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A B S T R A C T   

Cardiac fibrosis is a pathological process characterized by an excessive deposition of extracellular matrix (ECM) 
and an increased production of fibrillar collagen in the cardiac interstitium, mainly caused by the activation of 
cardiac fibroblasts and their transition into myofibroblasts. Oxidative stress is deeply implicated in the patho-
genesis of cardiac fibrosis both directly and via its involvement in the tumor growth factor β1 (TGF-β1) signaling. 
Ellagic acid (EA) and punicic acid (PA) are the main components of the Punica granatum L (pomegranate) fruit 
and seed oil respectively, whose antioxidant, anti-inflammatory and anti-fibrotic effects have been previously 
described. Therefore, the aim of this study was to investigate the effects of EA or PA or EA+PA in an in vitro 
model of cardiac fibrosis. Immortalized Human Cardiac Fibroblasts (IM-HCF) were stimulated with 10 ng/ml of 
TGF-β1 for 24 h to induce a fibrotic damage. Cells were then treated with EA (1 µM), PA (1 µM) or EA+PA for 
additional 24 h. Both EA and PA reduced the pro-fibrotic proteins expressions and the intracellular reactive 
oxygen species (ROS) accumulation. The anti-oxidant activity was also observed by Nrf2 activation with the 
consequent TGF-β1-Smad2/3-MMP2/9 and Wnt/β-catenin signaling inhibition, thus reducing collagen produc-
tion. EA and PA significantly inhibit NF-κB pathway and, consequently, TNF-α, IL-1β and IL-6 levels: the greater 
effect was observed when EA and PA were used in combination. These results suggest that EA, PA and in 
particular EA+PA might be effective in reducing fibrosis through their antioxidant and anti-inflammatory 
properties by the modulation of different molecular pathways.   

1. Introduction 

Cardiac fibrosis is a pathological process characterized by an exces-
sive deposition of extracellular matrix (ECM) and an increased pro-
duction of fibrillar collagen in the cardiac interstitium, mainly caused by 
the activation of cardiac fibroblasts and their transition into myofibro-
blasts [1]. This pathological condition may be observed following 
myocardial ischemia and hypoxia consequent to myocardial infarction 
which is considered one of the main causes of fibrosis induction; indeed, 
during the early onset of cardiac dysfunction, fibroblasts are activated 
into myofibroblasts to preserve myocardium structural integrity; how-
ever, the lasting proliferation of myofibroblasts causes an excessive 

deposition of ECM which may lead to heart failure [1]. Oxidative stress 
is deeply implicated in the pathogenesis of cardiac fibrosis both directly 
and stimulating the tumor growth factor β1 (TGF-β1) signaling. Thus, 
TGF-β1 signaling triggering mediated by reactive oxygen species (ROS) 
may lead to fibroblast activation, thus contributing to an increase of 
ECM deposition in the cardiac interstitium [2,3]. TGF-β1 signaling 
activation engages Smad-2/3 that stimulate the transcription of 
different pro-fibrotic genes, such as COL1A1, COL3A1, MMP-2 and 
MMP-9 [4,5]. Furthermore, the TGF-β1-Smad-2/3 axis induces the 
production of canonical WNTs proteins, such as Wnt1 and Wnt3 [6]; 
these proteins boost the nuclear translocation and accumulation of 
β-catenin that has been identified as a crucial step for the induction of a 
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pro-fibrotic state through myofibroblast activation [7–9]. Both 
Wnt/β-catenin pathway and oxidative stress may induce an inflamma-
tory state thus promoting the activation of different pro-inflammatory 
pathways and the production of pro-inflammatory cytokines such as 
interleukin 1β (IL-1β), interleukin 6 (IL-6) and tumor necrosis factor-α 
(TNF-α), which negatively affects heart function [10]. In this scenario, 
the nuclear factor erythroid 2–related factor 2 (Nrf2) plays a pivotal role 
in the prevention of oxidative and inflammatory damage in car-
diomyocytes [11]. In fact, Nrf2 usually activates the expression of 
cytoprotective genes in response to ROS [12] and it is also able to exert 
anti-inflammatory effects through the down-regulation of the Nuclear 
Factor-κB (NF-κB) which is one of the master regulators of the inflam-
matory response [13,14]; Nrf2 not only balances oxidative stress and 
reduces inflammation, but also negatively affects TGF-β1-mediated 
pro-fibrotic signaling, suggesting that Nrf2 targeting could have 
anti-fibrotic cardiac effects [15,16]. Treatment of cardiac fibrosis still 
has limited efficacy and currently there is no drug approved for the 
treatment of this condition [17]. For this reason, finding new alternative 
approaches for the management of cardiac fibrosis is of great interest. 
Therefore, the use bioactive compounds with antioxidant and 
anti-inflammatory effects could be a new strategy for the treatment of 
ROS-related conditions, including cardiac fibrosis [12,15]. Punica 
granatum L (pomegranate) is a fruit whose extracts showed significant 
therapeutic effects; in particular, ellagic acid (EA) represents the main 
component of the pomegranate fruit with well recognized antioxidant 
and anti-inflammatory activities [18,19]. EA anti-fibrotic effects were 
also observed in lungs, pancreas and heart in in vivo models through the 
inhibition of fibroblasts activation and Wnt/β-catenin signaling sup-
pression [20–22]. Also, the use of Punicic acid (PA), which constitutes 
around 70–76 % of the pomegranate seed oil, was effective in reducing 
oxidative stress and inflammation with no toxic effects as well as EA 
[23–25]. Therefore, the aim of this study was to investigate the effects of 
ellagic or punicic acid or a combined treatment of ellagic and punicic 
acid in an in vitro model of cardiac fibrosis. 

2. Material and methods 

2.1. Cell culture 

Immortalized Human Cardiac Fibroblasts (IM-HCF) were purchased 
by Innoprot (Derio, Spain). IM-HCF cells were cultured in Fibroblast 
basal Medium-2 (FM-2) (Innoprot, Derio, Spain) supplemented with 5 % 
of fetal bovine serum (FBS) (Innoprot, Derio, Spain), 1 % of penicillin/ 
streptomycin (Innoprot, Derio, Spain) and 1 % of Fibroblast Growth 
supplement-2 (Innoprot, Derio, Spain) in a humidified incubator at 37 
◦C with a percentage of 5 % CO2. The culture medium was replaced 
every 2–3 days. 

2.2. Cell treatments 

IM-HCF cells were seeded in six well plates at a density of 1.5 × 106 

cells/well; upon reaching confluence, cells were stimulated with TGF-β1 
10 ng/ml (Sigma Aldrich, Milan, Italy) for 24 h to reproduce a fibrotic 
damage. The day after, cells were treated with Ellagic acid 1 µM (Sigma 
Aldrich, Milan, Italy), Punicic acid 1 µM (Cayman Chemical, Ann Arbor, 
MI, USA) or the combination of EA and PA for additional 24 h. 

EA and PA doses were titrated on the basis of their effects on Nrf2 
expression (Supplemental Fig. 1) while TGF-β1 dose was chosen in 
accordance with previous published paper [26]. 

2.3. MTT assay 

Cell viability assay was used to evaluate EA and PA cytotoxic effects. 
In detail, IM-HCF cells were cultured in a 96-well plate at a density of 
1 × 105 cells/well and were incubated with TGF-β1 (10 ng/ml), TGF- 
β1 + EA (1 µM), TGF-β1 + PA (1 µM), TGF-β1 + EA and PA (1 µM) for 

24 h. Twenty μl of tetrazolium dye MTT 3-(4,5-dimethylthiazol-2-yl)- 
2,5-diphenyltetrazolium bromide (Alfa Aesar, Heysham, UK) was dis-
solved in sterile PBS and was added into each well 5 h before the end of 
the incubation; 200 μl/well of dimethyl sulfoxide (DMSO) (Sigma 
Aldrich, Milan, Italy) were then added to dissolve the insoluble for-
mazan crystals and to measure cell viability by using VICTOR Multilabel 
Plate Reader (Perkin Elmer; Waltham, Ma, USA) at λ 540 and 620 nm. 
Results are expressed as percentage of cell viability compared to un-
treated cells. 

2.4. Intracellular ROS levels measurement 

5-(and-6)-chloromethyl-2’, 7’-dichlorodihydrofluorescein diacetate 
(CM-H2DCFDA) probe was used to evaluate the accumulation of intra-
cellular ROS in IM-HCF cells stimulated with TGF-β1 and treated with 
EA and PA alone or EA+PA. CM-H2DCFDA probe 5 μM (Thermo Fisher, 
Carlsbad, CA, USA) was added into each well for 1 h at 37 ◦C; cells were 
washed 2–3 times with sterile PBS and observed with a fluorescent 
microscope. Fluorescence quantification was performed by using 
ImageJ software for Windows (Softonic, Barcelona, Spain). 

2.5. Real-Time quantitative PCR (RTqPCR) 

Total RNA was isolated from IM-HCF cells with Trizol LS Reagent Kit 
(Life Technologies, Monza, Italy) and 1 μg was reverse transcribed by 
using the Superscript IV RT Master Mix (Invitrogen, Carlsbad, CA, US) 
following quantification with a spectrophotometer (NanoDrop Lite, 
Thermo Fisher, Carlsbad, CA, USA). qPCR reaction was carried out with 
1 μl of cDNA, BrightGreen qPCR Master Mix (ABM, Richmond, Canada) 
and specific primers at the concentration of 10 μM in a total volume of 
20 μl/well in order to evaluate Collagen 1a1, metalloproteinase 2 (MMP- 
2), metalloproteinase 9 (MMP-9), Wnt1 and β-Catenin mRNA expres-
sion. QuantStudio 6 Flex (Thermo Fisher, Carlsbad, CA, USA) was used 
to monitor qPCR reaction and the data were quantified using the 2-ΔΔCT 

method using GAPDH as housekeeping gene [27,28]. 
The primers for targets and reference genes are listed in Table 1. 

2.6. Western Blot 

Total protein content was extracted from IM-HCF cells using RIPA 
buffer with proteinase inhibitors and cell supernatants were used for 
quantification with Bradford method following centrifugation. Proteins 
(30 μg) were run by electrophoresis on a 10 % SDS polyacrylamide gel 
and transferred to PVDF membranes (Amersham, Little Chalfont, UK) at 
200 mA for 1 h. The obtained membranes were incubated with non-fat 
dry milk (5 %), washed 3 times with TBS/0.1 % Tween buffer, and then 
incubated with primary antibodies for COl1a1, β-Catenin, pNF-κB (Cell 
Signaling, Danvers, MA, USA), Nrf2 (Abcam, Cambridge, UK) and Wnt1 
(Thermo Fisher, Carlsbad, CA, USA) diluted in TBS-0.1 % Tween, 
overnight at 4 ◦C. The day after, a secondary peroxidase-conjugated goat 
anti-rabbit antibody (KPL, Gaithersburg, MD, USA) was used for 1 h at 

Table 1 
Primer list.  

Gene Name Sequence 

GADPH Fw:5’GAGTCAACGGATTTGGTCGT3’  
Rw:5’TTGATTTTGGAGGGATCTCG3’ 

β-catenin Fw:5’GCCGGCTATTGTAGAAGCTG3’  
Rw:5’GAGTCCCAAGGAGACCTTCC3’ 

Col1a1 Fw:5’GTGCTAAAGGTGCCAATG3’  
Rw:5’CTCCTCGCTTTCCTTCCTCT3’ 

Wnt-1 Fw:5’TTCTCCGGGTCCTCCTAAGT3’  
Rw:5’ATGGCTCCACGACAGAGACT3’ 

MMP2 Fw:5’ATGACAGCTGCACCACTGAG3’  
Rw:5’ATTTGTTGCCCAGGAAAGTG3’ 

MMP9 Fw:5’TTGACAGCGACAAGAAGTGG3’  
Rw:5’GCCATTCACGTCGTCCTTAT3’  
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room temperature. Images were obtained and quantified by a scanning 
densitometry using a bio-image analysis system (C-DiGit, Li-cor, 
Lincoln, NE, USA). Data were expressed as integrated intensity using 
β-actin (Cell Signaling, Danvers, MA, USA) as control for equal loading 
samples [29,30]. 

2.7. Enzyme-linked immunosorbent assay (ELISA) 

MMP-2, MMP-9, IL-1β, IL-6 and TNF-α protein levels were measured 
in the cell culture supernatants, using Enzyme-Linked Immunosorbent 
Assay (ELISA) kits (Abcam, Cambridge, UK), in agreement with the in-
structions given by the manufacturer. 

2.8. Statistical analysis 

All the results are expressed as mean ± standard deviation (SD). The 
reported values are the results of at least three experiments. All assays 
were performed in duplicate to ensure reproducibility. The differences 
between the groups were evaluated by one-way ANOVA with Tukey’s 
post-test. A p value less than 0.05 was considered significant. Graphs 
were prepared using GraphPad Prism Version 8.0 for macOS (GraphPad 
Software Inc., La Jolla, CA, USA). 

3. Results 

3.1. Ellagic and Punicic acid concentrations do not affect cell viability 

Cell viability was evaluated in IM-HCF cells stimulated with TGF-β1 
and treated with EA and PA, alone or in combination. One hundred 
percent of viability was observed in control cells (unstimulated and 
untreated) following 24 h; neither TGF-β1 incubation at the concen-
tration of 10 ng/ml nor EA or PA or EA+PA in combination did not affect 
cardiac fibroblast viability. These results demonstrated that the natural 
compounds used in this study were safe and did not cause cell death 
(Fig. 1). 

3.2. Ellagic and Punicic acid show anti-oxidant effects 

Intracellular ROS levels was markedly increased in IM-HCF chal-
lenged with TGF-β1 for 24 h compared to unstimulated cells (Fig. 2B). 
EA and PA significantly reduced ROS accumulation compared to 

untreated IM-HCF cells stimulated with TGF-β1 (Fig. 2C-D); the co- 
incubation of EA and PA showed a greater effect than that observed 
when EA or PA were used alone, as demonstrated by the reduction of 
fluorescence signal showed in Fig. 2E. These results were quantified and 
summarized in Fig. 2F. The anti-oxidant effects of the EA and PA were 
also confirmed by evaluating Nrf2 levels, which finely regulates oxida-
tive stress in favor of the antioxidant response. A significant decrease of 
Nrf2 expression was observed in TGF-β1-challenged cells compared to 
controls (Fig. 2G), as a consequence of the oxidative stress induced by 
TGF-β1. EA and PA significantly increased Nrf2 levels (Fig. 2G) and also 
the co-incubation with EA and PA markedly improved Nrf2 protein 
expression with a greater effect than that detected when EA or PA were 
used alone (Fig. 2G). 

3.3. Ellagic and Punicic acid reduce the inflammatory panel 

The protein expression of the transcription factor NF-κB and of the 
pro-inflammatory cytokines’ TNF-α, IL-1β and IL-6 was investigated to 
study whether TGF-β1 might induce inflammation and EA and PA might 
modulate the inflammatory panel. TGF-β1 stimulus induced a significant 
upregulation of pNF-κB protein expression compared to controls 
(Fig. 3A). EA and PA significantly reduced pNF-κB protein expression 
compared to untreated cells (Fig. 3A), with a greater effect when the 
natural compounds were used together (Fig. 3A). TGF-β1 stimulus and 
the consequent NF-κB activation also caused a significant increase of 
TNF-α, IL-1β and IL-6 protein levels in TGF-β1-challenged cells 
compared to controls (Fig. 3 B-D). These pro-inflammatory cytokines 
were significantly reduced following EA, PA and especially EA+PA 
treatment, with a greater effect than that of EA or PA alone in inhibiting 
the NF-κB pathway (Fig. 3B–D). 

3.4. Ellagic and Punicic acid modulates fibrosis and pro-fibrotic markers 

mRNA and protein levels of Collagen1a1, MMP2 and MMP9 were 
studied to investigate the anti-fibrotic effects of EA, PA or their combi-
nation. A marked increase of mRNA expression of all tested pro-fibrotic 
markers was detected in IM-HCF cells stimulated with TGF-β1 
(Fig. 4A–C); EA and PA, alone or in combination, significantly reduced 
Collagen1a1 and MMPs 2/9 mRNA expression compared to TGF-β1- 
challenged cells (Fig. 4A–C), thus demonstrating their ability in modu-
lating these pro-fibrotic markers. These anti-fibrotic effects were also 
confirmed in the mature protein of MMPs 2/9 thus a significant reduc-
tion of the TGF-β1-induced protein levels was observed following EA, PA 
and EA+PA treatment, whereas Collagen1a1 protein expression was 
significantly decreased just following PA and EA+PA treatment 
(Fig. 4D–F). 

3.5. Ellagic and Punicic acid inhibit Wnt/β-Catenin pathway 

Both Wnt1 and β-Catenin mRNA and protein expression were 
investigated to evaluate the anti-fibrotic effect of EA and PA in cardiac 
fibroblasts. In fact, TGF-β stimulus caused a marked increase of Wnt1 
and β-Catenin mRNA and protein expression (Fig. 5A–D); EA and PA 
alone or in combination significantly reduced mRNA expression and 
protein levels of both these pro-fibrotic molecules compared to TGF-β1 
untreated group (Fig. 5A–D), thus demonstrating that these poly-
phenolic compounds might have an anti-fibrotic potential through Wnt/ 
β-Catenin pathway inhibition (Fig. 5A–D). 

4. Discussion 

The activation of cardiac fibroblasts and their transition into myo-
fibroblasts is one of the main events that characterize myocardial 
fibrosis [31]. Oxidative stress activation as well as inflammation with 
the consequent dysregulation of cytokine balance are related to tissue 
changes and may be considered as triggers of 

Fig. 1. The graph shows the cytotoxicity assay performed following 24 h of 
incubation with both TGF-β1(10 ng/ml) and ellagic acid (EA; 1 µM), punicic 
acid (PA; 1 µM) and EA+PA in IM-HCF cells. Values are expressed as the means 
and SD. 
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fibroblast-to-myofibroblast differentiation. Oxidative stress may directly 
affect different molecular pathways such as TGF-β1 pathway with the 
involvement of Smad2/3 and MMP2/9 and the Wnt/β-catenin signaling 
that play important roles in cardiomyocyte regulation both physiologi-
cally and pathologically [32]. Previous studies reported the anti-oxidant 
and anti-inflammatory effect of ellagic and punicic acid in particular for 
the treatment of chronic disorders and ROS-related diseases, such as 
lung and pancreatic fibrosis [20,21,24]. Therefore, in the present study 
an in vitro model of cardiac fibrosis induced by TGF-β1 challenge was 
used to evaluate the anti-fibrotic effects of ellagic or punicic acid or a 
combined treatment of EA+PA. In fact, TGF-β1 may be considered a 
pro-fibrotic stimulus thanks to its ability in inducing a fibrotic damage, 

thus promoting structural and functional alterations: TGF-β1 signifi-
cantly increases ROS levels, stimulating TGF-β1-associated fibroblast 
activation and myofibroblast differentiation and ROS themselves in turn 
stimulate TGF-β1 signaling [33]. In this experimental setting, IM-HCF 
cells challenged with TGF-β1 showed a significative increase of intra-
cellular ROS levels together with a decreased Nrf2 expression compared 
to unstimulated cells. Both ellagic and punic acid significantly reduced 
ROS levels and increased the depressed expression of Nrf2 observed in 
TGF-β1 challenged cells, these positive effects were most evident when 
ellagic and punic acid were used in combination. These results were in 
accordance with previous papers that showed that Nrf2 stimulation is 
tightly related to the functional integrity of myocardial tissue during 

Fig. 2. Intracellular ROS accumulation evaluated by CM-H2DCFDA fluorescent probe from CTRL (A), TGF-β1 10 ng/ml (B), TGF-β1 + EA 1 µM (C), TGF-β1 + PA 
1 µM (D), TGF-β1 + EA + PA (E) groups. All images were captured at 10X of magnification. Panel (F) Shows the number of FluoreScent Cells. Panel (G) shows EA and 
PA effects on Nrf2 protein levels. The data are expressed as means ± SD. *p < 0.05 vs. CTRL; #p < 0.05 vs. TGF-β1. §p < 0.05 vs TGF-β1 + EA; ◦p < 0.05 vs 
TGF-β1 + PA. 

Fig. 3. The graphs represent p-NF-κB (A) protein expression (Western blot analysis) and TNF-α (B), IL-1β (C) and IL-6 (D) protein levels (ELISA assay) in IM-HCF cells 
stimulated with TGF-β1 (10 ng/ml) and treated with EA (1 µM), PA (1 µM) and EA+PA. Values are expressed as the means and SD. *p < 0.001 vs CTRL; #p < 0.05 vs 
TGF-β1; §p < 0.05 vs TGF-β1 + EA; ◦p < 0.05 vs TGF-β1 + PA. 

F. Mannino et al.                                                                                                                                                                                                                               



Biomedicine & Pharmacotherapy 162 (2023) 114666

5

cardiac remodeling, blocking also TGF-β1-induced fibrotic genes [16, 
34]. Nrf2 has also been revealed to have anti-inflammatory properties 
thanks to its ability in modulating transcription factors, such as NF-κB 

and consequently pro-inflammatory cytokines (TNF-α, Il-1β and IL6) 
production [35,36]. NF-κB is surely one of the main transcription factors 
involved in the inflammatory response but also plays a critical role in 

Fig. 4. The graphs represent Col1a1 (A), MMP2 (B), MMP9 (C) mRNA expression (RTqPCR analysis) and Col1a1 (D) (Western blot analysis), MMP2 (E), MMP9 (F) 
protein levels (ELISA assay) in IM-HCF cells stimulated with TGF-β1 (10 ng/ml) and treated with EA (1 µM), PA (1 µM) and EA+PA. The data are expressed as the 
means and SD. *p < 0.05 vs CTRL; #p < 0.05 vs TGF-β1. 

Fig. 5. The graphs represent Wnt1 (A), β-Catenin (B) mRNA expression (RTqPCR analysis) and Wnt1 (C), β-Catenin (D) protein levels (Western blot analysis) in IM- 
HCF cells stimulated with TGF-β1 (10 ng/ml) and treated with EA (1 µM), PA (1 µM) and EA+PA. The data are expressed as the means and SD. *p < 0.05 vs CTRL; 
#p < 0.05 vs TGF-β1. 
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fibrosis, and in particular in the progression of inflammation associated 
to cardiac fibrosis [37,38]. The results obtained in this experimental 
condition showed an enhanced expression of NF-κB and increased levels 
of TNF-α, Il-1β and IL-6; both ellagic and punic acid and even more their 
combination significantly reduced NF-κB expression and its 
down-stream signal in accordance with previous papers that reported 
the anti-inflammatory effects of these natural compounds [39–41]. 
Cardiac fibrosis is also influenced by Smad-2/3 and MMPs 2/9 as result 
of the TGF-β1 signaling [42,43], thus further stimulating cardiac fibro-
blasts conversion into myofibroblasts, contributing to interstitial 
fibrosis, cardiomyocyte death and increased heart stiffness [44]. In our 
study, TGF-β1 challenge was able to induce the up-regulation of mRNA 
expression and protein levels of MMP2, MMP9 and Col1a1 in IM-HCF 
cells, probably as a consequence of the TGF-β1 pathway, with the 
involvement of Smad-2/3 which participate in metalloproteinases and 
collagen secretion. Ellagic and punic acid also inhibited Smad-2/3 
signaling, reducing the protein levels of MMP2, MMP9 and Col1a1, in 
accordance with previous papers that demonstrated the efficacy of these 
natural compounds in the management of lung fibrosis [20,45]. More-
over, TGF-β1 signaling also activates the Wnt/β-catenin pathway like-
wise implicated in the pathogenesis of lung, dermal and liver fibrosis as 
well as in scarring after myocardial fibrosis [46–48]. In the present study 
TGF-β1 challenged cells showed a significant increase of both Wnt and 
β-catenin levels and ellagic and punic acid treatments significantly 
reduced the mRNA expression and protein levels of these pro-fibrotic 
mediators, thus confirming the results of previous papers that showed 
the ability of these natural products in the downregulation of the 
Wnt/β-catenin signaling with consequent inhibition of fibroblast acti-
vation and ECM production [20,49]. In conclusion, our results suggest 
that ellagic and punic acid may inhibit TGF-β1-Smad-2/3-MMP2/9 and 
Wnt/β-catenin signaling through Nrf2 activation, which also contributes 
to the modulation of the transcription factor NF-κB and its down-stream 
signal and highlight the beneficial effects of these natural compounds 
against the inflammatory process associated to cardiac fibrosis. Nowa-
days a specific therapeutic approach has not been approved for the 
treatment of cardiac fibrosis; however, experimental studies showed 
that novel target might be used for myocardial fibrosis management, 
such as epigenetic enzymes, genes, and signaling molecules [50]. 
Among the approved and used drugs, the renin-angiotensin system 
(RAS) inhibitors represent the standard therapy for cardiac fibrosis 
thanks to their effect on fibroblast differentiation inhibition. However, 
fibrosis may also persist in MI patients treated with RAS inhibitors, 
therefore these therapeutic approaches could be considered not enough, 
thus indicating the need to develop novel and adjuvant antifibrotic 
therapies. Therefore, these preliminary findings are intriguing and 
collectively suggest that ellagic and punicic acid and even more their 
association could be considered in the future as adjuvant approaches for 
the management of cardiac fibrosis. However, additional studies will be 
needed to confirm their efficacy in the field of cardiac fibrosis and their 
possible use in the clinical practice. 
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