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Abstract—Military drones can be used for surveillance or spying on
enemies. They, however, can be either destroyed or captured, therefore
photos contained inside them can be lost or revealed to the attacker.
A possible solution to solve such a problem is to adopt Secret Share
(SS) techniques to split photos into several sections/chunks and dis-
tribute them among a fleet of drones. The advantages of using such a
technique are two folds. Firstly, no single drone contains any photo in
its entirety; thus even when a drone is captured, the attacker cannot
discover any photos. Secondly, the storage requirements of drones
can be simplified, and thus cheaper drones can be produced for such
missions. In this scenario, a fleet of drones consists of t+r drones, where
t (threshold) is the minimum number of drones required to reconstruct
the photos, and r (redundancy) is the maximum number of lost drones
the system can tolerate. The optimal configuration of t+r is a formidable
task. This configuration is typically rigid and hard to modify in order to
fit the requirements of specific missions. In this work, we addressed
such an issue and proposed the adoption of a flexible Nested Secret
Share (NSS) technique. In our experiments, we compared two of the
major SS algorithms (Shamir’s schema and the Redundant Residue
Number System (RRNS)) with their Two-Level NSS (2NSS) variants to
store/retrieve photos. Results showed that Redundant Residue Number
System (RRNS) is more suitable for a drone fleet scenario.

Index Terms—Drones, Secret Share Algorithms, Nested Secret Share
Algorithms, Redundant Residue Number System, Shamir schema.

1 INTRODUCTION

Drones are becoming very popular nowadays and are often used
for military and civil purposes including teaching [1], photogra-
phy, surveillance, rescue operations, spying on enemies, monitor-
ing of infrastructure, farming, and aerial mapping [2].

Drones are also often destroyed [3] or captured by enemies
[4], and so photos stored inside could be lost or revealed.

To solve such a problem, a solution is to adopt Secret Share
(SS) algorithms to split taken photos into several sections/chunks
and distribute them among a fleet of drones. Well-known SS
algorithms that can do this task include Blackey, Shamir, and
Redundant Residue Number System (RRNS). Based on these
algorithms, several techniques, such as proactive ones, were de-
veloped to improve the security of the whole system.

A typical solution is to compose a drone fleet with t+r drones,
where t (threshold) is the minimum number of drones required to
reconstruct all photos, and r (redundancy) is the maximum number
of lost drones that the system can tolerate. The t + r configuration
is typically a formidable task because it is not possible to fine-tune
related algorithms to perfectly fit all requirements of any specific
mission, ranging from “Unclassified” (no secret) to “Top Secret”
[5]. In fact, the value of the threshold t depends greatly on the
adopted algorithm and cannot be changed (in almost all cases)
according to specific application scenarios.

The objective of this paper, hence our contribution to the field,
is to address this problem and propose an innovative/flexible SS-
based technique based on the Nested Secret Share (NSS) schema
[6]. In this paper, we assess the applicability of such a technique
for drone fleets. In particular, we consider the ‘security of NSS’,
the ‘mission time’, and the ‘energy’ requirements. NSS cascades
different SS levels where the output of an SS level becomes the
input to another level. Using such a technique, it is possible to
build n-SS levels. One of the strengths of our NSS technique is its
generality; that is, it can be applied to any SS algorithm that fits
the requirements of any specific application scenario. Therefore,
the main contributions of this scientific work are as follows.

• Proposing the NSS strategy, elaborating on how it per-
forms in different circumstances, and analyzing its perfor-
mance to identify its pros and cons.

• Finding the best configuration to use NSS algorithms for
storing photos in drone fleets.

• Compare the performances of two major SS algorithms
(Shamir’s schema and the Redundant Residue Number
System) and measure their suitability for building Two-
Level NSS (2NSS) variants.

In our experiments, we considered different types of missions
(ranging from “Unclassified” to “Top Secret”), and various photo
sizes, and analyzed each NSS variant for its provided security
level, execution time, and power consumption. The results con-
firmed that 2NSS is much more flexible than SS, where lower
redundancy values r lead to more secure storage systems (w.r.t.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3263115

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XYZ, NO. X, MONTH 202X 2

a single-layer SS solution); in other words, an adversary/enemy
must steal more drones to construct the recorded photos (or any
other sort of information).

The remainder of the paper is organized as follows. Section
2 describes related works and highlights the added value of our
study. The threat model is discussed in Section 3. Section 4
presents basic SS techniques. Section 5 discusses the mathematical
foundation of NSS. Section 6 describes the implementation of the
developed system. Section 7 compares and assesses NSS. Section
8 concludes the paper.

2 RELATED WORK

The objective of this article is to apply an SS-based technique to
build a secure and reliable drone fleet photo (or any other sort
of information) storage management. Because no similar related
works exist in the literature, at the time of writing this paper,
we focus on analyzing the major SS and drone photo storage
management solutions.

2.1 Secret Share (SS)

Secret Share (SS) schemes have already been used in various
scientific communities to secure different application scenarios.
A Reversible Data Hiding Scheme (RDHS) for images is based
on the Chinese Remainder Theorem [7]. The proposed system
allows sharing an image between a sender and a receiver while
embedding additional data by using two techniques based on ho-
momorphic encryption and difference expansion. The first method
allows the data extraction after the recomposition of the image; the
latter supports the data extraction from shares without the need to
reconstruct the image.

A storage system based on SS has been discussed in [8].
The authors proposed an RRNS-based system to distribute shares
among several public cloud storage services (like Google Drive,
Dropbox etc). They could recompose the original final even when
some cloud storage services become unavailable.

An assessment of different SS approaches in Cloud, Edge
and IoT domains has been presented in [9]. The authors tested
RRNS and Shamir’s schema to verify the applicability of such
techniques. Through comprehensive experiments, they discovered
that the computation (split and merge) of files bigger than 50MB
should be carried out on Cloud resources, from 500kB to 50MB in
Edge devices, and the rest (ie, smaller files) on IoT devices.

A secure key exchange system for IoT devices has been
discussed in [10]. The authors proposed an SS-based software to
make a secure communication through MQTT (Message Queue
Telemetry Transport) without using the SSL/TLS feature. The
basic idea was to share a secret key (split by means of SS) before
starting the communication of data.

A Visual Secret Sharing schema with noise correction has been
presented in [11]. The proposed approach claims to remove the
noise only if 1 of the k shares is affected. The proposed approach
cannot identify the corrupted share. The noise correction process
is executed on the recomposed image, and per pixel, calculates the
average value of a 3x3 matrix containing its neighbors.

A Verifiable Secret Sharing schema with cheater identification
has been discussed in [12]. The advantage of the proposed sys-
tems, compared to others like [13], [14], is the ability to discover
the corrupted shares before secret recomposition, thus reducing
the computation time required to rebuild the secret.

A Secret Sharing-based Threshold Password Authentication
system has been proposed in [15]. The system is made up of two
servers to store shares and a gateway to recompose the password.
To retrieve the secret, users send an encrypted request to the
gateway, which in turn forwards it to the servers. The two servers
will generate the verification data and send it to the Gateway for
the reconstruction of the secret.

A Block-based Progressive Visual Secret Sharing (BPVSS)
solution to reduce the risk of intruders during the transmission
of images has been proposed in [16]. The authors combined the
well-known BPVSS with the Least Significant Bits steganography
technique. The basic idea is to hide the shares generated from
BPVSS within cover images in such a way that it would not be
possible (for human eyes) to find artifacts in the shares.

A Shamir scheme’s-based framework for the aggregation of
queries in distributed Database-as-a-Service has been proposed
in [17]. The proposed framework differs from common Database
Management Systems (DBMS) as it does not allow executing
indexing and optimizing procedures. In this approach, a range-
based query is split into equality queries. Despite these limitations,
the proposed system is robust against several attacks, including
some of the most challenging ones such as the honest but curious
user.

2.2 Photo Storage Platforms for Drones

A photo encoding and communication technique based on the
Reed Solomon algorithm has been proposed for drones in [18].
The authors discussed a 4-bit encoder to correct 2 errors per block.
To verify the correctness of the decoded picture, they created a
new image starting from the checksum values. If the new image
is full black, then there are no errors. In [19], a novel drone-
based video surveillance system is proposed. By using drone
features (such as autonomous flight capabilities) and processing
images (by using Probability Hypothesis Density algorithms), the
authors discussed how to send fleets of drones to track human
interactions. In [20] a surface water monitoring system is proposed
using drones. The authors modified the drones to implement
several functions, including collecting water samples, sending
real-time video feeds to the base station; and studying the effect of
wind & water parameters. Another drone-based video surveillance
system has been proposed in [21]. The authors incorporate motion
features into commercial drones. A compression algorithm that,
by using the predicted drones’ trajectory, sends only “important
frames” to the base station is proposed in [22]. The goal of this
algorithm is to minimize the usage of bandwidth, allowing the
real-time processing of images on the base station. A system
for confidentially sending video from drones to the cloud has
been proposed in [23]. The authors used homomorphic encryption
techniques to encode (cipher) the videos before sending them to
the cloud. The algorithm allows reducing the data transmission
by sending only the changing foreground parts.A data acquisition
and logger system that allows drones to store data during flight has
been proposed in [24]. The system is used for weather forecasting.
The authors created a waterproof box containing a Raspberry Pi
with an SD card to collect humidity, wind speed, and temperature
data from sensors.

Although all aforementioned works treated different aspects of
drone photo storage management, they do not address any issues
regarding captured or destroyed drones. That is, no solutions are
provided for cases when a drone is captured by an adversary
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(enemy) where the captured images must not be revealed, or when
a drone is destroyed where the collected photos are simply lost.

3 THREAT MODEL

Let us consider an attacker that aims to spy on an adversary
(enemy), for example, Company A spying on Company B. To
conduct the attack, the attacker could use drones to take pictures
and communicate with each other. The attacker has two main
goals: (a) the attacker wants to spy on the adversary without
disclosing any information about the spied place (because the
adversary could increase the security of the same), and (b) the
attacker wants to take and retrieve the maximum number of
photos because some drones could be captured and/or destroyed.
The goals of the company under attack can be summarized as
follows: (a) capture as many drones as possible to discover what
the attacker is looking for, (b) destroy drones that cannot be
captured, and (c) create an adversarial environment to block/jam
communication among drones.

To avoid disclosing any information about the spied asset, the
attacker could use an approach similar to ransomware [25], [26]
to encrypt all pictures with a public key and keep the private key
in the drone base station. Although effective to some extent, this
approach is not suitable, considering the purposes of the attacker,
for two main reasons: (a) if the attacker does not encrypt the data
by using post-quantum cryptography techniques, the enemy could
use quantum computing techniques, similar to the ones discussed
in [27], [28], to break the encryption schema. Regardless of the
amount of time that a quantum computing technique may take
to break the encryption, the simple fact that all data is stored
in one device increases the chance of deciphering. Our approach
replaces the ”possibility to decipher” to ”impossible to decipher”
because no device has all the information, and (2) if any drone is
captured or destroyed, the attacker loses all photos contained in it.
To avoid the latter issue, the attacker could use public-private keys
to encrypt the picture and then distribute the encrypted photo to
different drones as backups. However, as we have demonstrated
in [9], encrypting the file and creating replicas of the same
file, considering the same degree of redundancy, requires more
storage/memory when compared with RRNS.

A possible solution is to use SS algorithms for drone fleet
storage management. This approach brings multiple advantages,
including (a) no single drone stores an entire photo, (b) even if
one of the drones is captured the enemy is not able to discover
photos, (c) a drone fleet can be composed of p + r drones,
where t (threshold) is the minimum number of drones required
to reconstruct the photos, and r (redundancy) is the maximum
number of lost drones that the system can tolerate. As we have
seen in Section 2, this paper is not the first attempt to store data
by using SS techniques, however, we have a unique approach to
store, protect and retrieve photos from drones’ storage. In our
approach, an enemy able to capture drones can try to combine
chunks together in order to rebuild the pictures. To conduct this
type of attack s/he does not need any special equipment, only
computational capabilities. To make recomposition of pictures
more difficult, each share could be encrypted by using a private-
public key algorithm. However, this solution is out of the scope of
this paper and will be analyzed in future works.

Figure 1 shows a reference scenario including a fleet of t+r =
8 drones, where t = 5 and r = 3. Each drone holds its own internal
storage. For example, When drone 4 takes a photo of an asset

(e.g., an industrial plant or a military site), the photo is not stored
in one place/storage, but is split into t + r obfuscated chunks, each
stored on a different drone. In this figure, drones can communicate
with each other using a secure wireless technology (e.g., a secured
WiFi network). Our assumption is based on previous studies that
showed drones can send files to each other by creating point-to-
point wireless communications even in adversarial environments
(e.g., due to jamming) [29], [30], [31].

According to a specific SS algorithm, the captured photo can
be rebuilt using at least t = 5 chunks. In our example, even if the
enemy is managed to capture up to r = 3 drones (i.e., drones 6, 7,
and 8), it would not be able to discover any photo (or any parts of
any photo) even by using quantum computing [32]. In this case,
r = 3 is the maximum number of unavailable drones, according to
the configuration, the platform can afford to lose. In other words,
having t = 5 drones returned to the base is enough to rebuild all
captured photos by all drones (even the ones that are captured or
destroyed).

Fig. 1. Fleet of Drones taking and storing photos according to the SS
principles.

4 SECRET SHARE ALGORITHMS

Secret Sharing is a well-known technique of cryptography. It
has been widely used to securely store data in several domains,
including healthcare [33], [34] and Smart Cities [35], [36], [37].

It is a method to encrypt a secret S by splitting it into
n > 1 shares (also called chunks or fragments). Each share
(S1,S2, . . . ,Sn) contains only some parts of the secret. This means
that each of

( n
n−1

)
combinations of n− 1 shares does not allow

rebuilding S, due to missing data. Under particular conditions, it
is possible to recompose the secret by using a subset of t shares,
where t ≤ n. In this case, there would be

(n
t

)
different possible

combinations of shares, all capable of reconstructing the secret S.
SS techniques with this feature are also called SS with threshold
approach.

The main advantage of a SS algorithm with threshold is the
possibility of recomposing the secret even when a certain number
of shares become unavailable or corrupted. The maximum number
of lost shares can be calculated by subtracting t from n (r = n− t),
and it is called the “redundancy” degree r (r ≥ 0)). As it can be
inferred, greater values of t represent more confidential algorithms,
because the number of shares that are required by an adversary to
recompose the secret is larger. We remark that the redundancy
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degree r does not affect the value of t. SS techniques are different
from data partition approaches where the secret S is first parti-
tioned into fragments, and then each partition (chunk) is ciphered.
In this case, each chunk contains only parts of the original data,
and therefore if an attacker finds the passphrase s/he can retrieve
parts of the original secret as well. As discussed earlier, the only
way to steal information when using SS is to combine data stored
in at least t chunks. This is because each of them does not
contain any meaningful information alone. Considering the use
case of spy drones (where drones can be captured), the use of SS
techniques could reduce the possibility of revealing any recorded
information. In the following, we discuss two of the most popular
SS algorithms: Shamir’s schema and RRNS.

4.1 Shamir’s Schema

Shamir’s schema [38] was one of the first implementations of SS
algorithms. It is based on the mathematical rule that allows retriev-
ing the equation of a polynomial of k−1 degree by interpolating
the values of k distinct 2D-points (x,y). For example, to retrieve
the equation of the following line

f (x) = α0 +α1x (1)

we only need two points, and to retrieve the equation of the
following parabola

f (x) = α0 +α1x+α2x2 (2)

we only need three points; etc.
In general, if we want to split the secret S into t points, we have

to consider the equation of a polynomial of k = t−1 degrees, that
is,

f (x) = α0 +α1x+α2x2 + ...+αkxk (3)

With set α0 = S, we can calculate f (x) using any t distinct points
(i, f (i)) where i ∈ {1,2,3, ...t}. In this case, each point (i, f (i))
represents a share. If we calculate f (x) using n = t + r distinct
points (i, f (i)), then we can obtain r degrees of redundancy.
The original secret S can be rebuilt by interpolating a subset of
t distinct points through the Lagrange interpolation polynomial
technique and calculating the value of the equation for x = 0
( f (0)). The formal validation of Shamir’s schema has been pro-
vided in [38].

To explain how the algorithm works, we use a simple example
(Figure 2) to store/retrieve the secret S using t = 2 and r = 1.
According to this figure, our secret S belongs to the red line. To
share it with three parties, we have to calculate and share three
points (A, B, and C) that belong to the same line. By interpolating
any two points (A and B, B and C, or A and C) through the
Lagrange theorem, we can obtain the equation of the red line, and
therefore we can retrieve S.

4.2 Redundant Residue Number System

The Redundant Residue Number System (RRNS) [39] is based on
the Residue Number System (RNS). RNS chooses t prime moduli
called primaries (m1, . . . ,mt) such that mi > mi−1 ∀i ∈ [1, t]. RNS
is able to represent all the numbers included in the range [0−M],
where M can be calculated through the following equation:

M =
t

∏
i=1

mi (4)

Fig. 2. Example of Shamir’s schema.

Considering that the secret S belongs to the range [0,M]. The
dealer, who wants to calculate the shares and distribute them
among peers, has to assign one of the primaries (m1, . . . ,mt) to
each peer.

si = S mod mi∀i ∈ [1, t] (5)

To rebuild the secret, the dealer has to combine shares using
the Chinese Remainder Theorem (CRT); that is:

S =

(
t

∑
i=1

si
M
mi

bi

)
mod M (6)

where bi, i ∈ [1, t] is such a way that
(

bi
M
mi

)
mod mi = 1.

The RRNS is defined as the RNS. The only difference between
RRNS and RNS is the threshold approach. The RNS splits the
secret into t shares and needs all of them to rebuild the secret;
whereas RRNS is able to divide the secret into n = t+r shares and
needs only t of them to reconstruct the secret. This means that any(n

t

)
different combinations of shares can be used to reconstruct the

secret. The formal validation of RRNS schema has been provided
in [39].

In this paper we explain how the algorithm works with an
example considering a secret S and a configuration with t = 2 and
r = 1. Let us consider the value of the secret S = 10 and three
modules (one per each peer) m1 = 3;m2 = 5;m3 = 7. Where m1
and m2 represent the primaries and m3 is the redundancy. As we
discussed above, to calculate the shares we have to calculate the
remainder of the division of the secret S for each modulus. In this
case, we will obtain:
s1 = 10 mod m1 = 10 mod 3 = 1
s2 = 10 mod m2 = 10 mod 5 = 0
s3 = 10 mod m3 = 10 mod 7 = 3

To rebuild the secret S we can use the CRT on (s1,s2,s3) by
considering the modules (m1,m2,m3). In particular, starting from
the value of the shares (s1 = 1;s2 = 0;s3 = 3), we can calculate
the Secret by adding to each share the relative modulus several
times.
S1 = s1 + x1×m1
S2 = s2 + x2×m2
S3 = s3 + x3×m3
CRT ensure that a triple (x1,x2,x3) that allows us to have

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3263115

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XYZ, NO. X, MONTH 202X 5

S1 = S2 = S3 exists and S1 = S2 = S3 = S is the Secret. In our
example the triple is (3,2,1).
S1 = 1+3×3 = 10
S2 = 0+2×5 = 10
S3 = 3+1×7 = 10

Fig. 3. Example of RRNS merge by using the Chinese Reminder Theo-
rem.

In Figure 3 a graphical example is shown. In the figure, we
assigned a different color to each peer (and its relative modulus).
Peer 1 (m1 = 3) has the red color; peer 2 (m2 = 5) has the orange
color; and peer 3 (m3 = 7) has the blue color. The first common
number (the first point where at least two lines intersect in the
figure) is the secret. As the reader can observe in the figure, the
first common number is 10 that was the value of our secret S.

The main drawback of using RRNS, as compared with
Shamir’s schema, is related to how the minimum number of shares
is set. In RRNS, the minimum number of shares is fixed and
depends on the value of primaries; whereas in Shamir’s schema, it
can be chosen arbitrarily.

5 NESTED SECRET SHARE

As we discussed in Section 4, t is the minimum number of chunks
needed to reconstruct the original secret S; r also represents the
security degree of an SS algorithm. The maximum value of r
depends greatly on the specific adopted algorithm, and thus it
is not possible to flexibly change it based on the needs of any
specific application scenario. Considering our drone fleet photo
storage case study, this behavior imposes a limit because it is
not possible to choose the best t + r configuration (according to
a particular type of mission that can range from “top secret” to
“unclassified”) at all time. A possible solution to address such a
problem is to recursively nest two or more SS algorithms using
our Nested Secret Share (NSS) technique. The basic idea behind
our NSS is that it considers different SS levels (n ∈ 1,2,3, ...),
where the output of an upper SS level becomes the input of its
lower SS level. One of the strengths of such an approach is its
generality; that is, NSS can be applied to any SS algorithm to
fitting the requirement of any specific application scenario.

Let the secret data be a value S. NSS is a secret share
scheme that computes the secret NSS(s) as a multilevel SSn(tn,rn)
computation, where n is the level (n ∈ 1,2,3, ...), tn is the
threshold at level n and rn is the redundancy at level n.

Definition 1: let k and d be positive integers, with k ≤ d.
k-outof-d threshold scheme is a method of sharing a secret S
among a set of d participants where any k participants can
compute the value of the secret, but a group of k− 1 or fewer
cannot do it.

Theorem 1: NSS is a k-outof-d threshold secret share scheme
Proof of Theorem 1: Let consider NSS with n=1, that is

NNS without nested levels. This represents the particular case

where NSS works as the unmodified SS schema (i.e.,Shamir or
RRNS) it implements. Since both the Shamir’s algorithm and
RRNS are t-outof-d threshold schemes [40][41], also NSS is a
t-outof-d threshold secret share scheme. So, if n=1, Theorem 1 is
proved. If n=2, the shares required to rebuild the secret S at the
first nested level are (S1,S2, ...,Sx) with x = t. Using each Si as
an input to the SS run at the first nested level, the output will be
((S1,1,S1,2, . . . ,S1,t2),(S2,1,S2,2, ...S2,t2), . . . ,(St1,1,St1,2 , . . .St1,t2)),
where the total number of shares required to rebuild the secret is
x2 = t1× t2. To determine s, the NSS merge schema is applied to
the set s1, . . . ,sx2 and s is uniquely determined by any t2 shares.
This is the same model of the NSS with n = 1 where the number
of shares is x2 and the threshold is t2. This means that NSS is
a t2-outof-d threshold secret share scheme and, if n=2, Theorem
1 is satisfied. We can prove in the same way that for any value
of n, NSS is a k-outof-d threshold secret share scheme where
k = tn = t1× t2× ...× tn. So, Theorem 1 is always satisfied.

Theorem 2: NSS correctly computes s from ∏
n
i=1(ti+ri) chunks

of data.
Proof of Theorem 2: Let consider NSS with n = 1, with

t = x > 0 as the number of shares required for rebuilding s and
d the number of drones in the system. The value of redundancy
is r = d− t. Since the secret S is splitted over all the available
drones, the number of shares is d = t + r. Let consider n=2. The
output of the SS run at the first nested level on a generic secret S
is (S1,S2, ...,St1+r1). Using each Si as an input to the SS run at the
first nested level, the output will be ((S1,1,S1,2, . . . ,S1,t2+r2),
(S2,1,S2,2, ...S2,t2+r2), . . . ,(St1+r1,1,St1+r1,2 , . . .St1+r1,t2+r2)), where
the total number of shares is x2 = (t1 ++r1)× (t2 + r2). We can
prove in the same way that for any value of n, the total number of
shares is xn = (t1++r1)×(t2+r2)×·· ·×(tn+rn) =∏

n
i=1(ti+ri).

So, Theorem 2 is satisfied.

From Theorem 1, we have that the number of primaries is
provided by the following formula:

t1× t2×·· ·× tn (7)

where ti is the value of t at the ith level.
When t1 = t2 = · · · = tn = t, the total number of primaries

would be :
tn (8)

If r1,r2, . . .rn are greater than 0, the total number of chunks
can be calculated using the following formulation:

(t1 + r1)× (t2 + r2)×·· ·× (tn + rn) (9)

When t1 = t2 = · · · = tn = t and r1 = r2 = · · · = rn = r the
number of chunks would be:

(t + r)n (10)

In order to calculate the NSS redundancy level, it is sufficient
to subtract the number of primaries from the total number of
chunks, therefore the generic formulation that represents the
redundancy level would be:

(t1 + r1)× (t2 + r2)×·· ·× (tn + rn)− t1× t2× . . . tn (11)

Considering t1 = t2 = · · · = tn = t and r1 = r2 = · · · = rn = r the
value of redundancy is:

(t + r)n− tn (12)
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calculating the binomial power, the above formula can be
written as:

tn +ntn−1r+ ...+
n!

k!(n− k)!
tn−krk + ...+nprn−1 + rn− tn (13)

that corresponds to:

ntn−1r+ ...+
n!

k!(n− k)!
tn−krk + ...+ntrn−1 + rn (14)

From a computational point of view, performing multi-level
SS procedures (NSS) can also result in significant computation
overheads. This means that the required time for both splitting
and merging tasks depends greatly on t, r, the number of nested
levels, and the number of nodes that carry out the computation. For
a single node scenario, the execution of an SS algorithm has to be
sequentially performed, therefore the time required for splitting
and merging data can be calculated with the 15 and 16 formulas,
respectively.

T s = T s1 +(t1 + r1)×T s2 + · · ·+(tn−1 + rn−1)
n−1×T sn (15)

T m = tn−1×T mn + · · ·+ t1×T m2 +T m1 (16)

When t1 = t2 = · · ·= tn = t and r1 = r2 = · · ·= rn = r, the time
required for splitting and merging data can be calculated with the
following formulas:

T s = T s1 +(t + r)×T s2 + · · ·+(t + r)n−1×T sn (17)

T m = t×T mn + · · ·+ t×T m2 +T m1 (18)

where T s is the total time required to perform the ‘split’ proce-

Fig. 4. NSS split and recomposition in a distributed and parallel environ-
ment.

dures, T si is the time taken to split at the ith level, t is the number

of required shares, r is the redundancy, Tm is the total time required
to perform the ‘merge’ procedures, T mi is the time required for
merge at the ith level, and n is the number of nested levels.

In order to reduce the computation time of NSS, a possible
solution is to run several SS tasks in parallel. If we could run
(t + r)n−1 parallel chunks, the time required for splitting and
merging tasks can be calculated by means of the 19 and 20
formulas, respectively.

T s = T s1 +T s2 + · · ·+T sn (19)

T m = T mn + · · ·+T m2 +T m1 (20)

Figure 4 shows an example of 2NSS in a cluster environment.
At the top part of the picture, the original data S is first split at the
nested level-1. The resulting n chunks are stored in parallel nodes.
Furthermore, each node, in turn, splits its chunk into other shares
at nested level-2. The merge task behaves similarly. Each merger
at level 2 has to combine shares belonging to the same chunk to
avoid any errors. As shown using multiple colors in Figure 4, it is
possible to combine shares in parallel. The original secret S can be
rebuilt after receiving the required chunks provided by the parallel
nodes.

6 IMPLEMENTATION

We have implemented our software by using Java programming
language. We decided to implement the system in Java to achieve
both portability (as we do not need to cross-compile the software
for each drone) and performance (as Java is faster than other high-
level Object-Oriented Programming Languages such as Python
[42]).

In Figure 5 the class diagram of the implemented software is
shown.

The software code is composed of ten classes. The main
class is NSS, and its main purpose is to instantiate other classes.
CameraManager is a class that takes the control of the camera and
provides files to be split. Splitter is an abstract class, it is extended
from SplitterRRNS and SplitterShamir to provide the functionality
to split a generic file according to RRNS and Shamir’s schema,
respectively. CodifierBase64 is a class that takes as input an array
of bytes and creates a chunk. To process multiple chunks at the
same time, the class Splitter extends the class Thread. Chunk is
the class that represents fragments of a picture. It implements
the Serializable interface to send data over a network. Sender is
the class that distributes chunks among drones through a socket.
Receiver is the class that opens a socket and waits for connections
from other drones. Finally, ReceiverThread is the class to manage
the incoming connections with other drones and storing chunks on
the drones’ memory. In order to handle multiple connections, this
class implements the interface Runnable.

The workflow for splitting a picture is as the following: the
NSS class within the main method instantiates a CodifierBase64,
a CameraManager, and a Splitter objects (for example, we created
a SpitterRRNS object, the same can be applied for SplitterShamir).
The method takePicture of CameraManager class takes pictures
and sends them to the Splitter. The method run of the Splitter class
splits the picture into chunks and invokes the method send in the
Sender class. Figure 6 shows the sequence diagram for splitting
and sending chunks.

The workflow for receiving chunks is as the following: the
NSS class within the main method instantiates an object Receiver
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Fig. 5. Class diagram of the developed system.

Fig. 6. Sequence diagram for splitting and sending chunks.

that opens a ServerSocket to listen to a specific port. When a
client connects the ServerSocket, a new Socket object is returned.
The socket object is passed to the ReceiverThread constructor that
launches a new Thread for handling the communication with the
sender. Within the run method, the receiverThread deserializes the
incoming Chunk using the readObject method. Figure 7 shows the
sequence diagram for receiving chunks.

7 PERFORMANCE RESULTS AND ANALYSIS

We performed extensive experiments to measure the performance
of our NSS technique in drone fleet photo storage scenarios,
ranging from “Top Secret” to “Unclassified”. In all cases, we
assumed that when a photo is taken by a drone, it is immediately

Fig. 7. Sequence diagram for receiving chunks.

split into chunks, through a SS or NSS mechanism, that are spread
among other drones of the fleet for storage. Specifically, using the
2NSS technique and two of the major SS algorithms previously
analyzed (Shamir’s schema and RRNS), we calculated: (a) the
security of each algorithm in terms of the percentage of secrets
that an enemy could recompose upon stealing several drones;
and (b) the applicability of our approach for drones, in terms of
execution time and energy consumption for the splitting task. We
did not assess the time required for merging photos because we
assumed that the merging process is performed at the base using
a third-party system, and thus irrelevant for flying drones. We
also neglected the network transfer time required to send chunks
amongst drones because the size of the photos is generally very
small.

As the goal of this scientific work is to verify the applicability
of the 2NSS in drone fleets, we only analyzed the splitting tasks as
they are supposed to be performed on flying drones. The software
has been written in Java, therefore it can be run on any drone with
the Java Virtual Machine (JVM) installed. In this paper, we used
a Raspberry Pi 3 to simulate hardware capability of drones; this is
because it is quite common to install Raspberry Pis on commercial
drones like ‘DJI Matrice 600’ and ‘DJI Phantom’ to launch attacks
[43] or to build Raspberry-based drones [44], [45]. The hardware
(HW) and Software (SW) characteristics of drones considered in
our experiments are shown in Table 1.

TABLE 1
Hardware and Software characteristics of drones.

Parameter Value
RAM 1 GB LPDDR2-900 SDRAM
CPU 1.2 GHZ quad-core ARM Cortex A53
Storage MicroSD 8GB

W throughput: 10.9 MB/s;
R throughput: 22.6 MB/s

We carried out our analyses considering different drone fleet
sizes (10, 100 and 1000 drones) that go on a mission. Furthermore,
we assumed that 1000 photos are taken during each mission; for
example, 100 photos per drone when the size of a fleet is 10
drones. For each level of SS, we considered the number of p
primaries fixed to 5 (because RRNS in our implementation needs
at least 5 primaries), whereas we varied the redundancy value for
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each level r1 and r2 from 0 to 7. We remark that the configuration
with r2 = 0 is different from a single level SS because the chunks
provided as output of level-1 are still processed at level-2. As
we discussed in Section 5, the total number of processes can be
calculated using Equation 9. The size of the input file, that is a
photo or a small video in our case, varied from 0.5 MB to 50 MB.
Table 2, summarizes all simulated experimental setups.

TABLE 2
Summary of performed experiments setup.

Parameter Values
Environment Drones (see table 1)
Secret Share algorithms Shamir, RRNS
Tasks Splitting
Primaries (p) 5
Redundancy (r1,r2) 0, 1, 3, 5, 7
Total SS Levels 2
File size [B] 500k, 5M, 50M
Fleet size 10, 100, 1000
Missions 30
Photos for Mission 1000

Mission Classification Top Secret, Secret, Confidential, Restricted,
Unclassified

7.1 2NSS Requirements

For each mission type (i.e., Top Secret, Secret, Confidential,
Restricted, Unclassified), we aim at assessing different parameters
(i.e., security, execution time, and battery consumption) to identify
the optimal configuration of our system. In our definitions, the
term “security” refers to the number of secrets that an enemy
could recompose by stealing drones. Considering the “Top Secret”
mission, due to the sensitivity of a photo, we expect that an enemy
could obtain all chunks to recompose all photos only if it can
capture all drones of a fleet. With reference to “Unclassified”
missions, we expect to recompose a sensitive photo even if a big
portion of the fleet is lost.

Top Secret missions usually imply high risks, and therefore
the total mission time should be as short as possible to reduce the
risk of drones be caught or destroyed. Another solution to reduce
such risks for drones could be the use of smaller drones. Due
to the constrained dimensions of drones, even the batteries have
to be smaller; therefore, for such kind of missions, we expect a
very low battery consumption to process each sensitive photo. The
only constraint of the energy usage for “Unclassified” missions
depends on the fact that drones have a limited battery capacity,
and therefore, it is not possible to consume a lot of energy for
processing a picture. Table 3 summarizes the features of each
mission type according to our requirements. Considering different
missions or requirements (for instance providing more redundancy
to “Top Secret” data) the requested features could be different.

7.2 Security

In our experiments, three scenarios with fixed fleet sizes (i.e., 10,
100, 1000) are considered. We investigated the retrieval rate of the
proposed 2NSS technique compared with a classical single-level
SS both the Shamir’s Schema and in the RRNS algorithm. The
retrieval rate can be seen as an “availability” property (in terms
of the number of photos that can be recomposed considering the
number of drones that return to base for “Unclassified” missions),
as well as the “security” property (in terms of the number of photos

TABLE 3
NSS Requirements.

Mission
Classification

% of fleet that is
required to recompose

all secret

Mission
Time

Energy
Required

Top Secret 100% Very
Low Very Low

Secret 80% Low Low
Confidential 60% Moderate Moderate
Restricted 60% Moderate Moderate

Unclassified 40% No
constrain Moderate

that the enemy is able to recompose when capturing drones in “Top
Secret” missions). In particular, we considered different fleets,
composed of 10, 100 and 1000 drones, that fly to take photos
of a strategic site. The mission ends when the total number of
1000 photos are taken. We made 30 missions and calculated the
average number of photos that it is possible to recompose.

In Figure 8 the x axis of each graph is the percentage of drones
that return to the base (availability) or are captured (security). The
y axis is the percentage of photos that could be recomposed. We
remark that to recompose the secret, differently from SS where all
the chunks can be combined, in NSS the enemy has to know how
to combine chunks, otherwise, in some configurations s/he may
need to make up to 1.7 Billion attempts [6].

Figures 8(a), 8(d), 8(g), 8(j) and 8(m) refer to a fleet size equal
to 10 and r1 equal to 0,1,3,5,7 respectively. Figures 8(b), 8(e), 8(h),
8(k) and 8(n) refer to the fleet size equal to 100 and r1 equal to
0,1,3,5,7 respectively. Figures 8(c), 8(f), 8(i), 8(l) and 8(o) refer to
the fleet size equal to 1000 and r1 equal to 0,1,3,5,7 respectively.

In these graphs, the continuous lines represent other SS
algorithms, while the dashed lines correspond to 2NSS. It is
noteworthy to mention that the percentage of retrieved photos is
the same for both Shamir’s Schema and RRNS algorithms.

In our experiment, we considered different values of r1 and
r2 (the redundancy degree of the first and second level of SS,
respectively) when comparing all proposed approaches. As we
can see, in all configurations the lightest dashed line (r2 = 0) is
on the right and under the SS (our reference); this means that
to recompose photos, we need (or the enemy needs) a larger
portion of the fleet. In other words, losing up to about 20% of
the drone fleet size does not allow an enemy to reconstruct any
photo (case with r1 ≤ 3) of a very low number of pictures (r1 > 3).
This configuration can be useful for Top Secret missions because
it allows to recompose all the pictures only when the 100% of
the fleet is available. If more than 20% of the drone fleet size
is compromised, the mission needs to be repeated. Considering
r2 = 7, we have the opposite behavior; that is, the darkest dashed
line is on the left and above of the SS line. This means that
we are (or the enemy is) able to recompose almost all photos
with a small portion of the fleet. This kind of configuration is
optimal for unclassified missions because retrieving information is
more important than disclosing it. Considering other values of r1
and r2, we will have intermediate conditions. In our experiments,
we considered a random distribution of chunks among drones.
Therefore, they could store multiple chunks of a specific picture
and no chunks of others. From experimental results, we have seen
that it is possible to rebuild almost 50% of the taken pictures by
using the 90% of the fleet in the configuration when r1 = r2 = 0.
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(a) d = 10 r1 = 0 (b) d = 100 r1 = 0 (c) d = 1000 r1 = 0

(d) d = 10 r1 = 1 (e) d = 100 r1 = 1 (f) d = 1000 r1 = 1

(g) d = 10 r1 = 3 (h) d = 100 r1 = 3 (i) d = 1000 r1 = 3

(j) d = 10 r1 = 5 (k) d = 100 r1 = 5 (l) d = 1000 r1 = 5

(m) d = 10 r1 = 7 (n) d = 100 r1 = 7 (o) d = 1000 r1 = 7

Fig. 8. Percentage of photo reconstructed considering different fleet sizes

7.3 Execution Time

In this section, we investigate the execution time of the proposed
solutions for the “splitting” task. Differently from the “retrieval
rate”, the execution time depends on the selected SS algorithm.
As discussed in Section 5, the splitting and merging tasks can be
carried out either sequentially or in parallel, depending on the use
case. In our reference scenario, we are assuming that the split of
photos is done sequentially on drones’ hardware. This is because
each drone has to process and store the same amount of photos,
there would be no free drone to parallelize any computation.

Figures 9(a), 9(b) and 9(c) show the execution time of the
RRNS for photos of 500kB, 5MB and 50MB, respectively. As it
can be seen, the time required by 2NSS-RRNS for “Unclassified”
missions (r1 = r2 = 7) is roughly 10 times more than the time
required by RRNS for the 500 KB file. The difference between
the execution time of RRNS and 2NSS-RRNS, decreases by
increasing the photo sizes. That is, to split the 5MB photo 2NSS-
RRNS requires roughly 7 times of what required by RRNS; and
to split a 50MB video, 2NSS-RRNS requires roughly five times

of what required by RRNS. This behavior is justifiable, because in
our implementation, the execution of the 2NSS-RRNS is executed
on smaller photos (about 0.25 times). For “Top Secret” missions
(r2 = 0), the gap between SS and NSS is reduced, because as we
discussed in Equation 9 of Section 5, the total number of generated
chunks depends on the value of the redundancy in each level.

Figures 10(a), 10(b) and 10(c) show the execution time of
Shamir’s Schema algorithm for files of 500kB, 5MB and 50MB,
respectively.

Unlike RRNS, the execution of 2NSS-Shamir’s Schema split-
ting task is done on chunks that are bigger than the input photo;
as a result, the execution time of the 2NSS-Shamir’s Schema
increases faster than 2NSS-RRNS.

7.4 Mission Time

The “mission time” is the time required by the drone fleet to take
photos and to share chunks among drones. It should be as small
as possible because, during that phase, the drones are closer to the
enemy and the probability to be captured is higher. Bigger fleets
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(a) File Size = 500kB (b) File Size = 5MB

(c) File Size = 50MB

Fig. 9. Execution time of RRNS split for different file sizes. N.B. the scale
of y is different in figure c)

(a) File Size = 500kB (b) File Size = 5MB

(c) File Size = 50MB

Fig. 10. Execution time of Shamir’s schema split for different file sizes.
N.B. the scale of y is different in all figures

ensure lower mission time because each drone has to process fewer
number of photos. For example when taking 1000 photos for each
mission, if the fleet is composed of 1000 drones, each of them has
to process only one photo, therefore the “mission time” of 2NSS-
RRNS and 2NSS-Shamir’s Schema are equal to times shown in
Figures 9 and 10, respectively. When 50 MB photos are taken,
the processing time in the “Top Secret” configuration is less than
a minute for 2NSS-RRNS and about 8 hours for 2NSS-Shamir’s
Schema. For “Unclassified” missions, the time increase up to 100
seconds for 2NSS-RRNS and about 14 hours for 2NSS-Shamir’s
Schema.

If the fleet is composed of 100 drones the time required is 10
times larger: about 17 minutes for 2NSS-RRNS and 5 days for
2NSS-Shamir’s Schema for “Unclassified” missions (r1 = r2 = 7)
and file sizes larger than 50 MB. This value is still acceptable
for 2NSS-RRNS, but too high for 2NSS-Shamir’s Schema. For
fleets with 10 drones, the mission time of 2NSS-RRNS is about
2 hours and 47 minutes for 50 MB photos when r1 = r2 = 7. For
“Unclassified” missions, 2NSS-Shamir’s Schema requires more
than 7 days.

7.5 Energy Consumption

The capacity of a drone’s battery is limited, and thus longer
mission times require bigger batteries to power on each drone.
The goal of this section is the dimensioning of batteries to evaluate
the real applicability of NSS techniques. To make our calculation,
we used the results from [46] for Raspberry Pi 3 at 400% CPU
load. We know that Raspberry Pis require 5V batteries, therefore
the instant energy required can be calculated easily from the
benchmark [46] and is equal to 1mJ/s.

(a) File Size = 500kB (b) File Size = 5MB

(c) File Size = 50MB

Fig. 11. Battery consumption time of RRNS split for different file sizes.
N.B. the scale of y is different in figure c)

Figure 11 shows the required current to split a single photo
using RRNS (for the single-level version as well as the nested
one). In particular, Figures 11(a), 11(b) and 11(c) show the
behavior for Low-resolution Photos, High-resolutions photos, and
videos respectively.

For the splitting time, the energy consumption also depends
on the fleet size. The best case is the scenario with 1000 drones
(shown in Figure 11) because each drone has to process only one
photo or video. As it can be seen, the configuration with lower
degrees of redundancy requires less current (only a few mA),
therefore, also in this case, this type of configuration matches
the requirements defined for “Top Secret” missions. Considering
higher values of redundancy, the current required increases accord-
ingly; in the worst case scenario (File size= 50MB r1 = r2 = 7),
to process a single video about 23 mA are needed, which is
an acceptable value for drones. As discussed for mission time,
decreasing the drone fleet size increases the capacity of the battery
required to power drones.

In Figures 12(a), 12(b) and 12(c) the energy required for
processing a single photo with Shamir’s Schema is shown. The
energy required from this algorithm, to process a picture, is very
high as compared with RRNS, especially for larger photos/videos.
Therefore, it is not possible to use these techniques on drones to
process photos/videos.

7.6 Discussion

In the following, we summarize our findings when comparing
NSS techniques with regard to their retrieval rate, execution time,
and energy consumption in relation to the file size, algorithm,
redundancy degree, etc.
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(a) File Size = 500kB (b) File Size = 5MB

(c) File Size = 50MB

Fig. 12. Battery consumption time of Shamir’s schema split for different
file sizes. N.B. the scale of y is different in all figures

Experiments showned that the retrieval rate does not depend
on the adopted SS algorithm. In particular, we have seen that by
using lower values of r, the enemy has to steal a greater number
of drones to recompose all the taken pictures. This configuration,
considering the requirements defined in Section 7.1, is optimal for
“Top Secret” missions.

Execution time and energy consumption depend on the
adopted SS technique. With regard to the execution time, we have
considered the time required for splitting photos. We have seen
that the overhead introduced from the 2NSS-RRNS decreases
as the size of the input file increases. 2NSS-Shamir behaves
differently. The splitting time depends on the energy consumption
and the capacity of batteries to power on drones. For each
photo, 2NSS-RRNS requires a few mAs, whereas 2NSS-Shamir’s
Schema requires almost 10A. This significant difference makes
the 2NSS-Shamir’s Schema approach not adequate for splitting
and sharing sensitive photos among drones.

Considering all these aspects, starting from requirements de-
fined in Table 3, we created Table 4 that shows the most suitable
configuration for each mission type.

TABLE 4
Summary of the most suitable configuration for each mission type.

Mission
Classification

Feet
size Algorithm r1 r2

Top Secret 1000 RRNS 0 0
Secret 100 RRNS 1 1

Confidential 100 RRNS 3 3
Restricted 100 RRNS 5 5

Unclassified 10 RRNS 7 7

8 CONCLUSIONS AND FUTURE WORK

In this paper, we discussed the use of NSS techniques for splitting
and storing photos among a fleet of drones. We introduced the NSS
technique to overcome limitations of SS algorithms to be deployed
on drones, mostly because the security level of these algorithms
is often fixed, and thus impossible to re-configure them based on
the sensitivity of a mission. Specifically, we compared a 2NSS
technique with two of the major SS algorithms (Shamir’s Schema

and RRNS), considering three aspects (retrieval rate, execution
time, and power consumption). Experiments showed that lower
redundancy values are good for “Top Secret” missions, because,
the enemy needs to capture all drones of a fleet to recompose
all photos. We also observed that the 2NSS-Shamir’s Schema,
due to its complexity, is not suitable for drones. In future works,
we plan to implement data deduplication techniques to optimize
the picture transfer time among drones and to combine NSS with
private-public key algorithms.
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