuration is shown in the code 6.1.

1 osmotic 0 . 0 . 0 . 0 / 0 {

2 etcd {

3 path /ocedns

4 endpoint

5 HTTP: //node1 . myetcd : 2 3 7 9 ,

6 HTTP: //node2 . myetcd : 2 3 7 9 ,

7 }

8 }

Listing 6.1: CoreDNS plugin chain

§6.6 − Performance Evaluation 107

6.6 Performance Evaluation

OCE-DNS provides a dynamic system that allows updating RR entries on the Etcd cluster.

Specifically, MELs use Etcd APIs to logically remap them into OCE-DNS. This mechanism

has been designed to enable the transparent migration of MELs.

In this Section, we analyze the performance of the Etcd cluster on which our OCE-DNS is

based. In particular, we will analyze the Average Time to Respond (TTR) value of a Read or

Write request sent by the MELs. Experiments were performed considering different Osmotic

Computing clusters: cluster 1 including two nodes and cluster 2 including five nodes. Cluster

1 is not capable of resisting the failure of one node, whereas Cluster 2 can tolerate failures of

up to two nodes. In the end, all the EPC contained in the requests are 21 digits long (15 for the

Plus Code, 6 for the height). This value is the worst realistic case since we are considering the

maximum length for the Plus Code part and the maximum altitude equal to 9999,99 meters.

6.6.1 Testbed Setup

Our testbed setup has been chosen to fit different possible environments where Contin-

uum is involved. As shown in Figure 6.6, we use the c parameter to set the number of clients

and the r parameter to set the number of requests for each client. The s parameter is the size

of the Etcd cluster that we already said equal is to two or five.

The parameter c can take the following values: 10, 100, 1.000. Of course, a reader client

could be any host querying the DNS server, for example, to resolve the domain name of a

MEL, instead, a writer client can be only a MEL that is authorized to directly update its DNS

record.

Let’s imagine that each client uses one MEL. In this case, each value of c represents

a specific Osmotic environment. The smallest environment with only 10 MELs could be

a basic environmental safety analyzer for a small street that only checks whether certain

environmental parameters such as temperature or air quality reach dangerous values. The

average environment with 100 MEL could cover an area larger than a street, such as a square,

in this case, we might want to be interested in inspecting other important factors such as

the aforementioned camera controls, in this scenario the analyzer service video could be run

in parallel and then distributed across several MELs. In the end, the largest environment

with 1000 MELs could be located in a park, where it is necessary to monitor environmental

parameters, to control the entire area with several smart cameras and related services, and

many web services implemented to offer specific services to visitors.

§6.6 − Performance Evaluation 108

The r parameter can take also the values 10, 100, and 1000 per node request. The number

of requests per node represents the dynamism of the environment, which could change

over time, depending on the nature of the environment. For example, the square Osmotic

Environment could be more stressed during the night when people are hanging around,

instead, the park Osmotic Environment could reach the highest traffic value during the day

of the weekend.

The lightest configuration includes 10 MELs each one sending 10 requests, for a total of

100 requests, whereas, the heaviest configuration includes 1000 clients each one sending 1000

requests, for a total of 1.000.000 requests. As we see in Figure 6.6, each of the c clients has

Figure 6.6: OCE-DNS experiment setup

a different requests list and in the list, all the requests belong to the same type of operation

(writing or reading). The Clients pop a request from their own list one by one, sequentially as

soon as the previous request has received a response. Clients are not synchronized between

them instead, for this reason, the Etcd cluster could receive at most c parallel requests at the

same time.

In the tests, we carried on we separated the writing requests from the read requests,

and we compared the behavior of cluster 1 and cluster 2, varying the kind of operation, the

§6.6 − Performance Evaluation 109

number of the clients c, and the number of requests for the client r.

Figures 6.7, 6.8, 6.9 show the average TTR related to read/write tasks obtained in clusters

1 and 2, respectively considering 10, 100, and 1000 MELs requests. The Etcd Cluster nodes

were deployed inside Docker containers running in different VMs instantiated in the same

region of the OpenStack environment. Their characteristics are summarized in table 6.1.

Parameter Values
CPU 3.1 GHz Intel Xeon 4 cores
RAM 4GB

Disk
50GB, r: 3.0 GB/s, w:220
MB/s

OS Debian 10

Table 6.1: OCE-DNS testbed setup

(a) 10 read per MEL (b) 10 write per MEL

Figure 6.7: 10 DNS requests per MEL

(a) 100 read per MEL. (b) 100 write per MEL.

Figure 6.8: 100 DNS requests per MEL

§6.6 − Performance Evaluation 110

(a) 1000 DNS read per MEL. (b) 1000 DNS write per MEL

Figure 6.9: 1000 DNS requests per MEL.

From our experiments, we can observe that regardless of the type of operation sent to

the Etcd cluster, an osmotic environment including a small number of nodes is capable of

responding in a shorter average time than a cluster arranged considering a greater number

of nodes.

In all the histograms, especially in the ones shown in Figures 6.7b, 6.8b and 6.9b where

only write operations are considered, we can observe how the delta between the average

TTR of cluster 1 and 2 increases augmenting the size of the Osmotic environment and thus

the number of requests per time, that arrive in the cluster. This behavior is more evident in

the Osmotic environment composed of 100 MELs, in fact, cluster 2 performances, with 1000

MELs inside and with the maximum number of requests per MEL, are slightly worse than

cluster 1 in the biggest osmotic environments. In Figures 6.7a, 6.8a and 6.9a, where only read

requests are sent to the clusters, the delta between the average TTR of cluster 1 and 2 is less

evident, in particular with 10 or 100 MELs in the osmotic environment the performances are

very similar. The reasons that justify the difference in behavior in the Etcd cluster during

the write and read tasks are closely related to the hardware characteristics of nodes. Etcd

uses a rafting algorithm both during the reading and writing operations. When a read is

performed on a node then, the read value is compared with the read value in the other nodes,

and the read value that reaches the consensus quorum is sent to the client. During a write

request, on the other hand, a positive response from the server is obtained only after the

quorum of the nodes has committed the write itself. But, as reported in table 6.1 The hard disk

mounted in VMs guarantees performance around 10 times better for reads than for writes

operations. This means that in the most stressful environments, the requests tend to overlap

more, increasing disk usage and degrading overall cluster performance. In smaller clusters

the consensus is composed of fewer nodes, thus the requests can be satisfied better, stressing

lower the cluster, finally granting good performances. Read operations, finally, are consumed

§6.6 − Performance Evaluation 111

very fast, avoiding any overlap and allowing the system to reply faster to any situation.

6.6.2 Discussion

Conducted experiments allowed us to make a series of important considerations on the

behavior of OCE-DNS. Going into the specifics of cluster response times, write operations,

in the worst case, are performed in 0.14 seconds. This value is added to the time needed to

complete a MEL migration. As we discussed in Section 6.2, the currently available solution of

MDNS usually takes 10 seconds to propagate the resource migration information. The latter

includes the migration time of the data used by the MEL and the initialization of the new

MEL in the destination node. The OCE-DNS overhead that we have to consider during a

MEL migration is therefore minimal and does not significantly affect the execution time of

the migration itself. The maximum TTR value recorded allows understanding also which

is the maximum rate that the system can withstand, in this case, one migration every 0.15

seconds. Several works demonstrated that on average a container bootup in a few seconds

[129], [130] the TTR we measured in our system negligible compared to this value, therefore,

makes the OCE-DNS suitable for such environments.

The reading times in an Etcd cluster, on the other hand, allowed us to understand how

expensive the resolution of the name of a MEL with its real address is. In the worst-case

scenario, considering the heaviest test with 1000 MELs and 1000 requests for each MEL, the

average response time remained below 0.09 seconds. Also, in this case, the value obtained

is an excellent value since a generic interaction via the network is concluded with a time

that is around the order of a second, therefore, the address resolution time takes up only

1/100 of the time of the entire communication. In the end, these values have been calculated

considering the heaviest data transmission case with the longest available domains, thus we

obtained results that describe time delays that we do not expect to overcome in a real use

case.

Another interesting parameter concerns the comparability of performance between an

Etcd clusters 1 and 2. Although the second one degrades the performance of the entire OCE-

DNS system, the average response times remain comparable to cluster 1. However, the fault

tolerance offered by cluster 2 makes a higher latency acceptable. Thanks to the consensus

protocol adopted by Etcd in fact, cluster 2 would remain functional and available for the

osmotic infrastructure even if two nodes become unreachable for some reason. Instead of

considering cluster 1, on the other hand, the entire operation of Etcd would be unavailable

as long as one of the two nodes becomes unavailable. Therefore, we can assert that the Etcd

§6.7 − Conclusion 112

infrastructure on the basis of OCE-DNS is solid and performing enough to be used in an

osmotic computing environment.

6.7 Conclusion

In this Chapter, we deal with several issues related to Continuum. The first one is the

service naming, which is the ability to identify a service in a local or public network. The

second one is identifying the geographical context where a service operates. The third issue

is hiding a service migration over the Continuum infrastructure to clients. We applied the

Osmotic Computing paradigm to address this issue, but we extended it to include a powerful

DNS called OCE-DNS used to discover and list services using their position as key. Our

geocoding algorithm, called EPC, is built on Google’s Open Location Code. It can identify

any three-dimensional and variable-sized space in the world quickly and easily. The EPC

was used for identifying the geographical workspaces in which the MELs provide services.

Furthermore, the EPC has been manipulated to be used as domain names, served by the OCE-

DNS infrastructure, which allowed us to enable the MELs naming and provide new inputs to

the OOE to define intelligent migration rules. We built the OCE-DNS infrastructure, a DNS

system able to serve the EPC as names for the MELs. Using a very performing architecture,

we achieved quick DNS reading and updates in order to manage the transparent Osmotic

MEL migration.

CHAPTER 7

Orchestrating Applications in the Continuum

Computing at the Continuum implicitly includes the concept of migration, that is the

ability to move a computation from one infrastructure to another one that is more suitable

for that service at that moment to guarantee the continuity of service or a good QoS. We have

seen that this can be achieved using an orchestrator like Kubernetes, but in some constrained

and or huge environments, this kind of system could fail. This chapter proposes Tolerancer,

a micro-orchestrator composed of distributed components that continuously interact in a

peer-to-peer fashion aiming at detecting stress situations or node failures. Then, it makes

decisions to avoid or solve any potential system failures. The performance evaluation of

Tolerance, using a real testbed, shows that it can efficiently ensure the needed level of fault

tolerance.

7.1 Introduction

A typical continuum scenario is industrial manufacturing; in this kind of competitive

environment, manufacturers need to enhance their infrastructure to increase revenue. Thus,

they adopted the cloud manufacturing model as it offers an encapsulated variety of man-

ufacturing resources as services to meet customers’ demands with lower costs and better

performance. However, cloud manufacturing, in its classical architecture, has some limita-

tions. The architecture of the cloud is of a centralized fashion that assumes stable connectivity

to offer convenient services. But uninterrupted connection cannot be guaranteed. At the

113

§7.2 − Related work 114

same time, the Industrial Internet of Things (IIoT) applications must work even when the

connection is temporarily unavailable or under degraded conditions. In addition, cloud

computing assumes that there is enough bandwidth to transfer data between the physical

location of the manufacturers’ devices and the cloud data centers, which is also not guaran-

teed. Moreover, transferring massive data results in network bottlenecks and leads to latency

issues for applications [131], and this may cause a deterioration in computing performance.

Such limitations in the cloud layer may result in system failures. Thus, the manufacturers

utilize the edge computing model to complement the cloud by decentralizing the computing

and storage resources and moving them closer to the plants and factories, aiming to improve

service quality.

However, systems may also fail at the edge layer, mainly due to the low scalability

and limited resource capacity at this layer [132]. What makes providing reliable and fault-

tolerant services in manufacturing environments more complex is the relationships among

manufacturers. The manufacturers need different types of services as the life cycle of their

product development comprises different stages. The products’ dynamic, complex, and long

life-cycle processes may result in service failure [133]. Thus, there is a need to manage the

failure that may occur to cloud services offered to the manufacturing and industrial sectors.

Without proper fault tolerance approaches, multiple manufacturing services will fail to lead

to great losses.

This chapter aims to investigate service failure and overloading in cloud-edge continuum

environments, using the manufacturing a use case where the continuity of computing is

critical. More precisely, this work is trying to answer the following research questions:

(1) How to design a robust fault tolerance approach to avoid and/or deal with any

possible failure in the nodes that host IIoT applications?

(2) How can a hybrid (Proactive/Reactive) fault tolerance approach be designed in edge-

cloud manufacturing environments?

7.2 Related work

This section presents the related works. Most existing fault-tolerance approaches can be

classified into two categories: proactive approaches to avoid the expense of system fault by

predicting it in advance and reacting accordingly, and reactive approaches to handle the

system’s fault after it happens by utilizing adequate techniques. However, the literature

includes a few hybrid approaches.

§7.2 − Related work 115

There are several related existing proactive approaches. In [134], the authors proposed

a proactive fault tolerance approach to prevent system faults within the federated cloud

environment. The environment is modeled as a multi-objective optimization problem that

maximizes the profit and minimizes the VMs migration cost. The approach can re-distribute

VM from faulty providers to non-faulty ones within the federation. However, this work

considered applications that are served by VMs at the cloud layer and did not consider

the features of the edge nodes. In [135], the authors proposed a fault-tolerant approach to

maintain system availability. The approach includes the following components: fault manager,

controller, and load balancer which work together to ensure a fault-tolerant environment

via redundancy, optimized selection, and checkpointing. The work in [136] presented an

approach that models the temperature of the CPUs in a virtualized cluster to expect a potential

failure in a specific physical machine (PM), and, accordingly, migrates VMs from the detected

PM to be hosted on another PM. The selection of the new PM is represented and solved as

an optimization problem. However, this work targeted VMs in the cloud environment, not

containers at the edge. In [137], the authors proposed a fault-tolerant approach to work in

the fog layer. The approach utilizes the checkpointing technique, and at the same time, it

applies load balancing based on Bayesian classification to consider the energy efficiency of

the fog devices. However, the approach was not evaluated in a real testbed. The work in [138]

presented a preemptive migration prediction model, called PreGAN, to detect and classify

faults in edge computing environments. PreGAN can migrate services from one node to

another based on the features of the potential detected failure.

On the other hand, there are related reactive approaches. In [139], the authors presented

a two-stage fault tolerance approach (off-line and online) to improve the reliability of the

manufacturing network. The off-line stage ranks the manufacturing services according to their

importance in fault tolerance, then the critical services are replicated. While the online stage

performs a heuristic algorithm for replacing the failed services. The work in [140] presented

a three-layer approach to solving the problem of system failure in cloud-edge environments.

The three layers (Application Isolation, Data Transport, and Multi-cluster Management) work

together to re-schedule failed processes on other available nodes. In [141], a fault-tolerant

approach for recovering the failed IoT edge applications is presented. It manages and re-

configures container-based IoT software in a reliable way upon software failure detection.

However, the authors stated that the approach is unsuitable for low-powered devices. The

authors in [142] leveraged both Primary-Backup (PB) fault-tolerant and Deep-Q-learning-

Network (DQN) techniques to ensure safe execution for the edge services. However, the

§7.3 − System model 116

approach was not evaluated in a real environment.

There are also a few hybrid approaches, combining both reactive and proactive ap-

proaches. In [143], the authors presented a hybrid model to take fault tolerance actions:

proactive actions after predicting the failure probability, and reactive actions that employ

replication and checkpointing techniques. The work in [144] presented a fault-tolerance

approach that utilizes two directions: the first is performing a VM migration based on a

failure prediction technique, and the second is by doing VM checkpointing.

To our knowledge, our work is the first to present a hybrid fault tolerance approach in

cloud manufacturing environment.

7.3 System model

The system model targets the hierarchical edge-cloud continuum computing architecture

(Manufacturing Environment) to prevent and/or manage the potential system failures in

such environments. The system is divided into three different layers: Manufacturing layer,

Edge layer, and Cloud layer, as shown in Figure 7.1, and it includes NT heterogeneous nodes

that are prone to failure, which are distributed on the edge (NE) and the cloud (NC) layers,

such that NT = NE + NC.

As many manufacturers prefer to process their data on-site (mainly for security reasons),

this work investigates system failure in the edge layer. The nodes at the edge layer NE can

host VMs and/or containers. Containers offer a lightweight, portable, and high-performance

virtual entity compared to VMs. In addition, the size of container images is smaller than VM

images. This is better to be adopted in the constrained devices at the edge layer and also

makes applications launch faster than VM-based applications [145, 146].

The manufacturing environment is heterogeneous. It includes many edge devices, in-

stalled at different times, with different configurations and operating systems. More devices

could be added and integrated into the system anytime. Some systems adopt a single-master

multi-workers architecture to maintain load balancing and high availability. Such systems

are easier to manage compared to full peer-to-peer systems. But at the same time, as their

management depends on a single master node, they come with a major issue: the potential

single point of failure and, consequently, a high failure rate.

Tolerancer approach, which works within the manufacturing environment, aims at

avoiding any probable single point of failure. To do so, each node in the system model has the

same role in monitoring and taking fault tolerance actions. Following this fully distributed

§7.3 − System model 117

Cloud

Layer

Edge

Layer

Manufacturing

Layer

Figure 7.1: Tolerancer system model

peer-to-peer architecture, where each node i ∈ NE is connected with the other nodes, we

designed an approach that can be hosted and run on all edge devices. The approach’s

components are light entities, so the nodes with low and medium computational capabilities

(edge nodes) can host them.

Regardless of the device’s type, capabilities, configuration, or operating system, Tolerancer

can be run on it if the device can run Dockers. Docker, and any general full container-based

approach, is a perfect option to be considered in the targeted environment because Docker can

encapsulate the system components and run on different hardware and operating systems.

Containerization helps hide such differences, automatically fetching and deploying containers

on the nodes. A federation is created by connecting each device with the other devices at

the edge layer. The federation’s members are the edge devices that can be configured at the

federation bootstrap or at the run-time. When the federation is ready, the containers hosted

on the edge devices are monitored, and the statuses of the devices are observed. Each member

in the federation is responsible for the management of itself (no master node to be recognized

in the federation). The member is also responsible for communicating and exchanging data

with the other members in the federation. This way, we can avoid the single (or n-points)

point of failure situations. The events that Tolerancer can monitor include (1) high resource

stressing (overloaded), (2) service down, and (3) device off.

The IIoT applications or services are deployed as Docker containers. The Tolerancer tries

§7.3 − System model 118

to keep these services available anytime. When one or more of the previous events occur,

Tolerancer triggers fault tolerance actions by involving the related or the other peers in

the federation. These actions could be Proactive and/or Reactive actions The Tolerancer

approach comprises three light key units: Middleware Unit (MidU), Monitoring Unit (MonU),

and Planning Unit (PlaU). Each node i ∈ NE hosts these units which are collaborating with

each other to avoid system failures and resolve them upon the failure detection. In other

words, it is a proactive/reactive approach. The Tolerancer monitors the system periodically

according to a predefined cycle, and the cycle interval is variable so it can be tuned based on

the system status. The units are described as follows (Refer to Figure 7.2):

MonU PlaU

MidU

MonU PlaU

MidU

MonU PlaU

MidU

MonU PlaU

MidU

MonU PlaU

MidU

MonU PlaU

MidU

NE1

NE2 NE3

NE4

NE5NEn

Figure 7.2: Tolerancer node connections

7.3.1 Middleware Unit (MidU)

This unit is composed of two components: the MESSAGE-BROKER and the SHARED-

MEMORY. Both components are deployed in cluster mode where each edge device runs a

single instance of both components.

§7.3 − System model 119

• MESSAGE-BROKER: It is used to exchange messages between the nodes at the edge

layer. To exchange information, each node employs its own MESSAGE-BROKER to

send messages to the other peers. It is needed to guarantee that the system works

properly.

• SHARED-MEMORY: This component is used to store all the information generated

by the federation, and to make it accessed by all nodes ∈ NE. SHARED-MEMORY

stores information about the federation in general and about the nodes themselves. For

example, the number of edge nodes and devices, their IDs, their health information, the

running containers they host, and their migration processes.

All this information is generated and used by the Monitoring Unit’s components.

7.3.2 Monitoring Unit (MonU)

The main functions of this unit are collecting data about system status and analyzing the

collected data. To achieve these functions, MonU includes components that allow logging

and monitor the services running on the edge nodes. The components are LOGGER and

ANALYZER.

• LOGGER: it logs the status of the system and put the information into a written record

periodically, based on a predefined interval. LOGGER records the following: (1) CPU

usage, (2) Memory usage, (3) container status (running or failed) which is a SW-related

failure that depends on the application itself, and (4) the device status (on or off) which

is a HW-related failure.

All the data is stored in the SHARED-MEMORY component to be available to all nodes

in the federation.

• ANALYZER: It analyzes the data stored in the SHARED-MEMORY collected by LOG-

GER. ANALYZER checks the data related to each peer individually, and also the whole

system status. When ANALYZER notices any cautionary data that may result in system

failure, it alerts the PlaU to take action (proactive/reactive reaction). The cautionary

situation can result in the following cases:

- Case 1: over-utilized CPU and/or memory.

- Case 2: container with a failed state.

- Case 3: device with an off state.

§7.3 − System model 120

7.3.3 Planning Unit (PlaU)

PlaU uses the analysis resulting from MonU (The resulting three cases), and, accordingly,

performs fault tolerance action(s). Case 1 necessitates a proactive action to maintain reliability

and avoid potential failure, while Case 2 and Case 3 necessitate a reactive action as the failure

already happened. PlaU includes two components they are SCHEDULER and MIGRATOR.

• SCHEDULER: It is responsible for specifying the following operations when migration

is needed: the service(s) to be migrated, the source device(s) that hosts the service(s),

and the destination device(s) to host the migrated service(s).

The SCHEDULER uses the data stored in the SHARED-MEMORY to take the decisions.

It can employ different scheduling algorithms like Round Robin or even more complex

ones.

• MIGRATOR: It receives three parameters as input: The IDs of the source devices, the

IDs of the destination devices, and a list of services to be migrated. The MIGRATORs on

the source and destination devices collaborate with each other to perform the migration

process. After migration, the services run on the destination node and are removed from

the source node. If the migration process does not perform correctly, the MONITOR

can notice this in the next monitoring cycle to find a new destination. The new system

status is stored in the SHARED-MEMORY components of all nodes, so the nodes in the

system will be aware of what is the status resulted after the migration process.

7.3.4 Tolerancer description

This section describes the communication and the main processes involved in Tolerancer

using some high-level pseudo-codes.

Communication

Communication inside the Tolerancer system is done using a special distributed Message

Oriented Middleware (MoM). This MoM is implemented using RabbitMQ, a very popular

open-source project that in turn, implements the Advanced Message Queuing Protocol

(AMQP). The AMQP is similar to a Publish/Subscribe protocol, where producers push

messages in a queue distinguished by a key called “Topic", and consumers connected to

the same queue read them. AMQP adds a fourth element called "Exchange" which, in a

nutshell, ensures that every message arrives at the destination, finally guaranteeing a high

§7.3 − System model 121

QoS. These characteristics ensure stable communication among the Tolerancer ’s nodes and

good reliability for the entire system.

Processes

The main processes in Tolerancer are Logging, Analyzing, Scheduling, and Migration.

The LOGGER works as described in Algorithm 1. It reads information from the nodes of

the system, aiming at maintaining a stable and balanced cluster. The algorithm takes a specific

node as an input and outputs a stored and shared status about that node. The algorithm is

activated for all nodes periodically based on a predefined period. The information is collected

using an API as described in line 3, and then, in line 4 this information is stored in the

SHARED-MEMORY together with the current timestamp.

Algorithm 1: The LOGGER Algorithm.
Input: The ID of the node Nid
Output: The node’s status information

1 Begin
2 While True
3 x ← get_system_in f o()
4 SHARED_MEMORY.store_node_in f o(Nid, x, get_current_timestamp())
5 End

The ANALYZER works in two phases. The first phase is described in Algorithm 2. Block 2-

15 shows that the algorithm works over all nodes in the federation. For each node, it tries to get

exclusive access using the distributed semaphore that is managed by the SHARED-MEMORY.

Then, the SHARED-MEMORY gives the status information recorded by the LOGGER of the

same node to the ANALYZER. The ANALYZER in step 8 examines the collected information

to understand if the node is working or not. If the node is not working, The ANALYZER

updates the node’s status to FAILED in step 9. The algorithm is also considering the case

when the node is working but the LOGGER is not updating the node’s information for a

while. In such a case, the ANALYZER will try to contact the node, and if no response, it will

set its status as FAILED in step 12.

The second phase is described in Algorithm 3. The ANALYZER obtains a list of the failed

nodes in the federation from the SHARED-MEMORY in step 3. For each of the failed nodes,

the algorithm in step 6 tries to access the node’s information using the shared semaphore,

and in step 7, it gets the list of the container(s) hosted on the failed node.Then, in blocks 8-14,

the algorithm reschedules each container to be hosted on a healthy node based on a specific

scheduling algorithm. In this work, we randomly pick the new destination host among the

§7.3 − System model 122

Algorithm 2: Analyzer Algorithm Part 1.
Input: Set NE of the nodes in the federation.
Output: Analyzed system status, the updated nodes’ status

1 Begin
2 ForEach Nodei ∈ NE
3 try:
4 SHARED_MEMORY.acquire_node_semaphore(Nodei)
5 curr_time← get_current_timestamp()
6 state← SHARED_MEMORY.get_node_in f o(Nodei)
7 validate_state← is_healthy(state)
8 If validate_state = False
9 SHARED_MEMORY.set_node_state(Nodei, ”FAILED”, curr_time)

10 Else If state.timestamp + INTERVAL_CHECK < curr_time
11 If try_contact(node) = False
12 SHARED_MEMORY.set_node_state(Nodei, ”FAILED”, curr_time)

13 catch:
14 continue ▷ If the semaphore is held by other nodes, simply skip
15 end
16 End

healthy nodes (step 11). The migration is done through the MIGRATOR API as it initializes a

transaction for accepting the new container, as described in the Figure 7.3. The Scheduling

process is repeated in blocks 9-13 until no more containers are to be rescheduled.

Algorithm 3: Analyzer Algorithm Part 2.
Input: Set NE of the nodes in the federation.
Output: Analyzed system status, the updated nodes’ status

1 Begin
2 While True
3 f ailed_nodes← get_ f ailed_nodes
4 ForEach Nodei ∈ f ailed_nodes
5 try:
6 SHARED_MEMORY.acquire_node_semaphore(Nodei)
7 containers← SHARED_MEMORY.get_containers_in_node(Nodei)
8 ForEach container ∈ containers
9 Repeat

10 ▷ SCHEDULER process that randomly picks a healthy node for hosting the
container

11 destination_node← random_choice(Nodes− f ailed_nodes)
12 success← MIGRATOR.send_request(Nodei, destination_node, container)
13 Until success = False;
14 catch:
15 continue ▷ If the semaphore is held by other nodes, simply skip
16 end
17 End

The MIGRATOR described in Algorithm 4 is composed of two functions: send_request

and receive_request.

The send_request function is invoked by the ANALYZER and used to ask the destination

node (destination_node) to host the container that was previously hosted in a failed source

node (src_node). This function needs to use the MESSAGE-BROKER’s APIs to send a migra-

§7.3 − System model 123

tion request to the message queue of the destination_node under the topic /migration_request,

as shown in step 3. There is an identifier for each migration request, we refer to it as migration

ID, and it is generated in Step 3. Then, in step 4, the function will use it through the Message

Broker’s APIs to wait for the request’s response. If the request receives a SUCCESS response,

it means that the container is hosted in the destination_node. After that, in step 6, the function

updates the SHARED-MEMORY with the new host of the container.

The receive_request function receives the requests. In step 9, the function waits for an

incoming migration request message in its queue under the topic /migration_request. When

the message arrives, the function gets the faulty src_node, the container ID hosted on it,

and the migration ID. In step 10, the function uses the SHARED-MEMORY for getting

all information about the container (i.e., the configuration), then it uses this information

for verifying that the container is compatible with the node. If the container is reported

as compatible, the function extracts the command needed for running the container and

executes it in line 13. When it finishes, it sends a success message to the src_node message

queue under the /migration_request topic using the migration identifier as a parameter. The

Algorithm 4: Migrator Algorithm
Input: Set NE of the nodes in the federation.
Output: New container-to-host placement, The updated nodes’ status

1 Begin
2 Function send_request(src_node, destination_node, container): bool
3 migration_id←

MESSAGE_BROKER.publish(destination_node, ”/migration_request”, src_node, container)
4 response← wait MESSAGE_BROKER.listen(Nid, ”/migration_request/ < migration_id > ”)
5 If response = True
6 SHARED_MEMORY.update_container_map(src_node, destination_node, container)
7 Function receive_request(): bool
8 While True
9 src_node, container, migration_id←wait

MESSAGE_BROKER.listen(Nid, ”/migration_request”)
10 container_in f o ← SHARED_MEMORY.get_container_in f o(container)
11 If is_compatible(src_node, container)
12 run_command← container_in f o.run
13 execute_run(run_command)
14 MESSAGE_BROKER.publish(src_node, ”/migration_request/ < migration_id >

”, ”SUCCESS”)
15 End

message exchange process between a node that is analyzing another failed node and a node

that may host a new container is described in Figure 7.3.

§7.4 − Performance evaluation 124

Figure 7.3: Tolerancer’s Migrator message exchange

7.4 Performance evaluation

This section evaluates Tolerancer ’s ability to recover the faults and move all services

deployed in the failed node to another node in the edge layer.

§7.4 − Performance evaluation 125

7.4.1 Testbed and experiments

Our evaluation testbed is a cluster of nodes that represents the edge layer for a specific

manufacturer. We used five nodes: four Raspberry Pi4 and one Nvidia Jetson Nano. The

cluster information is summarized in Table 7.1. To evaluate the proposed approach, we

targeted an edge cluster, deployed services as containers, run the containers, caused a failure

in a specific node (or nodes) of the cluster by disconnecting it (or them) from the network,

and then examined Tolerancer ability to recover the faults. The examination is done by

monitoring the capability of the other active nodes to notice the failure and start moving all

containers hosted on the failed node to another healthy one. We performed three experiments.

We consider a different cluster in each experiment, as shown in Table 7.2. The cluster in

experiment 1 consists of 5 nodes, the cluster in experiment 2 consists of 4 nodes, and the

cluster in experiment 3 consists of 3 nodes. With every experiment, we run a different number

of containers (m), each container can run Nginx web servers, and then, we cause a failure

in one node. We considered the failed node hosts and run a different number of containers

as follows: 3, 30, 60, 90, and 120 containers. Then, we checked if the containers on the failed

node migrated to another healthy node. In addition, we calculated the time to detect the

failure and the time to restore all the containers hosted in the failed node.

Name Node CPU Memory

Edge1 Nvidia Jeston Nano
4-core (ARM v8)
64-bit SoC 2 GHz

4 GB

Edge2 Raspberry Pi 4
4-core (ARM v8)
64-bit SoC 1.5
GHz

4 GB

Edge3 Raspberry Pi 4
4-core (ARM v8)
64-bit SoC 1.5
GHz

4 GB

Edge4 Raspberry Pi 4
4-core (ARM v8)
64-bit SoC 1.5
GHz

8 GB

Edge5 Raspberry Pi 4
4-core (ARM v8)
64-bit SoC 1.5
GHz

8 GB

Table 7.1: Tolerancer Cluster’s nodes characteristics.

7.4.2 Result discussion

In this section, we discuss the performance evaluation of Tolerancer from the service

maintainability perspective.

§7.4 − Performance evaluation 126

Cluster
size Edge1 Edge2 Edge3 Edge4 Edge5
5 nodes ✓ ✓ ✓ ✓ ✓
3 nodes ✓ ✓ ✓ ✗ ✓
3 nodes ✓ ✓ ✗ ✗ ✓

Table 7.2: Tolerancer Clusters configurations

(a) Time to restore in a 5-node cluster (b) Time to restore in a 4-node cluster

(c) Time to restore in a 3-node cluster

Figure 7.4: Time to restore in three different Tolerancer clusters

We set the timing to activate the interval value of the LOGGER equal to 5 seconds. Time

selection is crucial in meeting the objective of the approach’s design. If the interval period is

too short, it overloads the system performance by performing more actions (e.g., migration),

and if it is too long, the approach may not immediately respond to the faults (or to the

possible faults).

After deploying and running the services, we switched off one node in the three different

clusters. We noticed that all Tolerancer ’s components responded efficiently to such fault. A

node failure leads to the following actions:

• The LOGGER of the failed node stops writing the health status information of the failed

node,

• The ANALYZERs of the healthy nodes notice no information from the failed node, so

§7.4 − Performance evaluation 127

Figure 7.5: Comparing the time to restore in three different Tolerancer clusters

they try to contact it. After the no-response, the healthy nodes mark the status of the off

node as failed.

• After detecting the failed node, the ANALYZERs of the healthy nodes get a list of the

containers hosted in the failed node from the SHARED-MEMORY.

• The SCHEDULERs of the healthy nodes are triggered by the ANALYZERs, and the

fastest of them reschedules the failed container to be hosted on a new node.

• The node that runs the scheduling process triggers the MIGRATOR of the destination

node to accept the incoming container.

• The MIGRATOR of the destination node accepts the incoming container, runs it and

updates the SHARED-MEMORY.

However, as most industrial applications are real-time applications, in each experiment,

we measured the time needed to rerun the containers after any system failure. In Figure

7.4, the blue bars represent the time needed to restore the failed containers in the cluster

with a fixed number of nodes. We can see that the time needed to restore the containers is

directly proportional to the number of containers. This is expected as the migration requests

are queued among all the remaining healthy nodes and hosted by the destination node(s)

individually. The time required to restore any container is calculated as in Equation 7.4.1:

TRestore = TDetect + TFcontainers +
TRerun

NHdevices
(7.4.1)

§7.4 − Performance evaluation 128

where:

• TRestore is the time required to restore the failed container,

• TDetect is the time required to detect the failure,

• TFcontainer is the time required to find the failed container,

• TRerun is the time required to rerun all the failed containers,

• NHdevices is the number of healthy devices.

In the same figure, we can see the time needed to detect the failure, which is calculated as

in Equation 7.4.2:

TDetect = DetectFailureTS − FailureTS (7.4.2)

where:

• DetectFailureTS is the detected failure timestamp.

• FailureTS is the failure timestamp.

It is clear from the figure that the failure detection time (which is represented by orange

color) is quite less than the actual time needed to restore the services. The detection time

is a small part of the total time needed to restore service. In other words, the figure shows

that the longest period to restore the container is consumed by the scheduling and migration

operations of the PlaU, not by the logging and analysis operations in the MonU.

To understand the effects of the cluster size (i.e., the number of nodes in the cluster) on

the performance, refer to Figure 7.5. It compares the time required to restore the containers in

the three clusters presented in Figure 7.4. Each line describes a single cluster behavior. If we

ignore the network failures, we can conclude that the larger cluster performs better, as the

time needed to restore the services is less. The last part of Equation 7.4.1, TRerun
NHdevices

, props this

conclusion, as increasing the number of healthy nodes leads to a decrease in the value of this

part, and consequently, decrease TRestore.

Moreover, the figure also shows that as the number of failed containers increases, the gap

between the clusters increases. This is because increasing the number of migration requests

creates system congestion that leads to performance degradation.

§7.5 − Conclusion 129

7.5 Conclusion

The Chapter presents a continuum micro orchestrator, called Tolerancer , to solve the

software and hardware-related failures and overloading in cloud edge-constrained environ-

ments. Tolerancer makes decisions to avoid or solve potential system faults. Experiments

on a real testbed show that the proposed approach provides on-the-fly automatic actions

to handle hardware and software-based failures. This version of the chapter includes the

performance evaluation of the reactive part of Tolerancer , while the performance evaluation

of the proactive part will be shown in an extended version.

We are currently working on expanding our approach to include more results by testing

larger clusters and trying different time intervals to find its effects on the system. More

constraint(s) could be considered (e.g., deadline of the running services). Besides, the nodes

at the cloud layer could be integrated with the nodes at the edge. In addition, managing other

failure types (such as security-related failures) is a future direction of this work.

CHAPTER 8

Use Cases of Computing at the Continuun

This chapter addresses possible use cases and scenarios where computing at the Contin-

uum becomes critical to solving old and new challenges in everyday life.

In section 8.1 We aim to use this OpenWolf to spread one of the most common workflows

for a Continuum typical scenario. In particular, we will consider a smart city security camera

system used for the image recognition of dangerous events as the scenario and a five-step

deep learning workflow to collect, retrain, infer, and show any notable event. This workflow

will be tested in different deployment configurations, and results will be discussed.

In Section 8.2, we focus on a Horizon Europe-funded project called TEMA, aims at

addressing Natural Disaster Management through the use of sophisticated Cloud-Edge Con-

tinuum infrastructures by means of data analysis algorithms wrapped in Serverless functions

deployed on a distributed infrastructure according to a Federated Learning scheduler that

constantly monitors the infrastructure in search of the best way to satisfy required QoS

constraints. In this section, we discuss the advantages of Serverless workflow and how they

can be used and monitored to natively trigger complex algorithm pipelines in the continuum

natively, dynamically placing and relocating them, taking into account incoming IoT data,

QoS constraints, and the current status of the continuum infrastructure. Therefore we pre-

sented the Urgent Function Enabler (UFE) platform, a fully distributed architecture able to

define, spread, and manage FaaS functions using local IOT data managed using the Fiware

ecosystem and a computing infrastructure composed of mobile and stable nodes.

130

§8.1 − OpenWolf: Serverless Workflow Engine for AI on Continuum 131

8.1 OpenWolf: Serverless Workflow Engine for AI on Continuum

This thesis work aimed to solve many problems related to Continuum Computing, propos-

ing innovative solutions for deploying and orchestrating software, keeping the infrastructure

secure, and responding to dynamic security constraints. To do that, we mainly used the

Osmotic Computing paradigm and, most of all OpenWolf, a tool designed by us to build

serverless workflows Continuum native. At this point, we have collected enough elements

to test our platform and research in real use cases and scenarios that can be tailored to the

continuum environment. Indeed, we are going to analyze a Deep Learning application for

image classification, typical in a Smart City scenario. We will consider five steps: (i) collection,

(ii) transformation, (iii) training, (iv) inference, and (v) plotting. Then, we will design an

OpenWolf’s manifest for this workflow and compare the performances deploying this both

in a full-edge, full-cloud, Continuum environment.

As we have seen in Chapter 5, this scenario is widely used for many reasons, like the

security surveillance of a public road or place or to monitor some environment parameters

used to foresee weather anomalous conditions.

8.1.1 Smart City Use Case

Smart Cities are a typical scenario for the Continuum use case. In fact, it is easy to find

the three Continuum layers (cloud, fog, and edge) over them. For instance, we could find

IoT sensors and small computing devices in private and public spaces, like cameras and

Raspberry Pi, for monitoring buildings, traffic, or environmental parameters. These data are

then typically processed in local data factories provided by private citizens, municipalities,

or research institutes, and often they trust private cloud providers like AWS or Azure, i.e., for

long-time storage or processing. This chapter will analyze a typical pipe for image processing.

Smart Cities rely on this algorithm to detect violent and dangerous situations, traffic rule

violations, or roadside surveillance applications.

In the following, we will test an image processing workflow composed of five states. Each

state represents a function, that is processed inside the workflow. Each state will be deployed

inside a Continuum tier according to the static scheduling rule defined in the Workflow

Manifest. According to the states’ descriptions:

Collect: exploits a camera stream for collecting environment images.

Transform: edits the images, cleaning and filtering noisy data. It can be run on any of the

§8.1 − OpenWolf: Serverless Workflow Engine for AI on Continuum 132

Continuum’s tiers.

Train: trains a Recurrent Neural Network (RNN) model used to analyze the collected

images.

Inference: predicts the input image’s label using the latest model produced by the Train

state.

Show: pushes the result of the inference over a web page.

The first problem we identify on the continuum, mostly when FaaS is implemented, is

having a good scheduler for deploying functions according to specific QoS (i.e., latency,

network bandwidth usage, resource performances). The second problem that relies on the

first one is where to put data. These typically are collected on the Edge, but they could be

partially computed on Edge or delivered to Cloud for massive analysis. QoS directly depends

on the service we provide in the Smart City. For example, road traffic monitoring could

require optimizing accuracy, whereas shotgun detection could require real-time analysis. Our

proposed solution aims to give the possibility to directly customize what and where data are

processed, trying to satisfy any kind of QoS, as we will see follow.

8.1.2 Design a Workflow using OpenWolf

Figure 8.1 shows the ideal and even the most common configuration for this kind of AI

workflow. Basically, the edge layer is used to collect and infer data, while the fog is in charge

of transforming and cleaning the data. Cloud tier is mostly demanded to train the inference

model and show the inference’s results. This workflow can be easily mapped in the Manifest

format required by OpenWolf, the result is shown in the listing 8.1.

1 name : ML Workflow

2 c a l l b a c k U r l : " ht tp : / / . . "

3 s t a t e s :

4 measure :

5 func t ion :

6 r e f : fn −measure

7 s t a r t : t rue

8 transform :

9 func t ion :

10 r e f : fn −transform

§8.1 − OpenWolf: Serverless Workflow Engine for AI on Continuum 133

Figure 8.1: AI Workflow on OpenWolf

11 t r a i n :

12 func t ion :

13 r e f : fn − t r a i n

14 i n f e r e n c e :

15 func t ion : fn − p r e d i c t

16 end : t rue

17 show :

18 func t ion :

19 r e f : fn −p l o t

20

21 f u n c t i o n s :

22 measure :

23 endpoint : " h t tps ://gw/ \

24 async −funct ion/measure "

25 conf ig :

26 r e s o l u t i o n : medium

27 [. . .]

28 workflow :

29 measure :

30 a c t i v a t i o n : True

31 t r a i n :

32 a c t i v a t i o n : measure

33 i n f e r e n c e :

34 a c t i v a t i o n : measure

§8.1 − OpenWolf: Serverless Workflow Engine for AI on Continuum 134

35 show :

36 a c t i v a t i o n : i n f e r e n c e

Listing 8.1: Workflow AI Manifest

8.1.3 Performances

We evaluated the workflow in three different environments. We considered three key

workflows’ moments: (i) training, (ii) data fetching, and (iii) data inference both in a full cloud,

full edge, and a continuum test bed. In the latter case, Cloud nodes were in charge of the

model training, whereas Edge nodes were focused on collecting and inferencing data. These

three functions have been encapsulated inside three different Openfaas functions. Based

on the well-known CIFAR-10 dataset, the algorithms we used were based on a 50 epochs

PyTorch training of a Recurrent Neural Network (RNN). The data training size is 130 MB,

instead, the data test size, used during the inference, is around 100 MB. As an Edge node,

we used a single Raspberry Pi 4, with an ARM64 operating system, 4 GB of RAM, and a 1.5

GHz quad-core processor. As a cloud node, we used a virtual machine with 16 GB of RAM, a

2.8 GHz quad-core processor, and an x64 operating system. Results are shown in Figure 8.2.

As we see and expect, the Edge node needed 400% of the Cloud performance for training,

and 120% for inferencing data, but the time to use local data is close to zero. On the other

hand, Cloud requires 45 seconds to transfer data from the Edge Object Storage to the local

storage. Moreover, the edge device does not require network usage, instead, Cloud will use

the WAN network for receiving the entire test dataset from the Edge Object Storage. Finally,

distributing the computation over the continuum environment allows the exploitation of

the Cloud training time and the Edge data locality, avoiding any massive network usage.

Unfortunately, as a direct consequence, the inference is done inside the Edge, but as shown in

Figure, the overall performance in the continuum is better than both the Edge and the Cloud.

8.1.4 Conclusion

In this brief Chapter, we used OpenWolf to deal with a typical continuum workflow in a

common scenario. We tested the platform considering a Smart City use case. In particular,

we built a classical Deep Learning workflow, encapsulated each workflow’s process inside a

function, and deployed them among a continuum environment composed of an Edge node

§8.2 − TEMA: Event-Driven Serverless Workflows Platform for Natural Disaster
Management 135

Figure 8.2: Workflow AI performance comparison on Continuum

and a Cloud node. Using the OpenWolf features, we tested the workflow performances for

executing all the processes, and we compared the results considering a full-cloud, full-edge,

and optimized continuum environment. This simple example, allowed us to demonstrate

the validity of our solution to accomplish the continuum’s needs and use cases, indeed

with the good results obtained here, we can now explore in deep and in bigger contexts the

application of OpenWolf as a production solution to making the Cloud-Edge real continuum

environments.

8.2 TEMA: Event-Driven Serverless Workflows Platform for Natu-

ral Disaster Management

In recent years we have assisted in the rise of the Internet Of Things (IoT) as one of

the fastest-growing data sources. The IoT has been applied in many different fields, like

smart cities industries (Industry 4.0) and especially in environmental monitoring, with the

purpose of keeping under control different parameters, such as noise, air quality or in more

sophisticated infrastructures, the rise of some environmental disasters like fires, earthquakes

or floods (Natural Disaster Management, NDM).

Independently by the application use case, IoT infrastructures are just data collectors

and are not in charge of permanently storing, analyzing, and reacting to the data. When

those latter actions are critical or time-sensitive, we fall into the area of Urgent Computing,

which refers to using high-performance computing (HPC) resources to address critical and

time-sensitive problems requiring rapid response. These problems include urgent scientific

§8.2 − TEMA: Event-Driven Serverless Workflows Platform for Natural Disaster
Management 136

research, emergency response planning, and real-time high-pressure decision-making.

The way to build HPC systems changed over the years, moving from adopting high-

performance cloud infrastructures towards using distributed cloud edge cooperative infras-

tructures called Cloud-Edge Continuum or just Continuum.

The characteristics of a continuum infrastructure perfectly fit the needs of many time-

critical scenarios, but, some challenging issues are still open, especially when applied to

dynamic use cases like environment monitoring.

The TEMA project is a Horizon Europe (HE) project that addresses NDM needs by

developing automated means for precise semantic area mapping and phenomenon evolution

predictions for NDM in (near-)real-time. Potential end-users are mainly Civil Protection

Agencies (CPAs), but also First Responders (FRs). To address this problem, TEMA proposes to

design and develop an efficient continuum platform able to: (i) Increase responsiveness/speed

of extreme data analysis algorithms; (ii) optimize the computation, dynamically migrating it

accordingly with the just collected data, the historical information and the Quality of Service

(QoS) needed; (iii) drive the computation considering the events that are measured by the

IoT infrastructure.

In this work, we want to present the preliminary work inside the TEMA project, proposing

a continuum native, event-driven workflow architecture based on the Function as a Service

(FaaS) paradigm. The goals of this architecture are the following:

• spreading functions at any continuum tier, letting the system use the best available

infrastructure to run an NDM workflow;

• monitoring and controlling the FaaS infrastructures in order to build an up-to-date

dataset from which to learn where to compute based on the expected QoS and the

forecast one;

• dynamically connecting functions on the continuum to trigger complex distributed

workflows able to analyze an incoming event properly.

8.2.1 State of the Art

Since IoT has risen, many different use cases have appeared with the aim of measuring

and preventing some possible disasters [147]. In some industries, IoT can be used to extract

oil and gas, a well-known system prone to incidents.[148]; while in critical areas, IoT is used

to detect possible flooding and earthquakes, eventually triggering local alarms [149, 150]; or

§8.2 − TEMA: Event-Driven Serverless Workflows Platform for Natural Disaster
Management 137

also to detect tsunamis [151] in oceanic coast areas. IoT is often associated with implementing

Machine Learning algorithms used to analyze those data, extract knowledge, and then

forecast something about the next possible events[152, 153, 154].

Unfortunately, working on time-sensitive use cases using machine learning algorithms

can often be tricky due to algorithm heaviness, or distance from the data location [155, 156].

Urgent computing was born to provide the best resources possible as soon as needed

to absolve time-critical events like environmental disasters or human health monitoring

[157]. In literature, there exist many directions adopted to realize urgent computing. Cloud

Computing, of course, thanks to its flexibility in providing any kind of resource has been

immediately adopted to realize HPC system to accomplish a job sooner [158, 159], but as

often highlighted, even less powerful system, but closer to the data can better accomplish a

time critical job [160]. The advantages of the use of Edge Computing in fact are mostly related

to the proximity to the data [161] and the possibility to work even in the presence of partial

network partitions [5], thanks to these advantages some authors proposed Edge as a valid

infrastructure to run time-critical analysis [162, 163].

Continuum Computing has been extensively used in those scenarios. In [50], the authors

propose an edge framework, adapted for the continuum, to spread the computation across

the continuum using user-defined dynamic rules that can be defined even taking into account

the urgency of the computation.

In [66] the authors collect a list of jobs to be scheduled, taking into account the emergency

of each of them, then apply a federated learning algorithm to assign them to a specific node

in the continuum federation, using the previous data sets (Qos Required, Qos reached, node,

task) as a source of data from which learn. Using machine learning to optimize the QoS of a

given task has been further used [67], but as even the authors have highlighted, knowing the

nature of the task and then forecasting its behavior is not easy, and prediction risks being

wrong.

With the advent of containerization, researchers have seen in orchestrators, especially

Kubernetes a great tool to federate heterogeneous environments like the continuum, and then

customize it to deploy containerized applications on a node that can satisfy a time-based QoS

constraint [164]; taking in example [65], authors use Kubernetes to federate the continuum,

then they provide an internal opensource custom scheduler to deploy pods on a node that

can satisfy network latency constraints, a factor that became crucial in real-time processing.

All the previous works have the assumption that any containerized application can be run

anywhere and that it is possible to profile it, to forecast its behavior, and both considerations

§8.2 − TEMA: Event-Driven Serverless Workflows Platform for Natural Disaster
Management 138

are not strictly true, until the introduction of Serverless Computing and FaaS, that we have

already extensively discussed.

8.2.2 Architecture

In this section, we present the theoretical architecture we aim to include inside the TEMA

project to enable Urgent Computing at the Continuum in the NDM context. This platform

shorted by the name Urgent Function Enabler (UFE) is a distributed architecture composed

of six main units: 1. the Infrastructure unit (IIA); 2. the IoT unit (IA); 3. the computation unit

(CU); 4. the monitoring unit (MU); 5. the scheduler unit (SU); 6. the workflow unit (WU);

Infrastructure unit

The infrastructure unit is strictly related to the CU, and is basically made up of all the

nodes that are able to deal in any way with the data. In turn, we distinguish two main roles

in the IIU which are the sensors and the workers nodes. The sensors are at the lowest level,

and they are basically able just to measure environmental parameters and provide them as

system data.

The workers do not measure data, but they are able to receive them and then apply some

kind of computation like a transformation, or data analysis, Eventually the result of that can

be reintegrated into the system in order to be collected and analyzed by more workers.

The workers can belong to two main classes: 1. static workers; 2. mobile workers.

Static workers compose the most traditional computing infrastructure that basically is

composed of cloud nodes deployed on remote data centers; edge nodes close to the data

sources, realized using Raspberrys, Intel Nuc devices, or other micro computers and fog

nodes, usually implemented with workstations or small servers racks distributed along the

path from the edge to the cloud.

Mobile workers, it is a kind of novelty in this field. We consider mobile any device that

can change physically change its position, we include in this group devices such as robots

and drones.

Drones and robots have already been used in the field of NDM; some real examples are in

[165] where drones were used to monitor wildfires in California. The drones were able to fly

over the fires and collect data on their size and intensity. This information was then used to

help firefighters make decisions about how to fight the fires; and in [166] drones were used to

track poachers in Africa. The drones were able to fly over the camps of poachers and identify

§8.2 − TEMA: Event-Driven Serverless Workflows Platform for Natural Disaster
Management 139

them. The information was then used by law enforcement to arrest the poachers.

Mobile workers, as well as static ones, can be used by the other units to run algorithms

based on the data they can easily reach; to do that, the computation unit has to be used.

IoT Unit

The IA is the lowest infrastructure in UFE, it consists of all sensors used to monitor

the environment, and it is managed by a Fiware infrastructure that allows the device to be

authenticated and authorized but also provides API to send data and receive commands from

and to the upper level [5]. The main components of this architecture are the Orion Context

Broker, the IoT Agent (IOTA), the P2P-IDM[5], and the PEP Proxy.

• The P2P IDM is a distributed eventually consistent unit that stores all service accounts

used by IOT devices; it provides the API to obtain and verify Oauth2 tokens. The

advantage of using a P2P IDM with respect to a centralized IDM is the possibility of

keeping the service up in the presence of network partitions or disconnections, and this

is crucial when the infrastructure is composed of edge and mobile nodes.

• The IOTA is a middleware that receives raw data from the IoT, transforms it in NGSI

format and then sends them to the Orion Context Broker.

• The PEP proxy is an authorization proxy, placed in front of the IOTA, that verifies the

device authorization according to the Keyrock policies and then forwards or denies the

request to the IOTA.

• The Orion Context Broker is the core of the IOT Unit. It receives the IoT data from the

IOTA NGSI format, and then offers them to third clients using an advanced Pub/Sub

model; the subscription will be used to trigger faas workflows on the continuum;

The Computation Unit

The CU is responsible for executing the algorithms designed to compute the data collected

from the IoT unit. All algorithms are encapsulated in functions since this unit is strictly based

on the FaaS paradigm. In brief, FaaS is able to encapsulate a stateless function inside the

container, letting external clients invoke this function using typically HTTP or pub/sub-

patterns.

In UFE, the CU is not a unique infrastructure, rather it is the logical union of all the CU

installed in all the nodes that compose the continuum infrastructure.

§8.2 − TEMA: Event-Driven Serverless Workflows Platform for Natural Disaster
Management 140

Finally, the main component of the CU is OpenFaas. OpenFaas is the most stared open-

source engine on GitHub 1, it is composed of a gateway that lets us invoke any function using

HTTP; a NATS server associated with a Queue-Worker, which lets us invoke the function

using pub/sub model, sending back the result using webhooks, and a faas-cli, which is

used to interact with OpenFaas, building multiarchitecture function natively, and of course,

deploying them. OpenFaas is a centralized Function Registry to store the functions available

in all the CU; this registry is even cached locally to avoid the cold start problem, typical in

any containerized infrastructure.

As anticipated previously, the CU works integrated with the IIU; in particular, the FaaS

stack is supposed to run in the workers’ nodes, in fact, the massive use of low-level container-

ization together with a light system such as OpenFaaS, makes it possible to run functions

in most of the traditional mobile units as well as a static unit we want to integrate. At the

end then, we will be able to run algorithms on a drone, a robot as well as in a cloud virtual

machine.

The Monitoring Unit

The MU is fundamental for planning a time-critical computation. The MU is installed

along with the computation unit and collects all the useful metrics of all the functions that

are executed in the CU. The Monitoring Unit is made up of a high-performance proxy (HPC),

a Prometheus instance, and a centralized shared data lake. The HPC is posed in front of the

OpenFaas gateway, then it intercepts all the function invocations, forwarding the result to

the client, but before doing that it retrieves from the OpenFaas response the request ID that is

used asynchronously to fetch all the information from Prometheus and OpenFaas’ logger.

Prometheus is a popular open-source monitoring and alerting system that is used to collect

and analyze metrics from various sources in real-time, but at this moment the information

that the MU fetches are the following: 1. function executed; 2. continuum’s node where the

function is run; 3. start time and duration of the computation; 4. start and end time of the

request; 5. CPU cycles and memory used to run that function and conclude the request. All

these metrics are collected together and then sent to the Data Lake component, which will

permanently store them, to be used later to apply scheduler choices.

1https://github.com/openfaas/faas

§8.2 − TEMA: Event-Driven Serverless Workflows Platform for Natural Disaster
Management 141

The Scheduler Unit

A key component in the described architecture is related to the scheduling of created

workflows among the components that belong to the Cloud-Continuum Infrastructure.

In particular, the SU exploits context data to estimate the more efficient and convenient

node in which the function should be deployed. A key role is played by MU that collects

the monitored data that will actually be used to guide the scheduler in the offloading of

workflow processes. The scheduling is dynamic, and it exploits Machine Learning inference

to establish more appropriate nodes in which workflow can be deployed. The inference of

a Machine Learning model could be considered a complex operation that can compromise

a time-constrained application. For this reason, the scheduler will figure out an inference

with a pre-trained model in an asynchronous fashion when a new workflow is not yet

created or deployed. The model consists of a Deep Neural Network in which the inputs

are all metrics collected through MU and the QoS score brought by the specific workflow.

The model output consists of a score that ranks each node in the architecture on the basis

of different parameters: time-response with respect to the scheduler, used memory, used

CPU, and other possible parameters collected by Prometheus instance present in MU. In

particular, it performs, exploiting a classical Soft Max Activation Function, a classification

of more appropriate nodes according to computed scores. It classifies the most efficient

node candidates for deploying the next workflow processes. The decision of the nodes for

each process is decided following the probabilities computed by the model. Moreover, the

model will be updated by exploiting historical data collected through a continuous learning

mechanism that takes advantage of the Federated Learning approach [167]. Indeed, each

node, periodically, trains a local model that will be aggregated in the central cloud server

and exploited by the scheduler’s central component. The scheduler will become more precise

thanks to historical data collected by MU.

The Workflow Unit

One of the most highlighted downsides of FaaS is the inability to deploy complex and

distributed workflows that connect functions to serve a bigger and composed computation. To

overcome this, most of the FaaS-based architectures propose to use a centralized microservice

that invokes and synchronizes the right function when needed. This small trick might be

not the best choice for any distributed time-critical environments; therefore, we integrated

the WU. The WU let us define serverless workflows using a light version of OpenWolf

§8.2 − TEMA: Event-Driven Serverless Workflows Platform for Natural Disaster
Management 142

[2]. OpenWolf is a small distributed broker that can be instantiated on Kubernetes or with

just Docker for the lightest environments in this use case, we have an OpenWolf agent for

each computing tier. OpenWolf 2 uses a customized version of the Serverless Workflow DSL
3 to describe how the input and output functions are connected, allowing one to define

asynchronous faas DAGs. Using the DSL, we can submit a Manifest file to the OpenWolf agent,

The manifest file will be used to declare a workflow and then it will be used to trigger the

function defined inside it when a specific event occurs. Through the Manifest is even possible

to decide where to deploy a function to use inside the workflow, but in this case, we modified

the function allocation, in order to migrate a function location according to the QoS of an

event and the suggestion coming from the SU. Manifests are even more shared with all the

OpenWolf agents, in this way, any instance can run the same workflow.

Units Integration

The integration of the UFE unit is quite straightforward. The overall architecture is

presented in figure 8.3, from the bottom we distinguished three different zones provided

with the IoT sensors. Each device can use any of D-IDM to get an Oauth2 token, that is used

to access the IOT Agent in the IA. In the same unit, the IoT Agent sends the data to the

Context Broker, where the data live. In parallel, as soon as a Workflow manifest is sent to

OpenWolf, the functions included in that file are deployed on the Computing Infrastructure

according to the scheduler’s choices. When all the functions are ready, the workflow endpoint

is subscribed to the Context Broker which contains the data needed to trigger the workflow.

When the subscription arrives at the Context Broker, data will be sent to the first function

on the workflow, and in turn, the result will be forwarded to the other functions until all

the functions in the workflow are not consumed. While the functions are run, the monitor

system installed alongside the serverless platform records all the information related to

the executions. This information will travel to the Data Lake, which the scheduler will

continuously read to adapt the function position in the infrastructure dynamically.

8.2.3 Conclusion

The work proposes a solution for Natural Disaster Management in the Horizon TEMA

project exploiting Cloud-Continuum workflows, and applying them considering QoS pa-

rameters. TEMA is a Horizon Europe-funded project that wants to manage Natural disaster

2https://github.com/christiansicari/OpenWolf
3https://serverlessworkflow.io/

§8.2 − TEMA: Event-Driven Serverless Workflows Platform for Natural Disaster
Management 143

Figure 8.3: TEMA platform architecture

§8.2 − TEMA: Event-Driven Serverless Workflows Platform for Natural Disaster
Management 144

Management exploiting a Cloud-Edge Continuum infrastructure. For this reason, the archi-

tecture depicted in this work must be able to manage Urgent Computation applications.

The solution described here is a concrete workflow system use case that can satisfy the

QoS and realize a complex algorithm pipeline exploiting IoT-collected data in a Cloud-

Continuum infrastructure. Moreover, the architecture described is capable of performing

dynamic scheduling of workflow components, exploiting the monitored data by each node of

infrastructure, and a sophisticated machine learning model capable of retrieving the optimal

nodes. The fixed steps to perform are the practical application of the solution in a concrete

use case provided by the TEMA project and the practical performance evaluation of the

implemented architecture. As naturally expected in future works, we need to validate the

architecture we proposed, in order to understand the limits and strengths of the works.

CHAPTER 9

Conclusion and Future Works

In this thesis work, we aimed to address many issues that disallow making computing

on Continuum possible, and we tried to solve all of them by applying many innovative

solutions. Taking into account the most updated State of the Art in the fields of Cloud and

Edge Computing, Continuum, and in general, Distributed Computing, we identified six

issues that make computing at the Continuum hard to implement: (i) integrating public

and private clouds, federating them, and deploying "pieces" of applications independently;

(ii) deploying continuum native applications to make the most of the environment where

they execute; (iii) guaranteeing security during the interactions across the infrastructure; (iv);

discovering and locating applications that can move across the continuum environment; (v)

balancing and keeping reliable a continuum infrastructure.

In order to address all these issues, we first analyzed the background, in particular,

in Chapter 2 we analyzed the reason why Continuum arose and what technologies are

behind it, in particular Cloud and Edge Computing. Then we analyzed new patterns to

deploy applications, particularly the microservice architecture and the serverless, finally, we

discussed Osmotic Computing, a high-level paradigm that describes tools, approaches, and

concepts to enable the computation at the continuum.

After this background analysis, we came back to the highlighted issues, and we tried to

solve all of them, in order, using every time what we did in the previous step. Therefore, in

Chapter 3, we proposed a standard to deploy applications on the Continuum, by means of

this standard we aimed to make possible the federation between private and public cloud

145

146

and edge infrastructures, and even to propose a blueprint about how to deploy continuum

native applications.

In Chapter 4, we used the earned knowledge from the previous work to implement

OpenWolf and to improve RPulsar. OpenWolf is a serverless workflow engine able to spread

and connect serverless functions transparently across any continuum infrastructure. By

means of OpenWolf, we found a way to deploy continuum native applications, therefore

solving the second highlighted issue. while, improving RPulsar we gave the possibility to

dynamically combine data producers and consumers on demand, matching and connecting

them spreading functions according to the provided matching rules. In Chapter 5 we dug into

many security issues that can compromise computing at the continuum. In these chapters,

we widely used the concepts inherited from Osmotic Computing to guarantee addressability,

accountability, integrity and confidentiality for the data exchanged across the continuum

environment, by means of the definition of osmotic membranes, decentralized peer-to-peer

and VPN-based overlay networks.

After we have found a way to deploy standardized and secure applications on the

Continuum, in Chapter 6, we developed the OCE-DNS, a geohash-based DNS, used both

to discover services on Continuum but also to register them, hiding possible migrations

and down times. Inside this Chapter, we have even introduced the Extended Plus Code, a

three-dimensional hierarchical hash code, that we used to address services, but it has been

used even in other works [168], to map virtual and real reality.

As highlighted in the background of this thesis, but also in the chapters, orchestrating

applications in the continuum is not easy, and most used orchestrators like Kubernetes or

Nomad might fail due to the diversity of the environment they have to deal with or just

because the constraints given by the capacity of some nodes inside the infrastructure. Starting

from these considerations we developed Tolerancer, described in Chapter 7. Tolerancer is

a peer-to-peer micro orchestrator that monitors a container-based continuum environment,

restoring failed applications and avoiding system overloading by properly migrating the

containers across the infrastructure’s nodes.

Finally, we tested all these works in a smart city scenario, indeed in Chapter 8 we per-

formed a performance analysis of a deep learning workflow using OpenWolf as a baseline

and a continuum as infrastructure. In this work, we demonstrated how is possible to deploy

continuum native applications, and how is possible to exploit the characteristics of each

layer in the continuum to get the best result possible to achieve an objective. Following we

discussed the TEMA project, a European-founded project that is going to take advantage of

147

our Continuum solution to address urgent computing scenarios.

Continuum Computing is probably one of the hottest topics in the computer science

research field, and we aim to further advance the state of the art in this area, working on more

use cases and integration in the future. In this regard, we would embrace a broader concept

such as SysOps, which aims at unifying the concept of maintainability and operability of a

platform. Our idea in a nutshell is to provide a workflow system that prepares a Continuum

environment as well to optimize the workflow to take advantage of the environment itself.

Currently, we are working to improve the scheduling of the computation on the continuum,

making it smart, which means choosing where to compute something using the history,

the application constraints, and the current system status as decision factors. We are even

working on the dynamic composition of applications based on the match of compatibility

profile. This idea inspired, by the state of the art can be integrated with OpenWolf and in

general with all the previous work, to respond better to the dynamicity of the Continuum

environment. All these updates, once published will be even released as an open-source

project, to let people join and improve our work and research.

Bibliography

[1] Christian Sicari, Alessio Catalfamo, Lorenzo Carnevale, Antonino Galletta, Antonio

Celesti, Maria Fazio, and Massimo Villari. Toward the Edge-Cloud Continuum Through

the Serverless Workflows, pages 1–18. Springer Nature Switzerland, Cham, 2024. (Cited

at page x)

[2] Christian Sicari, Lorenzo Carnevale, Antonino Galletta, and Massimo Villari. Openwolf:

A serverless workflow engine for native cloud-edge continuum. In 2022 IEEE Intl Conf

on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and

Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and

Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), pages 1–8, 2022. (Cited at

pages x, 57, 66 e 142)

[3] Christian Sicari, Daniel Balouek-Thomert, Manish Parashar, and Massimo Villari. Event-

driven faas workflows for enabling iot data processing at the cloud edge continuum.

In Proceedings of the 16th IEEE/ACM International Conference on Utility and Cloud Comput-

ing Companion, UCC ’23, Taormina, Messina, Italy, 2023. Association for Computing

Machinery. under review in the 16th IEEE/ACM International Conference on Utility

and Cloud Computing Companion (UCC 2023). (Cited at page x)

[4] Gabriele Morabito, Christian Sicari, Armando Ruggeri, Antonio Celesti, and Lorenzo

Carnevale. Secure-by-design serverless workflows on the edge–cloud continuum

through the osmotic computing paradigm. Internet of Things, 22:100737, 2023. (Cited at

pages x e 42)

148

BIBLIOGRAPHY 149

[5] Christian Sicari, Alessio Catalfamo, Antonino Galletta, and Massimo Villari. A dis-

tributed peer to peer identity and access management for the osmotic computing.

In 2022 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing

(CCGrid), pages 775–781, 2022. (Cited at pages xi, 59, 137 e 139)

[6] Christian Sicari, Antonino Galletta, Antonio Celesti, Maria Fazio, and Massimo Villari.

An osmotic computing enabled domain naming system (oce-dns) for distributed service

relocation between cloud and edge. Computers & Electrical Engineering, 96:1–25, 05 2021.

(Cited at pages xi e 75)

[7] Auday Al-Dulaimy, Christian Sicari, Alessandro V. Papadopoulos, Antonino Galletta,

Massimo Villari, and Mohammad Ashjaei. Tolerancer: A fault tolerance approach

for cloud manufacturing environments. In 2022 IEEE 27th International Conference on

Emerging Technologies and Factory Automation (ETFA), pages 1–8, 2022. (Cited at page xi)

[8] Christian Sicari, Lorenzo Carnevale, Antonino Galletta, and Massimo Villari. Openwolf:

Serverless workflow engine for ai on continuum. In 2021 IEEE Symposium on Computers

and Communications (ISCC), 09 2022. (Cited at page xi)

[9] Christian Sicari, Alessio Catalfamo, Lorenzo Carnevale, Antonino Galletta, Daniel

Balouek-Thomert, Manish Parashar, and Massimo Villari. Tema: Event driven serverless

workflows platform for natural disaster management. In 2023 IEEE Symposium on

Computers and Communications (ISCC), pages 1–6, 2023. (Cited at page xi)

[10] Schahram Dustdar, Victor Casamajor Pujol, and Praveen Kumar Donta. On distributed

computing continuum systems. IEEE Transactions on Knowledge and Data Engineering,

XX:1–14, 2022. (Cited at pages 2, 15 e 39)

[11] Massimo Villari, Maria Fazio, Schahram Dustdar, Omer Rana, and Rajiv Ranjan. Os-

motic computing: A new paradigm for edge/cloud integration. IEEE Cloud Computing,

3(6):76–83, 2016. (Cited at pages 11, 57, 78 e 80)

[12] L. Carnevale, A. Celesti, A. Galletta, S. Dustdar, and M. Villari. From the cloud to

edge and iot: a smart orchestration architecture for enabling osmotic computing. 2018.

(Cited at page 11)

[13] M. Villari, M. Fazio, S. Dustdar, O. Rana, L. Chen, and R. Ranjan. Software defined

membrane: Policy-driven edge and internet of things security. IEEE Cloud Computing,

Volume: 4, 2017. (Cited at page 12)

BIBLIOGRAPHY 150

[14] Christian Sicari, Antonino Galletta, Antonio Celesti, Maria Fazio, and Massimo Villari.

An osmotic computing enabled domain naming system (oce-dns) for distributed service

relocation between cloud and edge. Computers & Electrical Engineering, 96:107578, 2021.

(Cited at page 12)

[15] A. Buzachis and M. Villari. Basic principles of osmotic computing: Secure and de-

pendable microelements (mels) orchestration leveraging blockchain facilities. 2018

IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC

Companion), 2018. (Cited at page 13)

[16] Harald Mueller, Spyridon V. Gogouvitis, Houssam Haitof, Andreas Seitz, and Bernd

Bruegge. Poster abstract: Continuous computing from cloud to edge. In 2016 IEEE/ACM

Symposium on Edge Computing (SEC), pages 97–98, 2016. (Cited at page 14)

[17] Anurag Ranjan, Francesc Guim, Mandar Chincholkar, Prakash Ramchandran, Ranjan

Mishra, and Sunku Ranganath. Convergence of edge services & edge infrastructure. In

2021 IEEE Conference on Network Function Virtualization and Software Defined Networks

(NFV-SDN), pages 96–99, 2021. (Cited at pages 14 e 15)

[18] A. Luckow, K. Rattan, and S. Jha. Pilot-edge: Distributed resource management along

the edge-to-cloud continuum. In 2021 IEEE International Parallel and Distributed Process-

ing Symposium Workshops (IPDPSW), pages 874–878, Los Alamitos, CA, USA, jun 2021.

IEEE Computer Society. (Cited at pages 15, 41 e 60)

[19] Luciano Baresi and Danilo Filgueira Mendonça. Towards a serverless platform for

edge computing. In 2019 IEEE International Conference on Fog Computing (ICFC), pages

1–10, 2019. (Cited at page 15)

[20] Tobias Pfandzelter and David Bermbach. tinyfaas: A lightweight faas platform for edge

environments. In 2020 IEEE International Conference on Fog Computing (ICFC), pages

17–24, 2020. (Cited at page 15)

[21] Michele Ciavotta, Davide Motterlini, Marco Savi, and Alessandro Tundo. Dfaas: De-

centralized function-as-a-service for federated edge computing. In 2021 IEEE 10th

International Conference on Cloud Networking (CloudNet), pages 1–4, 2021. (Cited at

page 15)

[22] Xavi Masip-bruin, Eva Marín-tordera, Sergi Sánchez-lópez, Jordi Garcia, Admela Jukan,

Ana Juan Ferrer, Anna Queralt, Antonio Salis, Andrea Bartoli, Matija Cankar, Cristovao

BIBLIOGRAPHY 151

Cordeiro, Jens Jensen, and John Kennedy. Managing the cloud continuum: Lessons

learnt from a real fog-to-cloud deployment. Sensors, 21(9), 2021. (Cited at page 15)

[23] Daniel Balouek-Thomert, Eduard Gibert Renart, Ali Reza Zamani, Anthony Simonet,

and Manish Parashar. Towards a computing continuum: Enabling edge-to-cloud

integration for data-driven workflows. The International Journal of High Performance

Computing Applications, 33:1159–1174, 11 2019. (Cited at page 15)

[24] Dragi Kimovski, Christian Bauer, Narges Mehran, and Radu Prodan. Big data pipeline

scheduling and adaptation on the computing continuum. In 2022 IEEE 46th Annual

Computers, Software, and Applications Conference (COMPSAC), pages 1153–1158, 2022.

(Cited at pages 15 e 39)

[25] Luiz Bittencourt, Roger Immich, Rizos Sakellariou, Nelson Fonseca, Edmundo Madeira,

Marilia Curado, Leandro Villas, Luiz DaSilva, Craig Lee, and Omer Rana. The Internet

of Things, Fog and Cloud continuum: Integration and challenges. Internet of Things

(Netherlands), 3-4:134–155, 09 2018. (Cited at page 15)

[26] Abhinav Jangda, Donald Pinckney, Yuriy Brun, and Arjun Guha. Formal foundations

of serverless computing. Proceedings of the ACM on Programming Languages, 3, 10 2019.

(Cited at page 15)

[27] Debnath Mukherjee, Debraj Pal, and Prateep Misra. Workflow for the internet of things.

pages 745–751, 01 2017. (Cited at page 15)

[28] Raouf Boutaba. The cloud to things continuum. pages 7–7, 2021. (Cited at page 15)

[29] Xavier Merino, Carlos Otero, David Nieves-Acaron, and Benjamin Luchterhand. To-

wards orchestration in the cloud-fog continuum. Conference Proceedings - IEEE SOUTH-

EASTCON, 2021-March, 2021. (Cited at page 15)

[30] Ivan Cilic, Ivana Podnar Zarko, and Mario Kusek. Towards service orchestration for

the cloud-to-thing continuum. 2021 6th International Conference on Smart and Sustainable

Technologies, SpliTech 2021, 2021. (Cited at pages 15 e 39)

[31] Nuno Faria, Daniel Costa, José Pereira, Ricardo Vilaça, Luís Ferreira, and Fábio Coelho.

Aida-db: A data management architecture for the edge and cloud continuum. In 2022

IEEE 19th Annual Consumer Communications & Networking Conference (CCNC), pages

1–6, 2022. (Cited at page 15)

BIBLIOGRAPHY 152

[32] Christopher Peter Smith, Anshul Jindal, Mohak Chadha, Michael Gerndt, and Shajulin

Benedict. Fado: Faas functions and data orchestrator for multiple serverless edge-cloud

clusters. In 2022 IEEE 6th International Conference on Fog and Edge Computing (ICFEC),

pages 17–25, 2022. (Cited at page 15)

[33] Efterpi Paraskevoulakou and Dimosthenis Kyriazis. Leveraging the serverless

paradigm for realizing machine learning pipelines across the edge-cloud continuum.

2021 24th Conference on Innovation in Clouds, Internet and Networks and Workshops, ICIN

2021, pages 110–117, 2021. (Cited at pages 15 e 25)

[34] Alessandro Bocci, Stefano Forti, Gian-Luigi Ferrari, and Antonio Brogi. Type, pad,

and place: Avoiding data leaks in cloud-iot faas orchestrations. In 2022 22nd IEEE

International Symposium on Cluster, Cloud and Internet Computing (CCGrid), pages 798–

805, 2022. (Cited at page 15)

[35] Ioana Baldini, Perry Cheng, Stephen J. Fink, Nick Mitchell, Vinod Muthusamy, Rodric

Rabbah, Philippe Suter, and Olivier Tardieu. The serverless trilemma: Function compo-

sition for serverless computing. In Proceedings of the 2017 ACM SIGPLAN International

Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software,

Onward! 2017, page 89–103, New York, NY, USA, 2017. Association for Computing

Machinery. (Cited at pages 16 e 25)

[36] Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat Jaeger, Matthew

Jones, Edward Lee, Jing Tao, and Yang Zhao. Scientific workflow management and the

kepler system. Concurrency and Computation: Practice and Experience, 18:1039–1065, 08

2006. (Cited at page 16)

[37] Marcin Płóciennik, Tomasz Zok, Antonio Gómez-Iglesias, Francisco Castejón, Andrés

Bustos, Manuel Aurelio Rodríguez-Pascua, and José Luis Velasco. Workflows orches-

tration in distributed computing infrastructures. Proceedings of the 2012 International

Conference on High Performance Computing and Simulation, HPCS 2012, pages 616–622,

2012. (Cited at page 16)

[38] Ewa Deelman, James Blythe, Yolanda Gil, Carl Kesselman, Gaurang Mehta, Sonal Patil,

Mei Hui Su, Karan Vahi, and Miron Livny. Pegasus: Mapping scientific workflows onto

the grid. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 3165:11–20, 2004. (Cited at page 16)

BIBLIOGRAPHY 153

[39] Kevin Lee, Norman W. Paton, Rizos Sakellariou, Ewa Deelman, Alvaro A.A. Fernandes,

and Gaurang Mehta. Adaptive workflow processing and execution in pegasus. In

2008 The 3rd International Conference on Grid and Pervasive Computing - Workshops, pages

99–106, 2008. (Cited at page 16)

[40] Ewa Deelman, Karan Vahi, Mats Rynge, Gideon Juve, Rajiv Mayani, and Rafael Ferreira

da Silva. Pegasus in the cloud: Science automation through workflow technologies.

IEEE Internet Computing, 20(1):70–76, 2016. (Cited at page 16)

[41] Dragi Kimovski, Roland Mathá, Josef Hammer, Narges Mehran, Hermann Hellwagner,

and Radu Prodan. Cloud, fog, or edge: Where to compute? IEEE Internet Computing,

25(4):30–36, 2021. (Cited at page 16)

[42] Karan Vahi, Mats Rynge, George Papadimitriou, Duncan A. Brown, Rajiv Mayani,

Rafael Ferreira da Silva, Ewa Deelman, Anirban Mandal, Eric Lyons, and Michael

Zink. Custom execution environments with containers in pegasus-enabled scientific

workflows. In 2019 15th International Conference on eScience (eScience), pages 281–290,

2019. (Cited at page 16)

[43] Qingye Jiang, Young Choon Lee, and Albert Y. Zomaya. Serverless execution of

scientific workflows. Lecture Notes in Computer Science (including subseries Lecture Notes

in Artificial Intelligence and Lecture Notes in Bioinformatics), 10601 LNCS:706–721, 2017.

(Cited at page 16)

[44] Alfonso Pérez, Germán Moltó, Miguel Caballer, and Amanda Calatrava. Serverless

computing for container-based architectures. Future Generation Computer Systems,

83:50–59, 2018. (Cited at page 16)

[45] Wolfgang Gerlach, Wei Tang, Andreas Wilke, Dan Olson, and Folker Meyer. Container

orchestration for scientific workflows. Proceedings - 2015 IEEE International Conference

on Cloud Engineering, IC2E 2015, (March):377–378, 2015. (Cited at page 16)

[46] Maciej Malawski, Adam Gajek, Adam Zima, Bartosz Balis, and Kamil Figiela. Serverless

execution of scientific workflows: Experiments with HyperFlow, AWS Lambda and

Google Cloud Functions. Future Generation Computer Systems, 110:502–514, 2020. (Cited

at page 16)

BIBLIOGRAPHY 154

[47] Tom Diethe, Meelis Kull, Niall Twomey, Kacper Sokol, Hao Song, Miquel Perelló-Nieto,

Emma Tonkin, and Peter A. Flach. Hyperstream: a workflow engine for streaming data.

CoRR, abs/1908.02858, 2019. (Cited at page 16)

[48] Andrzej Jasinski, Yuansong Qiao, John Keeney, Enda Fallon, and Ronan Flynn. A

workflow engine server for the design of adaptive and scalable workflows. 30th Irish

Signals and Systems Conference, ISSC 2019, (June), 2019. (Cited at page 16)

[49] Pedro García López, Aitor Arjona, Josep Sampé, Aleksander Slominski, and Lionel

Villard. Triggerflow: Trigger-based orchestration of serverless workflows. DEBS 2020

- Proceedings of the 14th ACM International Conference on Distributed and Event-Based

Systems, (Debs):3–14, 2020. (Cited at page 16)

[50] Eduard Gibert Renart, Daniel Balouek-Thomert, and Manish Parashar. An edge-based

framework for enabling data-driven pipelines for iot systems. In 2019 IEEE International

Parallel and Distributed Processing Symposium Workshops (IPDPSW), pages 885–894, 2019.

(Cited at pages 17, 40, 48 e 137)

[51] Eduard Gibert Renart, Javier Diaz-Montes, and Manish Parashar. Data-driven stream

processing at the edge. In 2017 IEEE 1st International Conference on Fog and Edge

Computing (ICFEC), pages 31–40, 2017. (Cited at page 17)

[52] Eduard Renart, Daniel Balouek-Thomert, Xuan Hu, Jie Gong, and Manish Parashar.

Online decision-making using edge resources for content-driven stream processing.

In 2017 IEEE 13th International Conference on e-Science (e-Science), pages 384–392, 2017.

(Cited at page 17)

[53] Zeina Houmani, Daniel Balouek-Thomert, Eddy Caron, and Manish Parashar. En-

abling microservices management for deep learning applications across the edge-cloud

continuum. In 2021 IEEE 33rd International Symposium on Computer Architecture and

High Performance Computing (SBAC-PAD), pages 137–146. IEEE, 2021. (Cited at pages 17

e 25)

[54] Openfaas Workflow, howpublished = https://github.com/s8sg/faas-flow,

note = Last access May 2022. (Cited at page 26)

[55] Fission Workflow, howpublished = https://github.com/fission/

fission-workflows, note = Last access May 2022. (Cited at page 26)

https://github.com/s8sg/faas-flow
https://github.com/fission/fission-workflows
https://github.com/fission/fission-workflows

BIBLIOGRAPHY 155

[56] Preeti Yadav and Sandeep Vishwakarma. Application of internet of things and big data

towards a smart city. In 2018 3rd International Conference On Internet of Things: Smart

Innovation and Usages (IoT-SIU), pages 1–5, 2018. (Cited at page 39)

[57] Jiachen Wang, Ji Ma, Kangping Hu, Zheng Zhou, Hui Zhang, Xiao Xie, and Ying-

cai Wu. Tac-trainer: A visual analytics system for iot-based racket sports training.

IEEE Transactions on Visualization and Computer Graphics, 29(1):951–961, 2023. (Cited at

page 39)

[58] Parag Chatterjee, Leandro J. Cymberknop, and Ricardo L. Armentano. Iot-based

decision support system for intelligent healthcare — applied to cardiovascular diseases.

In 2017 7th International Conference on Communication Systems and Network Technologies

(CSNT), pages 362–366, 2017. (Cited at page 39)

[59] Emiliano Sisinni, Abusayeed Saifullah, Song Han, Ulf Jennehag, and Mikael Gidlund.

Industrial internet of things: Challenges, opportunities, and directions. IEEE Transac-

tions on Industrial Informatics, 14(11):4724–4734, 2018. (Cited at page 39)

[60] Jacopo Massa, Stefano Forti, and Antonio Brogi. Data-aware service placement

in the cloud-iot continuum. In Johanna Barzen, Frank Leymann, and Schahram Dustdar,

editors, Service-Oriented Computing, pages 139–158, Cham, 2022. Springer International

Publishing. (Cited at page 39)

[61] Stefano Forti and Antonio Brogi. Green application placement in the cloud-iot con-

tinuum. In James Cheney and Simona Perri, editors, Practical Aspects of Declarative

Languages, pages 208–217, Cham, 2022. Springer International Publishing. (Cited at

page 39)

[62] Antero Taivalsaari, Tommi Mikkonen, and Cesare Pautasso. Towards seamless iot

device-edge-cloud continuum:. In Maxim Bakaev, In-Young Ko, Michael Mrissa, Cesare

Pautasso, and Abhishek Srivastava, editors, ICWE 2021 Workshops, pages 82–98, Cham,

2022. Springer International Publishing. (Cited at page 39)

[63] Victor Casamayor Pujol, Andrea Morichetta, Ilir Murturi, Praveen Kumar Donta, and

Schahram Dustdar. Fundamental research challenges for distributed computing con-

tinuum systems. Information, 14(3), 2023. (Cited at page 39)

BIBLIOGRAPHY 156

[64] Bin Cheng, Gürkan Solmaz, Flavio Cirillo, Ernö Kovacs, Kazuyuki Terasawa, and

Atsushi Kitazawa. Fogflow: Easy programming of iot services over cloud and edges for

smart cities. IEEE Internet of Things Journal, 5(2):696–707, 2018. (Cited at pages 41 e 42)

[65] Fabiana Rossi, Valeria Cardellini, Francesco Lo Presti, and Matteo Nardelli. Geo-

distributed efficient deployment of containers with kubernetes. Computer Communica-

tions, 159:161–174, 2020. (Cited at pages 41, 42 e 137)

[66] Gabriele Proietti Mattia and Roberto Beraldi. Leveraging reinforcement learning for

online scheduling of real-time tasks in the edge/fog-to-cloud computing continuum.

In 2021 IEEE 20th International Symposium on Network Computing and Applications (NCA),

pages 1–9, 2021. (Cited at pages 41 e 137)

[67] Albert Jonathan, Abhishek Chandra, and Jon Weissman. Awan: Locality-aware resource

manager for geo-distributed data-intensive applications. In 2016 IEEE International

Conference on Cloud Engineering (IC2E), pages 32–41, 2016. (Cited at pages 41 e 137)

[68] Bin Cheng, Jonathan Fuerst, Gurkan Solmaz, and Takuya Sanada. Fog function: Server-

less fog computing for data intensive iot services. In 2019 IEEE International Conference

on Services Computing (SCC), pages 28–35, 2019. (Cited at page 42)

[69] Nicolas Ferry, Rustem Dautov, and Hui Song. Towards a model-based serverless

platform for the cloud-edge-iot continuum. In 2022 22nd IEEE International Symposium

on Cluster, Cloud and Internet Computing (CCGrid), pages 851–858, 2022. (Cited at

page 42)

[70] Fabiana Rossi, Simone Falvo, and Valeria Cardellini. Gofs: Geo-distributed scheduling

in openfaas. In 2021 IEEE Symposium on Computers and Communications (ISCC), pages

1–6, 2021. (Cited at page 42)

[71] Yang Tang and Junfeng Yang. Lambdata: Optimizing serverless computing by making

data intents explicit. In 2020 IEEE 13th International Conference on Cloud Computing

(CLOUD), pages 294–303, 2020. (Cited at page 42)

[72] Achilleas Tzenetopoulos, Evangelos Apostolakis, Aphrodite Tzomaka, Christos Pa-

pakostopoulos, Konstantinos Stavrakakis, Manolis Katsaragakis, Ioannis Oroutzoglou,

Dimosthenis Masouros, Sotirios Xydis, and Dimitrios Soudris. Faas and curious: Per-

formance implications of serverless functions on edge computing platforms. In Heike

Jagode, Hartwig Anzt, Hatem Ltaief, and Piotr Luszczek, editors, High Performance

BIBLIOGRAPHY 157

Computing, pages 428–438, Cham, 2021. Springer International Publishing. (Cited at

page 42)

[73] B. Przybylski, P. Zuk, and K. Rzadca. Data-driven scheduling in serverless computing

to reduce response time. In 2021 IEEE/ACM 21st International Symposium on Cluster,

Cloud and Internet Computing (CCGrid), pages 206–216, Los Alamitos, CA, USA, may

2021. IEEE Computer Society. (Cited at page 42)

[74] T. Melamed. Interpretation for serverless. OWASP Top 10, 2017. (Cited at page 58)

[75] Nuno Mateus-Coelho and Manuela Cruz-Cunha. Serverless service architectures and

security minimals. In 2022 10th International Symposium on Digital Forensics and Security

(ISDFS), pages 1–6, 2022. (Cited at page 58)

[76] Mingyu Wu, Zeyu Mi, and Yubin Xia. A survey on serverless computing and its

implications for jointcloud computing. In 2020 IEEE International Conference on Joint

Cloud Computing, volume 18, 2020. (Cited at pages 58 e 59)

[77] Jannath Nisha O.S. and S. Mary Saira Bhanu. A survey on code injection attacks in

mobile cloud computing environment. In 2018 8th International Conference on Cloud

Computing, Data Science & Engineering (Confluence), pages 1–6, 2018. (Cited at page 58)

[78] Mohammed A. Aleisa, Abdullah Abuhussein, and Frederick T. Sheldon. Access control

in fog computing: Challenges and research agenda. IEEE Access, 8:83986–83999, 2020.

(Cited at page 58)

[79] Vasudev Dehalwar, Akhtar Kalam, Mohan Lal Kolhe, and Aladin Zayegh. Review

of web-based information security threats in smart grid. In 2017 7th International

Conference on Power Systems (ICPS), pages 849–853, 2017. (Cited at page 58)

[80] G. Mani, B. Srinivasa Rao, D. J. Santosh Kumar, and Chitturi Prasad. Distributed

information flow control in serverless computing. In 2022 4th International Conference

on Smart Systems and Inventive Technology (ICSSIT), 2022. (Cited at page 58)

[81] Valentin Vallois, Fouad Guenane, and Ahmed Mehaoua. Reference architectures for

security-by-design iot: Comparative study. In 2019 Fifth Conference on Mobile and Secure

Services (MobiSecServ), pages 1–6, 2019. (Cited at page 59)

[82] Feras M. Awaysheh, Mohammad N. Aladwan, Mamoun Alazab, Sadi Alawadi, José C.

Cabaleiro, and Tomás F. Pena. Security by design for big data frameworks over cloud

BIBLIOGRAPHY 158

computing. IEEE Transactions on Engineering Management, 69(6):3676–3693, 2022. (Cited

at page 59)

[83] Tiago Espinha Gasiba and Ulrike Lechner. Raising secure coding awareness for software

developers in the industry. In 2019 IEEE 27th International Requirements Engineering

Conference Workshops (REW), pages 141–143, 2019. (Cited at page 59)

[84] W. O’Meara and R. G. Lennon. Serverless computing security: Protecting application

logic. 31st Irish Signals and Systems Conference (ISSC), 2020. (Cited at page 59)

[85] Xing Li, Xue Leng, and Yan Chen. Securing serverless computing: Challenges, solutions,

and opportunities. In IEEE Network, 2022. (Cited at page 59)

[86] Andrea Sabbioni, Carlo Mazzocca, Michele Colajanni, Rebecca Montanari, and Antonio

Corradi. A fully decentralized architecture for access control verification in serverless

environments. In 2022 IEEE Symposium on Computers and Communications (ISCC), 2022.

(Cited at page 59)

[87] Muhammed Golec, Ridvan Ozturac, Zahra Pooranian, Sukhpal Singh Gill, and Ra-

jkumar Buyya. ifaasbus: A security- and privacy-based lightweight framework for

serverless computing using iot and machine learning. In IEEE Transactions on Industrial

Informatics, volume 18, pages 3522–3529, 2021. (Cited at page 59)

[88] Dhouha Ayed, Paul-Andrei Dragan, Edith Félix, Zoltán Adám Mann, Eliot Salant,

Robert Seidl, Anestis Sidiropoulos, Steve Taylor, and Ricardo Vitorino. Protecting

sensitive data in the cloud-to-edge continuum: The fogprotect approach. In 2022 22nd

IEEE International Symposium on Cluster, Cloud and Internet Computing (CCGrid), 2022.

(Cited at page 59)

[89] J. Barr. Firecracker lightweight virtualization for serverless computing. 2018. (Cited at

page 59)

[90] Google. gvisor: A container sandbox runtime focused on security efficiency and ease

of use. 2019. (Cited at page 59)

[91] Hamza Javed, Adel N. Toosi, and Mohammad S. Aslanpour. Serverless Platforms on the

Edge: A Performance Analysis, pages 165–184. Springer International Publishing, Cham,

2022. (Cited at page 60)

BIBLIOGRAPHY 159

[92] Mohammad Sadegh Aslanpour, Adel N. Toosi, Muhammad Aamir Cheema, and Raj

Gaire. Energy-aware resource scheduling for serverless edge computing. In 2022 22nd

IEEE International Symposium on Cluster, Cloud and Internet Computing (CCGrid), pages

190–199, 2022. (Cited at page 60)

[93] Minh Nguyen, Saptarshi Debroy, Prasad Calyam, Zhen Lyu, and Trupti Joshi. Multi-

cloud performance and security-driven brokering for bioinformatics workflows. In

2019 IEEE 27th International Conference on Network Protocols (ICNP), 2019. (Cited at

page 60)

[94] Georgios L. Stavrinides and Helen D. Karatza. Security and cost aware scheduling of

real-time iot workflows in a mist computing environment. In 2021 8th International

Conference on Future Internet of Things and Cloud (FiCloud), 2021. (Cited at page 60)

[95] Yu Liu, Dapeng Lan, Zhibo Pang, Magnus Karlsson, and Shaofang Gong. Performance

evaluation of containerization in edge-cloud computing stacks for industrial appli-

cations: A client perspective. IEEE Open Journal of the Industrial Electronics Society,

2:153–168, 2021. (Cited at page 72)

[96] Thomas Rausch, Schahram Dustdar, and Rajiv Ranjan. Osmotic message-oriented

middleware for the internet of things. IEEE Cloud Computing, 5(2):17–25, 2018. (Cited

at page 75)

[97] Anelis Pereira-Vale, Gastón Márquez, Hernán Astudillo, and Eduardo B. Fernandez.

Security mechanisms used in microservices-based systems: A systematic mapping.

Proceedings - 2019 45th Latin American Computing Conference, CLEI 2019, sep 2019. (Cited

at page 76)

[98] Tetiana Yarygina and Anya Helene Bagge. Overcoming security challenges in mi-

croservice architectures. In 2018 IEEE Symposium on Service-Oriented System Engineering

(SOSE), pages 11–20, 2018. (Cited at page 76)

[99] A. Banati, E. Kail, K. Karoczkai, and M. Kozlovszky. Authentication and authorization

orchestrator for microservice-based software architectures. 2018 41st International

Convention on Information and Communication Technology, Electronics and Microelectronics,

MIPRO 2018 - Proceedings, pages 1180–1184, 6 2018. (Cited at page 76)

BIBLIOGRAPHY 160

[100] Dimitrios Kallergis, Zacharenia Garofalaki, Georgios Katsikogiannis, and Christos

Douligeris. Capodaz: A containerised authorisation and policy-driven architecture

using microservices. Ad Hoc Networks, 104, 7 2020. (Cited at page 77)

[101] Daniel Richter, Tim Neumann, and Andreas Polze. Security considerations for mi-

croservice architectures. CLOSER 2018 - Proceedings of the 8th International Conference on

Cloud Computing and Services Science, 2018-January:608–615, 2018. (Cited at page 77)

[102] Davy Preuveneers and Wouter Joosen. Access control with delegated authorization

policy evaluation for data-driven microserviceworkflows. Future Internet, 9, 9 2017.

(Cited at page 77)

[103] Anelis Pereira-Vale, Eduardo B. Fernandez, Raúl Monge, Hernán Astudillo, and Gastón

Márquez. Security in microservice-based systems: A multivocal literature review.

Computers and Security, 103, 4 2021. (Cited at page 77)

[104] Alina Buzachis and Massimo Villari. Basic principles of osmotic computing: Secure

and dependable microelements (mels) orchestration leveraging blockchain facilities.

Proceedings - 11th IEEE/ACM International Conference on Utility and Cloud Computing

Companion, UCC Companion 2018, 2019-June:47–52, 1 2019. (Cited at page 78)

[105] Lorenzo Carnevale, Armando Ruggeri, Francesco Martella, Antonio Celesti, Maria

Fazio, and Massimo Villari. Multi hop reconfiguration of end-devices in heterogeneous

edge-iot mesh networks. In 2021 IEEE Symposium on Computers and Communications

(ISCC), pages 1–6, 2021. (Cited at page 78)

[106] Pawel Szalachowski. Password-authenticated decentralized identities. IEEE Transac-

tions on Information Forensics and Security, 16:4801–4810, 2021. (Cited at page 78)

[107] Meng Kang and Victoria Lemieux. A decentralized identity-based blockchain solution

for privacy-preserving licensing of individual-controlled data to prevent unauthorized

secondary data usage. Ledger, 6, 11 2021. (Cited at page 78)

[108] Alexander Mühle, Andreas Grüner, Tatiana Gayvoronskaya, and Christoph Meinel. A

survey on essential components of a self-sovereign identity. Computer Science Review,

30:80–86, 11 2018. (Cited at page 78)

[109] Komal Gilani, Emmanuel Bertin, Julien Hatin, and Noel Crespi. A survey on blockchain-

based identity management and decentralized privacy for personal data. 2020 2nd

BIBLIOGRAPHY 161

Conference on Blockchain Research and Applications for Innovative Networks and Services,

BRAINS 2020, pages 97–101, 9 2020. (Cited at page 78)

[110] Kubernetes DaemonSet, howpublished = https://cloud.google.com/

kubernetes-engine/docs/concepts/daemonset, note = Last access May

2021. (Cited at page 84)

[111] Antonino Galletta, Armando Ruggeri, Maria Fazio, Gianluca Dini, and Massimo Vil-

lari. Mesmart-pro: Advanced processing at the edge for smart urban monitoring and

reconfigurable services. Journal of Sensor and Actuator Networks, 9(4), 2020. (Cited at

page 86)

[112] J. Kalajdjieski, B. R. Stojkoska, and K. Trivodaliev. Iot based framework for air pollution

monitoring in smart cities. In 2020 28th Telecommunications Forum (TELFOR), pages 1–4,

2020. (Cited at page 89)

[113] Jeong-Min Seo, Haanju Yoo, Kimin Yun, Hyunil Kim, and Sang-Il Choi. Behavior

recognition of a person in a daily video using joint position information. In 2018 IEEE

First International Conference on Artificial Intelligence and Knowledge Engineering (AIKE),

pages 172–174, 2018. (Cited at page 89)

[114] Duangduen Asavasuthirakul and Hassan Karimi. Comparative evaluation and analysis

of online geocoding services. International Journal of Geographical Information Science,

24:1081–1100, 06 2010. (Cited at page 90)

[115] Mapcode, howpublished = https://www.mapcode.com/about, note = Last access

May 2021. (Cited at page 90)

[116] What3Word, howpublished = https://what3words.com/about-us/, note = Last

access May 2021. (Cited at page 90)

[117] Alejandro Gómez-Cárdenas, Xavi Masip-Bruin, Eva Marín-Tordera, and Sarang Kah-

vazadeh. A novel and scalable naming strategy for iot scenarios. In Kohei Arai, Rahul

Bhatia, and Supriya Kapoor, editors, Proceedings of the Future Technologies Conference

(FTC) 2018, pages 122–133, Cham, 2019. Springer International Publishing. (Cited at

page 91)

[118] A. Longo, A. De Matteis, and M. Zappatore. Urban pollution monitoring based on

mobile crowd sensing: An osmotic computing approach. In 2018 IEEE 4th International

https://cloud.google.com/kubernetes-engine/docs/concepts/daemonset
https://cloud.google.com/kubernetes-engine/docs/concepts/daemonset
https://www.mapcode.com/about
https://what3words.com/about-us/

BIBLIOGRAPHY 162

Conference on Collaboration and Internet Computing (CIC), pages 380–387, 2018. (Cited at

page 91)

[119] B. Filocamo, A. Galletta, M. Fazio, J. A. Ruiz, M. A. Sotelo, and M. Villari. An innovative

osmotic computing framework for self adapting city traffic in autonomous vehicle

environment. In 2018 IEEE Symposium on Computers and Communications (ISCC), pages

01267–01270, 2018. (Cited at page 91)

[120] A. Souza, Z. Wen, N. Cacho, A. Romanovsky, P. James, and R. Ranjan. Using osmotic

services composition for dynamic load balancing of smart city applications. In 2018

IEEE 11th Conference on Service-Oriented Computing and Applications (SOCA), pages

145–152, 2018. (Cited at page 91)

[121] S. Hati and D. De. Obsc:osmotic blockchain based framework for smart city environ-

ment. In 2020 Fifth International Conference on Research in Computational Intelligence and

Communication Networks (ICRCICN), pages 143–148, 2020. (Cited at page 92)

[122] A. Galletta, M. Fazio, A. Celesti, and M. Villari. On the applicability of secret share

algorithms for osmotic computing. In 2020 IEEE Symposium on Computers and Commu-

nications (ISCC), pages 1–6, 2020. (Cited at page 92)

[123] G. Lencse. Benchmarking authoritative dns servers. IEEE Access, 8:130224–130238,

2020. (Cited at page 92)

[124] Z. Gao and A. Venkataramani. Measuring update performance and consistency anoma-

lies in managed dns services. In IEEE INFOCOM 2019 - IEEE Conference on Computer

Communications, pages 2206–2214, 2019. (Cited at page 92)

[125] C. Hesselman, M. Kaeo, L. Chapin, K. Claffy, M. Seiden, D. McPherson, D. Piscitello,

A. McConachie, T. April, J. Latour, and R. Rasmussen. The dns in iot: Opportunities,

risks, and challenges. IEEE Internet Computing, 24(4):23–32, July 2020. (Cited at page 92)

[126] Biao Zhou, A. Tiwari, Konglin Zhu, You Lu, M. Gerla, A. Ganguli, B. Shen, and

D. Krzysiak. Geo-based inter-domain routing (gidr) protocol for manets. In MIL-

COM 2009 - 2009 IEEE Military Communications Conference, pages 1–7, 2009. (Cited at

page 92)

[127] W. Thongthavorn and P. Rattanatamrong. Multi-container application migration with

load balanced and adaptive parallel tcp. In 2019 International Conference on High

Performance Computing Simulation (HPCS), pages 55–62, 2019. (Cited at page 93)

BIBLIOGRAPHY 163

[128] D. Fernando, P. Yang, and H. Lu. Sdn-based order-aware live migration of virtual

machines. In IEEE INFOCOM 2020 - IEEE Conference on Computer Communications,

pages 1818–1827, 2020. (Cited at page 93)

[129] Q. Zhang, L. Liu, C. Pu, Q. Dou, L. Wu, and W. Zhou. A comparative study of containers

and virtual machines in big data environment. In 2018 IEEE 11th International Conference

on Cloud Computing (CLOUD), pages 178–185, 2018. (Cited at page 111)

[130] Lorenzo Civolani, Guillaume Pierre, and Paolo Bellavista. Fogdocker: Start container

now, fetch image later. In Proceedings of the 12th IEEE/ACM International Conference on

Utility and Cloud Computing, UCC’19, page 51–59, New York, NY, USA, 2019. Association

for Computing Machinery. (Cited at page 111)

[131] Auday Al-Dulaimy, Wassim Itani, Javid Taheri, and Maha Shamseddine. bwslicer:

A bandwidth slicing framework for cloud data centers. Future Generation Computer

Systems, 112:767–784, 2020. (Cited at page 114)

[132] Wei Du, Xiran Zhang, Qiang He, Wei Liu, Guangming Cui, Feifei Chen, Yuan Ji, Chen-

ran Cai, and Yanchao Yang. Fault-tolerating edge computing with server redundancy

based on a variant of group degree centrality. In International Conference on Service-

Oriented Computing, pages 198–214. Springer, 2020. (Cited at page 114)

[133] Fei Tao, Lin Zhang, Yongkui Liu, Ying Cheng, Lihui Wang, and Xun Xu. Manufacturing

service management in cloud manufacturing: overview and future research directions.

Journal of Manufacturing Science and Engineering, 137(4), 2015. (Cited at page 114)

[134] Benay Ray, Avirup Saha, Sunirmal Khatua, and Sarbani Roy. Proactive fault-tolerance

technique to enhance reliability of cloud service in cloud federation environment. IEEE

Transactions on Cloud Computing, 2020. (Cited at page 115)

[135] Bashir Mohammed, Mariam Kiran, Kabiru M Maiyama, Mumtaz M Kamala, and Irfan-

Ullah Awan. Failover strategy for fault tolerance in cloud computing environment.

Software: Practice and Experience, 47(9):1243–1274, 2017. (Cited at page 115)

[136] Jialei Liu, Shangguang Wang, Ao Zhou, Sathish AP Kumar, Fangchun Yang, and

Rajkumar Buyya. Using proactive fault-tolerance approach to enhance cloud service

reliability. IEEE Transactions on Cloud Computing, 6(4):1191–1202, 2016. (Cited at

page 115)

BIBLIOGRAPHY 164

[137] Ahmad Sharif, Mohsen Nickray, and Ali Shahidinejad. Fault-tolerant with load balanc-

ing scheduling in a fog-based iot application. IET Communications, 14(16):2646–2657,

2020. (Cited at page 115)

[138] Shreshth Tuli, Giuliano Casale, and Nicholas R Jennings. Pregan: Preemptive migra-

tion prediction network for proactive fault-tolerant edge computing. arXiv preprint

arXiv:2112.02292, 2021. (Cited at page 115)

[139] Yinan Wu, Gongzhuang Peng, Hongwei Wang, and Heming Zhang. A two-stage fault

tolerance method for large-scale manufacturing network. IEEE Access, 7:81574–81592,

2019. (Cited at page 115)

[140] Asad Javed, Keijo Heljanko, Andrea Buda, and Kary Främling. Cefiot: A fault-tolerant

iot architecture for edge and cloud. In 2018 IEEE 4th world forum on internet of things

(WF-IoT), pages 813–818. IEEE, 2018. (Cited at page 115)

[141] Kolade Olorunnife, Kevin Lee, and Jonathan Kua. Automatic failure recovery for

container-based iot edge applications. Electronics, 10(23):3047, 2021. (Cited at page 115)

[142] Tingyan Long, Peng Chen, Yunni Xia, Ning Jiang, Xu Wang, and Mei Long. A novel

fault-tolerant approach to web service composition upon the edge computing environ-

ment. In International Conference on Web Services, pages 15–31. Springer, 2021. (Cited at

page 115)

[143] Mohammed Amoon. A framework for providing a hybrid fault tolerance in cloud

computing. In 2015 Science and Information Conference (SAI), pages 844–849. IEEE, 2015.

(Cited at page 116)

[144] Yogesh Sharma, Weisheng Si, Daniel Sun, and Bahman Javadi. Failure-aware energy-

efficient vm consolidation in cloud computing systems. Future Generation Computer

Systems, 94:620–633, 2019. (Cited at page 116)

[145] Bukhary Ikhwan Ismail, Ehsan Mostajeran Goortani, Mohd Bazli Ab Karim, Wong Ming

Tat, Sharipah Setapa, Jing Yuan Luke, and Ong Hong Hoe. Evaluation of docker as

edge computing platform. In 2015 IEEE Conference on Open Systems (ICOS), pages

130–135. IEEE, 2015. (Cited at page 116)

[146] Antonio Celesti, Davide Mulfari, Antonino Galletta, Maria Fazio, Lorenzo Carnevale,

and Massimo Villari. A study on container virtualization for guarantee quality of

BIBLIOGRAPHY 165

service in cloud-of-things. Future Generation Computer Systems, 99:356 – 364, 2019.

(Cited at page 116)

[147] Yogesh Awasthi and Amin Salih Mohammed. Iot- a technological boon in natural

disaster prediction. In 2019 6th International Conference on Computing for Sustainable

Global Development (INDIACom), pages 318–322, 2019. (Cited at page 136)

[148] Razin Farhan Hussain, Mohsen Amini Salehi, Anna Kovalenko, Yin Feng, and Omid

Semiari. Federated edge computing for disaster management in remote smart oil

fields. In 2019 IEEE 21st International Conference on High Performance Computing and

Communications; IEEE 17th International Conference on Smart City; IEEE 5th International

Conference on Data Science and Systems (HPCC/SmartCity/DSS), pages 929–936, 2019.

(Cited at page 136)

[149] Venita Babu and Vishnu Rajan. Flood and earthquake detection and rescue using iot

technology. In 2019 International Conference on Communication and Electronics Systems

(ICCES), pages 1256–1260, 2019. (Cited at page 136)

[150] Daniel Balouek-Thomert, Pedro Silva, Kevin Fauvel, Alexandru Costan, Gabriel An-

toniu, and Manish Parashar. Mdsc: Modelling distributed stream processing across

the edge-to-cloud continuum. In Proceedings of the 14th IEEE/ACM International Con-

ference on Utility and Cloud Computing Companion, UCC ’21, New York, NY, USA, 2022.

Association for Computing Machinery. (Cited at page 136)

[151] Finn Løvholt, Stefano Lorito, Jorge Macias, Manula Volpe, Jacopo Selva, and Steven

Gibbons. Urgent tsunami computing. In 2019 IEEE/ACM HPC for Urgent Decision

Making (UrgentHPC), pages 45–50, 2019. (Cited at page 137)

[152] Mehdi Mohammadi, Ala Al-Fuqaha, Sameh Sorour, and Mohsen Guizani. Deep learn-

ing for iot big data and streaming analytics: A survey. IEEE Communications Surveys &

Tutorials, 20(4):2923–2960, 2018. (Cited at page 137)

[153] Yogesh S. Lonkar, Abhinav Sudhakar Bhagat, and Sd Aasif Sd Manjur. Smart disaster

management and prevention using reinforcement learning in iot environment. In 2019

3rd International Conference on Trends in Electronics and Informatics (ICOEI), pages 35–38,

2019. (Cited at page 137)

BIBLIOGRAPHY 166

[154] Tausifa Jan Saleem and Mohammad Ahsan Chishti. Deep learning for the internet of

things: Potential benefits and use-cases. Digital Communications and Networks, 7(4):526–

542, 2021. (Cited at page 137)

[155] Megha Vamsi Kiran Choda, Sri Vardhan Perla, Brahmender Shaik, Yuva Teja Anirudh

Yelchuru, and Prasanth Yalla. A critical survey on real-time traffic sign recognition by

using cnn machine learning algorithm. In 2023 International Conference on Intelligent

Data Communication Technologies and Internet of Things (IDCIoT), pages 445–450, 2023.

(Cited at page 137)

[156] Christoph Augenstein, Norman Spangenberg, and Bogdan Franczyk. Applying ma-

chine learning to big data streams : An overview of challenges. In 2017 IEEE 4th

International Conference on Soft Computing & Machine Intelligence (ISCMI), pages 25–29,

2017. (Cited at page 137)

[157] Siew Hoon Leong and Dieter Kranzlmüller. Towards a general definition of urgent

computing. Procedia Computer Science, 51:2337–2346, 2015. International Conference On

Computational Science, ICCS 2015. (Cited at page 137)

[158] Brandon Posey, Adam Deer, Wyatt Gorman, Vanessa July, Neeraj Kanhere, Dan Speck,

Boyd Wilson, and Amy Apon. On-demand urgent high performance computing

utilizing the google cloud platform. In 2019 IEEE/ACM HPC for Urgent Decision Making

(UrgentHPC), pages 13–23, 2019. (Cited at page 137)

[159] Zhiming Zhao, Paul Martin, Junchao Wang, Ari Taal, Andrew Jones, Ian Taylor, Vlado

Stankovski, Ignacio Garcia Vega, George Suciu, Alexandre Ulisses, and Cees de Laat.

Developing and operating time critical applications in clouds: The state of the art

and the switch approach. Procedia Computer Science, 68:17–28, 2015. 1st International

Conference on Cloud Forward: From Distributed to Complete Computing. (Cited at

page 137)

[160] Spiros Koulouzis, Paul Martin, Huan Zhou, Yang Hu, Junchao Wang, Thierry Carval,

Baptiste Grenier, Jani Heikkinen, Cees de Laat, and Zhiming Zhao. Time-critical data

management in clouds: Challenges and a dynamic real-time infrastructure planner

(drip) solution. Concurrency and Computation: Practice and Experience, 32(16):e5269. e5269

cpe.5269. (Cited at page 137)

BIBLIOGRAPHY 167

[161] Alessio Catalfamo, Antonio Celesti, Maria Fazio, Giovanni Randazzo, and Massimo

Villari. A platform for federated learning on the edge: a video analysis use case. In

2022 IEEE Symposium on Computers and Communications (ISCC), pages 1–7, 2022. (Cited

at page 137)

[162] Arpit Jain and Dharm Singh Jat. An edge computing paradigm for time-sensitive

applications. In 2020 Fourth World Conference on Smart Trends in Systems, Security and

Sustainability (WorldS4), pages 798–803, 2020. (Cited at page 137)

[163] Pretom Roy Ovi, Emon Dey, Nirmalya Roy, and Aryya Gangopadhyay. Aris: A real time

edge computed accident risk inference system. In 2021 IEEE International Conference on

Smart Computing (SMARTCOMP), pages 47–54, 2021. (Cited at page 137)

[164] Daniel Hass and Josef Spillner. Workload deployment and configuration reconciliation

at scale in kubernetes-based edge-cloud continuums. In 2022 21st International Sym-

posium on Parallel and Distributed Computing (ISPDC), pages 121–128, 2022. (Cited at

page 137)

[165] Moulay A. Akhloufi, Andy Couturier, and Nicolás A. Castro. Unmanned aerial vehicles

for wildland fires: Sensing, perception, cooperation and assistance. Drones, 5(1), 2021.

(Cited at page 138)

[166] Katie E Doull, Carl Chalmers, Paul Fergus, Steve Longmore, Alex K Piel, and Serge A

Wich. An evaluation of the factors affecting ’poacher’ detection with drones and the

efficacy of Machine-Learning for detection. Sensors (Basel), 21(12), June 2021. (Cited at

page 138)

[167] H. Brendan McMahan, Eider Moore, Daniel Ramage, and Blaise Agüera y Arcas.

Federated learning of deep networks using model averaging. CoRR, abs/1602.05629,

2016. (Cited at page 141)

[168] Christian Sicari, Valeria Lukaj, Antonio Celesti, Maria Fazio, and Massimo Villari.

Gavin: A new platform for enriching 3d virtual indoor navigation with social-based

geotags. In 2021 IEEE Symposium on Computers and Communications (ISCC), pages 1–6,

2021. (Cited at page 146)

[169] Mung Chiang and Tao Zhang. Fog and iot: An overview of research opportunities.

IEEE Internet of Things Journal, 3(6):854–864, 2016.

BIBLIOGRAPHY 168

[170] Keyan Cao, Yefan Liu, Gongjie Meng, and Qimeng Sun. An overview on edge comput-

ing research. IEEE Access, 8:85714–85728, 2020.

[171] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge computing:

Vision and challenges. IEEE Internet of Things Journal, 3(5):637–646, 2016.

[172] Schahram Dustdar. Distributed computing continuum systems. In 2022 IEEE Interna-

tional Conference on Services Computing (SCC), pages 356–356, 2022.

[173] Google. Google cloud functions, 1999.

[174] IBM. Ibm serverless functions, 2023.

[175] knative. Knative, 2023.

[176] OpenFaas. Openfaas, 2023.

[177] Kaustubh Rajendra Rajput, Chinmay Dilip Kulkarni, Byungjin Cho, Wei Wang, and

In Kee Kim. Edgefaasbench: Benchmarking edge devices using serverless computing.

In 2022 IEEE International Conference on Edge Computing and Communications (EDGE),

pages 93–103, 2022.

[178] K R Sheshadri and J Lakshmi. Qos aware faas for heterogeneous edge-cloud continuum.

In 2022 IEEE 15th International Conference on Cloud Computing (CLOUD), pages 70–80,

2022.

[179] Qi Xia, Winson Ye, Zeyi Tao, Jindi Wu, and Qun Li. A survey of federated learning

for edge computing: Research problems and solutions. High-Confidence Computing,

1(1):100008, 2021.

[180] Runyu Jin and Qirui Yang. Edgefaas: A function-based framework for edge computing,

2022.

[181] Theo Lynn, Pierangelo Rosati, Arnaud Lejeune, and Vincent Emeakaroha. A prelimi-

nary review of enterprise serverless cloud computing (function-as-a-service) platforms.

In 2017 IEEE International Conference on Cloud Computing Technology and Science (Cloud-

Com), pages 162–169, 2017.

[182] Pedro Garcia Lopez, Marc Sanchez-Artigas, Gerard Paris, Daniel Barcelona Pons, Al-

varo Ruiz Ollobarren, and David Arroyo Pinto. Comparison of FaaS orchestration

BIBLIOGRAPHY 169

systems. Proceedings - 11th IEEE/ACM International Conference on Utility and Cloud

Computing Companion, UCC Companion 2018, pages 109–114, 2019.

[183] Urmil Bharti, Deepali Bajaj, Anita Goel, and S. C. Gupta. Sequential workflow in

production serverless faas orchestration platform. pages 681–693, 2021.

[184] Matteo Nardelli, Stefan Nastic, Schahram Dustdar, Massimo Villari, and Rajiv Ranjan.

Osmotic Flow: Osmotic Computing + IoT Workflow. IEEE Cloud Computing, 4(2):68–75,

2017.

[185] Daniel Barcelona-Pons, Pedro García-López, Álvaro Ruiz, Amanda Gómez-Gómez,

Gerard París, and Marc Sánchez-Artigas. Faas orchestration of parallel workloads. In

Proceedings of the 5th International Workshop on Serverless Computing, WOSC ’19, page

25–30, New York, NY, USA, 2019. Association for Computing Machinery.

[186] Tyler J. Skluzacek, Ryan Chard, Ryan Wong, Zhuozhao Li, Yadu Babuji, Logan Ward,

Ben Blaiszik, Kyle Chard, and Ian Foster. Serverless workflows for indexing large

scientific data. pages 43–48, 12 2019.

[187] Wei Huang, Yizheng Zhou, and Bin Yu. Query pipeline, 04 2015.

[188] Philipp Ross and Andre Luckow. Edgeinsight: Characterizing and modeling the

performance of machine learning inference on the edge and cloud. In 2019 IEEE

International Conference on Big Data (Big Data), pages 1897–1906, 2019.

[189] Nima Kaviani, Dmitriy Kalinin, and Michael Maximilien. Towards serverless as com-

modity: A case of knative. In Proceedings of the 5th International Workshop on Serverless

Computing, WOSC ’19, page 13–18, New York, NY, USA, 2019. Association for Comput-

ing Machinery.

[190] Andrea Morichetta, Victor Casamayor Pujol, and Schahram Dustdar. A roadmap on

learning and reasoning for distributed computing continuum ecosystems. In 2021 IEEE

International Conference on Edge Computing (EDGE), pages 25–31, 2021.

[191] Daniel Rosendo, Alexandru Costan, Gabriel Antoniu, Matthieu Simonin, Jean-

Christophe Lombardo, Alexis Joly, and Patrick Valduriez. Reproducible performance

optimization of complex applications on the edge-to-cloud continuum. In 2021 IEEE

International Conference on Cluster Computing (CLUSTER), pages 23–34, 2021.

BIBLIOGRAPHY 170

[192] Chung-Hyun Ahn, Tae-Hyun Hwang, and Kyoung-Ho Choi. A framework of aug-

mented reality for geotagged videos. In 2015 21st Korea-Japan Joint Workshop on Frontiers

of Computer Vision (FCV), pages 1–4, 2015.

[193] Li Shengyi and Wang Jia. Research on integrated application of virtual reality tech-

nology based on bim. In 2016 Chinese Control and Decision Conference (CCDC), pages

2865–2868, 2016.

[194] J. Liu, J. Wan, B. Zeng, Q. Wang, H. Song, and M. Qiu. A scalable and quick-response

software defined vehicular network assisted by mobile edge computing. IEEE Commu-

nications Magazine, 55(7):94–100, 2017.

[195] Lorenzo Carnevale, Antonio Celesti, Maria Di Pietro, and Antonino Galletta. How to

conceive future mobility services in smart cities according to the fiware frontiercities

experience. IEEE Cloud Computing, 5(5):25–36, 2018.

[196] M. Gamal, R. Rizk, H. Mahdi, and B. E. Elnaghi. Osmotic bio-inspired load balancing

algorithm in cloud computing. IEEE Access, 7:42735–42744, 2019.

[197] M. Villari, M. Fazio, S. Dustdar, O. Rana, D. N. Jha, and R. Ranjan. Osmosis: The

osmotic computing platform for microelements in the cloud, edge, and internet of

things. Computer, 52(8):14–26, 2019.

[198] S. Rasool, A. Saleem, M. Iqbal, T. Dagiuklas, A. K. Bashir, S. Mumtaz, and S. A. Otaibi.

Blockchain-enabled reliable osmotic computing for cloud of things: Applications and

challenges. IEEE Internet of Things Magazine, 3(2):63–67, 2020.

[199] David Balla, Markosz Maliosz, and Csaba Simon. Open source faas performance

aspects. In 2020 43rd International Conference on Telecommunications and Signal Processing

(TSP), pages 358–364, 2020.

[200] R. Gowri Prakash, R. Shankar, and S. Duraisamy. Fupa: Future utilization prediction

algorithm based load balancing scheme for optimal vm migration in cloud computing.

In 2020 Fourth International Conference on Inventive Systems and Control (ICISC), pages

638–644, 2020.

[201] Karim Djemame, Matthew Parker, and Daniel Datsev. Open-source serverless archi-

tectures: an evaluation of apache openwhisk. In 2020 IEEE/ACM 13th International

Conference on Utility and Cloud Computing (UCC), pages 329–335, 2020.

BIBLIOGRAPHY 171

[202] C. Jiang and J. Wan. A thing-edge-cloud collaborative computing decision-making

method for personalized customization production. IEEE Access, 9:10962–10973, 2021.

[203] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey, and

N. R. Tallent. Exploiting geotagged resources for spatial clustering on social network

services. Concurrency Computation Practice and Experience, 22(6):685–701, 2010.

[204] Cristiano Aguzzi, Lorenzo Gigli, Luca Sciullo, Angelo Trotta, and Marco Di Felice.

From Cloud to Edge: Seamless Software Migration at the Era of the Web of Things.

IEEE Access, 8, 2020.

[205] S. Alberternst, A. Anisimov, A. Antakli, B. Duppe, H. Hoffmann, M. Meiser, M. Muaz,

D. Spieldenner, and I. Zinnikus. From things into clouds – and back. In 2021 IEEE/ACM

21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid), pages

668–675, Los Alamitos, CA, USA, may 2021. IEEE Computer Society.

[206] Auday Al-Dulaimy, Wassim Itani, Javid Taheri, and Maha Shamseddine. bwslicer:

A bandwidth slicing framework for cloud data centers. Future Generation Computer

Systems, 112:767–784, 2020.

[207] M.S. Altaf, Z. Hashisho, and M. Al-Hussein. A method for integrating occupational

indoor air quality with building information modeling for scheduling construction

activities. Canadian Journal of Civil Engineering, 41(3):245–251, 03 2014. cited By 7.

[208] Mohammad Sadegh Aslanpour, Adel Toosi, Muhammad Cheema, and Raj Gaire.

Energy-aware resource scheduling for serverless edge computing. 05 2022.

[209] Aris Anagnostopoulos, Fabio Petroni, and Mara Sorella. Targeted interest-driven

advertising in cities using Twitter. Data Mining and Knowledge Discovery, 32(3):737–763,

2018.

[210] Dimitris Apostolou, Yiannis Verginadis, and Gregoris Mentzas. In the Fog: Application

Deployment for the Cloud Continuum. IISA 2021 - 12th International Conference on

Information, Intelligence, Systems and Applications, 2021.

[211] Sepehr Alizadehsalehi, Ahmad Hadavi, and Joseph Chuenhuei Huang. Assessment of

aec students’ performance using bim-into-vr. Applied Sciences, 11(7), 2021.

BIBLIOGRAPHY 172

[212] K. jr and B. Michalík. Laser scanning for bim and results visualization using vr. ISPRS

- International Archives of the Photogrammetry, Remote Sensing and Spatial Information

Sciences, XLII-5/W2:49–52, 09 2019.

[213] Berta Carrión-Ruiz, Silvia Blanco-Pons, M. Duong, J. Chartrand, M. Li, Kristine

Prochnau, Stephen Fai, and José Lerma. Augmented experience to disseminate cultural

heritage: House of commons windows, parliament hill national historic site (canada).

ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Informa-

tion Sciences, XLII-2/W9:243–247, 01 2019.

[214] Chongzheng Zhao and Lin Lv. Research on the feasibility of solving problems in

construction of sponge city based on gis, vr and bim combined technology. IOP

Conference Series: Earth and Environmental Science, 170:022068, 07 2018.

[215] Joy Arulraj, Abhijit Chatterjee, Alexandros Daglis, Ashutosh Dhekne, and Umakishore

Ramachandran. ecloud: A vision for the evolution of the edge-cloud continuum.

Computer, 54(5):24–33, 2021.

[216] Xuejun Ding, Yong Tian, and Yan Yu. A real-time big data gathering algorithm based

on indoor wireless sensor networks for risk analysis of industrial operations. IEEE

Transactions on Industrial Informatics, 12(3):1232–1242, 2016.

[217] Marco Viceconti, Peter Hunter, and Rod Hose. Big data, big knowledge: Big data for

personalized healthcare. IEEE Journal of Biomedical and Health Informatics, 19(4):1209–

1215, 2015.

[218] Alvaro A. Cárdenas, Pratyusa K. Manadhata, and Sreeranga P. Rajan. Big data analytics

for security. IEEE Security Privacy, 11(6):74–76, 2013.

[219] Alessio Catalfamo, Antonio Celesti, Maria Fazio, Giovanni Randazzo, and Massimo

Villari. A platform for federated learning on the edge: A video analysis use case. In

2022 IEEE Symposium on Computers and Communications (ISCC): 27th IEEE Symposium on

Computers and Communications - 12th Workshop on Management of Cloud and Smart City

Systems (MoCS 2022), 2022.

[220] C.-H. Chang, C.-Y. Lin, R.-G. Wang, and C.-C. Chou. Applying deep learning and

building information modeling to indoor positioning based on sound. pages 193–199,

2019. cited By 1.

BIBLIOGRAPHY 173

[221] Maarten Clements, Pavel Serdyukov, Arjen P. De Vries, and Marcel J.T. Reinders. Using

flickr geotags to predict user travel behaviour. SIGIR 2010 Proceedings - 33rd Annual

International ACM SIGIR Conference on Research and Development in Information Retrieval,

(May 2014):851–852, 2010.

[222] Jeremy W. Crampton, Mark Graham, Ate Poorthuis, Taylor Shelton, Monica Stephens,

Matthew W. Wilson, and Matthew Zook. Beyond the geotag: Situating ’big data’ and

leveraging the potential of the geoweb. Cartography and Geographic Information Science,

40(2):130–139, 2013.

[223] Feng Chen, Pan Deng, Jiafu Wan, Daqiang Zhang, Athanasios V. Vasilakos, and Xiao-

hui Rong. Data mining for the internet of things: Literature review and challenges.

International Journal of Distributed Sensor Networks, 11(8):431047, 2015.

[224] C. Savaglio, P. Gerace, G. Di Fatta, and G. Fortino. Data mining at the iot edge. In 2019

28th International Conference on Computer Communication and Networks (ICCCN), pages

1–6, 2019.

[225] Claudio Savaglio and Giancarlo Fortino. A simulation-driven methodology for iot data

mining based on edge computing. ACM Trans. Internet Technol., 21(2), March 2021.

[226] Ruofei Du and David Li. Geollery : A Mixed Reality Social Media Platform Geollery :

A Mixed Reality Social Media Platform. (April), 2019.

[227] Open Manufacturing Platform (OMP). Edge computing in the context of open manufac-

turing. https://open-manufacturing.org/wp-content/uploads/sites/

101/2021/07/OMP-IIoT-Connectivity-Edge-Computing-20210701.pdf,

2021. Accessed: 2021-10-20.

[228] etcd, howpublished = https://etcd.io/, note = Last access May 2021.

[229] M. Fu and R. Liu. Automatic generation of path networks for evacuation using building

information modeling. pages 320–327, 2019. cited By 4.

[230] S. Hong, J. Jung, S. Kim, H. Cho, J. Lee, and J. Heo. Semi-automated approach to indoor

mapping for 3d as-built building information modeling. Computers, Environment and

Urban Systems, 51:34–46, 2015. cited By 63.

[231] Wolfgang Hürst, Kevin Ouwehand, Marijn Mengerink, Aaron Duane, and Cathal

Gurrin. Geospatial access to lifelogging photos in virtual reality. LSC 2018 - Proceedings

https://open-manufacturing.org/wp-content/uploads/sites/101/2021/07/OMP-IIoT-Connectivity-Edge-Computing-20210701.pdf
https://open-manufacturing.org/wp-content/uploads/sites/101/2021/07/OMP-IIoT-Connectivity-Edge-Computing-20210701.pdf
https://etcd.io/

BIBLIOGRAPHY 174

of the 2018 ACM Workshop on the Lifelog Search Challenge, co-located with ICMR 2018,

(June):33–37, 2018.

[232] Paulo Flores. Global and Local Coordinates, volume 168. 03 2015.

[233] R. Ivanov. An approach for developing indoor navigation systems for visually impaired

people using building information modeling. Journal of Ambient Intelligence and Smart

Environments, 9(4):449–467, 2017. cited By 12.

[234] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher, and S. Mock. Kepler: an

extensible system for design and execution of scientific workflows. In Proceedings. 16th

International Conference on Scientific and Statistical Database Management, 2004., pages

423–424, 2004.

[235] Slava Kisilevich, Milos Krstajic, Daniel Keim, Natalia Andrienko, and Gennady An-

drienko. Event-based analysis of people’s activities and behavior using Flickr and

Panoramio geotagged photo collections. Proceedings of the International Conference on

Information Visualisation, pages 289–296, 2010.

[236] Kubernetes, howpublished = https://kubernetes.io/, note = Last access May

2021.

[237] J.-K. Lee, J. Shin, and Y. Lee. Circulation analysis of design alternatives for elderly hous-

ing unit allocation using building information modelling-enabled indoor walkability

index. Indoor and Built Environment, 29(3):355–371, 2020. cited By 2.

[238] Agnieszka Leszczynski and Jeremy Crampton. Introduction: Spatial Big Data and

everyday life. Big Data and Society, 3(2):1–6, 2016.

[239] Y.-W. Lim. Building information modeling for indoor environmental performance

analysis. American Journal of Environmental Sciences, 11(2):55–61, 2015. cited By 11.

[240] Bertram Ludäscher, Shawn Bowers, and Timothy McPhillips. Scientific Workflows, pages

2507–2511. Springer US, Boston, MA, 2009.

[241] Takashi Nicholas Maeda, Mitsuo Yoshida, Fujio Toriumi, and Hirotada Ohashi. Extrac-

tion of tourist destinations and comparative analysis of preferences between foreign

tourists and domestic tourists on the basis of geotagged social media data. ISPRS

International Journal of Geo-Information, 7(3), 2018.

https://kubernetes.io/

BIBLIOGRAPHY 175

[242] E. Martins Taiwo, K. Bin Yahya, and Z. Haron. Utilisation of building information

modelling for indoor environmental quality assessment - a review. volume 220, 2019.

cited By 0.

[243] Benazir Neha, Sanjaya Kumar Panda, Pradip Kumar Sahu, Kshira Sagar Sahoo, and

Amir H. Gandomi. A systematic review on osmotic computing. ACM Trans. Internet

Things, 3(2), feb 2022.

[244] M. Villari, M. Fazio, S. Dustdar, O. Rana, D.N. Jha, and R. Ranjan. Osmosis: The

osmotic computing platform for microelements in the cloud, edge, and internet of

things. Computer, Volume: 52, 2019.

[245] Sunil Kumar Mohanty, Gopika Premsankar, and Mario Di Francesco. An evaluation

of open source serverless computing frameworks. In Proceedings of the International

Conference on Cloud Computing Technology and Science, CloudCom, volume 2018-Decem,

pages 115–120. IEEE Computer Society, dec 2018.

[246] Muhammad Mudassar, Yanlong Zhai, and Liao Lejian. Adaptive fault-tolerant strategy

for latency aware iot application executing in edge computing environment. IEEE

Internet of Things Journal, 2022.

[247] Yusuke Nakaji and Keiji Yanai. Visualization of real-world events with geotagged

tweet photos. Proceedings of the 2012 IEEE International Conference on Multimedia and

Expo Workshops, ICMEW 2012, pages 272–277, 2012.

[248] W. Natephra, A. Motamedi, T. Fukuda, and N. Yabuki. Integrating building information

modeling and virtual reality development engines for building indoor lighting design.

Visualization in Engineering, 5(1), 2017. cited By 33.

[249] A. Buzachis, A. Galletta, L. Carnevale, A. Celesti, M. Fazio, and Massimo Villari.

Towards osmotic computing: Analyzing overlay network solutions to optimize the

deployment of container-based microservices in fog, edge and iot environments. 2018

IEEE 2nd International Conference on Fog and Edge Computing (ICFEC), 2018.

[250] Antonino Galletta, Christian Sicari, Antonio Celesti, and Massimo Villari. Oce-dns:

an innovative osmotic computing enabled domain name system. In 2021 IEEE/ACM

21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid), pages

642–648, 2021.

BIBLIOGRAPHY 176

[251] Uwe Breitenbücher, Christian Endres, Kálmán Képes, Oliver Kopp, Frank Leymann,

Sebastian Wagner, Johannes Wettinger, and Michael Zimmermann. The opentosca

ecosystem – concepts & tools. European Space project on Smart Systems, Big Data, Future

Internet - Towards Serving the Grand Societal Challenges - Volume 1: EPS Rome 2016, pages

112–130, 2016.

[252] Openwhisk Workflow, howpublished = https://github.com/apache/

openwhisk-composer, note = Last access May 2022.

[253] Pradeep Padala, Kang G Shin, Xiaoyun Zhu, Mustafa Uysal, Zhikui Wang, Sharad

Singhal, Arif Merchant, and Kenneth Salem. Adaptive control of virtualized resources

in utility computing environments. In Proceedings of the 2nd ACM SIGOPS/EuroSys

European Conference on Computer Systems 2007, pages 289–302, 2007.

[254] Saed Sayad. Real time data mining. 01 2017.

[255] Serverless workflows for containerised applications in the cloud continuum. Journal of

Grid Computing, 19, 2021.

[256] Fei Chen, Tao Xiang, Yuanyuan Yang, and Sherman S.M. Chow. Secure cloud storage

meets with secure network coding. IEEE Transactions on Computers, 65(6):1936–1948,

2016.

[257] A. Jangda, D. Pinckney, Y. Brun, and A. Guha. Formal foundations of serverless

computing. Proceedings of the ACM on Programming Languages, 2019.

[258] L. F. Bittencourt, R. Immich, R. Sakellariou, N. Fonseca, E. Madeira, M. Curado, L. Vil-

las, L. Silva, C. Lee, and O. Rana. The internet of things, fog and cloud continuum:

Integration and challenges. Internet of Things 3-4, 2018.

[259] Taylor Shelton. Spatialities of data: mapping social media ‘beyond the geotag’. Geo-

Journal, 82(4):721–734, 2017.

[260] Luke Sloan and Jeffrey Morgan. Who tweets with their location? Understanding

the relationship between demographic characteristics and the use of geoservices and

geotagging on twitter. PLoS ONE, 10(11):1–15, 2015.

[261] Ruofei Du and Amitabh Varshney. Social Street View: Blending Immersive Street Views

with Geo-Tagged Social Media. pages 77–85, 2016.

https://github.com/apache/openwhisk-composer
https://github.com/apache/openwhisk-composer

BIBLIOGRAPHY 177

[262] Yi Cheng Song, Yong Dong Zhang, Juan Cao, Tian Xia, Wu Liu, and Jin Tao Li. Web

video geolocation by geotagged social resources. IEEE Transactions on Multimedia,

14(2):456–470, 2012.

[263] Jong-Won Lee, Deuk-Woo Kim, Seung-Eon Lee, and Jae-Weon Jeong. Development of

a building occupant survey system with 3d spatial information. Sustainability, 12(23),

2020.

[264] Y. Tan, Y. Fang, T. Zhou, Q. Wang, and J.C.P. Cheng. Improve indoor acoustics per-

formance by using building information modeling. pages 959–966, 2017. cited By

5.

[265] K. Tse, A. Wong, and F. Wong. Design visualisation and documentation with building

information modelling - a case study. pages 241–248, 2007. cited By 0.

[266] F. Vittori, I. Pigliautile, and A.L. Pisello. Subjective thermal response driving indoor

comfort perception: A novel experimental analysis coupling building information

modelling and virtual reality. Journal of Building Engineering, 41, 2021. cited By 0.

[267] Lina Zhong, Liyu Yang, Jia Rong, and Haoyu Kong. A Big Data Framework to Identify

Tourist Interests Based on Geotagged Travel Photos. IEEE Access, 8:85294–85308, 2020.

[268] X. Zhou, Q. Xie, M. Guo, J. Zhao, and J. Wang. Accurate and efficient indoor pathfinding

based on building information modeling data. IEEE Transactions on Industrial Informatics,

16(12):7459–7468, 2020. cited By 2.

[269] Niranjan Suri, Zbigniew Zielinski, Mauro Tortonesi, Christoph Fuchs, Manas Pradhan,

Konrad Wrona, Janusz Furtak, Dragos Bogdan Vasilache, Michael Street, Vincenzo

Pellegrini, Giacomo Benincasa, Alessandro Morelli, Cesare Stefanelli, Enrico Casini,

and Michal Dyk. Exploiting smart city iot for disaster recovery operations. In 2018

IEEE 4th World Forum on Internet of Things (WF-IoT), pages 458–463, 2018.

[270] Sergio Moreschini, Fabiano Pecorelli, Xiaozhou Li, Sonia Naz, David Hästbacka, and

Davide Taibi. Cloud continuum: The definition. IEEE Access, 10:131876–131886, 2022.

[271] Mingliu Liu, Deshi Li, Huaqing Wu, Feng Lyu, and Xuemin Sherman Shen. Cooperative

edge-cloud caching for real-time sensing big data search in vehicular networks. In ICC

2021 - IEEE International Conference on Communications, pages 1–6, 2021.

BIBLIOGRAPHY 178

[272] Sheshadri K R and J Lakshmi. Qos aware faas platform. In 2021 IEEE/ACM 21st

International Symposium on Cluster, Cloud and Internet Computing (CCGrid), pages 812–

819, 2021.

[273] Lorenzo Carnevale, Antonino Galletta, Maria Fazio, Antonio Celesti, and Massimo

Villari. Designing a fiware cloud solution for making your travel smoother: The

fliware experience. In 2018 IEEE 4th International Conference on Collaboration and Internet

Computing (CIC), pages 392–398, 2018.

	Index
	Earlier Publications
	Introduction
	Scientific Contributions
	Structure of the Thesis

	Background
	Cloud, Edge and Fog Computing
	Cloud Edge Continuum
	Microservices and Orchestration
	Serverless Computing
	Osmotic Computing

	Guaranteeing Cooperation in Public and Private Cloud and Edge Infrastructures
	Introduction
	Background
	Workflow Engine Characteristics and Principles
	State
	Event
	Workflow
	Workflow Manifest

	Architecture
	Conclusion

	Deploying Continuum Native Applications
	OpenWolf: a Serverless Workflow Engine for Native Cloud-Edge Continuum
	State of the Art
	Motivation
	OpenWolf Engine
	Performances
	Conclusion

	Event-Driven FaaS Workflows for Enabling IoT Data Processing at the Cloud Edge Continuum
	Use Case and Related Work
	Background
	Architecture
	Performance Analsyis
	Summary
	Conclusion

	Guaranteeing Security and Privacy in Continuum Environments
	Secure-by-Design Serverless Workflows on the Edge-Cloud Continuum Through the Osmotic Computing Paradigm
	Related Works
	Threats Analysis and Mitigation
	Benchmarks
	Conclusions

	A Distributed Peer to Peer Identity and Cloud Edge Continuum Applications
	Related Work
	Design
	Implementation
	Use Cases
	Smart City Use Case
	Rural Area Use Case
	Conclusion

	Discovering and Addressing Applications in a Continuum Infrastructure
	Introduction
	State of the Art
	Motivation
	Design
	Three dimensional Geo Codes
	EPC as MEL Names
	OCE-DNS Infrastructure
	RR Types

	Implementation
	Enabling Technologies
	OCE-DNS Infrastructure Deploy
	RR Keys structure
	CoreDNS configuration

	Performance Evaluation
	Testbed Setup
	Discussion

	Conclusion

	Orchestrating Applications in the Continuum
	Introduction
	Related work
	System model
	Middleware Unit (MidU)
	Monitoring Unit (MonU)
	Planning Unit (PlaU)
	Tolerancer description

	Performance evaluation
	Testbed and experiments
	Result discussion

	Conclusion

	Use Cases of Computing at the Continuun
	OpenWolf: Serverless Workflow Engine for AI on Continuum
	Smart City Use Case
	Design a Workflow using OpenWolf
	Performances
	Conclusion

	TEMA: Event-Driven Serverless Workflows Platform for Natural Disaster Management
	State of the Art
	Architecture
	Conclusion

	Conclusion and Future Works
	Bibliography

