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Knowledge grows exponentially. The more we know, the greater our ability to learn,

and the faster we expand our knowledge base.

- Dan Brown
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Chapter 1

Introduction

Over the last three decades, the notion of the covariance matrix of asset returns has

pervaded almost every financial aspect, and covariance forecasts are a central input

to various financial applications such as asset pricing, portfolio selection, and risk

management.

Nevertheless, covariances are not directly observable in the market. In this regard,

a large body of literature studies the different estimators for the latent covariance

matrix. Correspondingly, another stream exploits the distinct modelling techniques

to effectively forecast the covariance matrix.

With the increased availability of high-frequency (HF) data for many financial

assets, researchers have focused on investigating the rich inherent information to

estimate the covariances. In particular, Andersen and Bollerslev (1998) introduce

the realized volatility as an accurate proxy of latent volatility. Due to the non-latent

feature, it can be observed and modelled directly via the time-series models. The

corresponding extension to the multivariate setting, i.e., the realized covariance (RC)

matrix, has been initially proposed by Andersen et al. (2003) and Barndorff-Nielsen

and Shephard (2004).

1



In contrast to the univariate case, modelling and forecasting the covariances intro-

duce two major technical challenges. The first is the so-called ‘curse of dimensionality’

issue. Specifically, most of the models have a number of parameters that scale with

the number of considered assets, thus affecting the statistical efficiency of the esti-

mation or even making the latter infeasible. The second challenge is the necessity of

guaranteeing the positive-definiteness (PD-ness) of covariance matrices.

Given the increasing interconnectedness among financial markets and the rapidly

accelerating degree of globalization, among others, this thesis aims at establishing and

verifying new methods to model and forecast the covariance matrices, thus allowing

for better analyses of financial problems and improved decision-making. The thesis

consists of three studies.

In the first study, Chapter 2, we analyze empirically the asymptotic properties of

the LS estimator with respect to widely utilized multivariate HAR models. Due to the

emphasized ‘curse of dimensionality’ issue, an easy-to-implement framework contains

the adoption of scalar versions of HAR-based models. This implies a strongly binding

assumption of the analogous dynamics of all variances and covariances, or correlations.

As such, Bauwens and Otranto (2020, 2023) propose HE–HAR models that allow for

asset pair-specific and time-varying impact parameters using the element-by-element

Hadamard exponential (HE) function of the matrix, thus adding great flexibility to

scalar HAR dynamics via a unique additional parameter.

We initially verify asymptotically unbiased, efficient, and normal OLS estimates

for benchmark HAR models, i.e., the vech-HAR model of Chiriac and Voev (2011) and

the HAR-DRD model of Oh and Patton (2016), under three different distributions.

Correspondingly, the results of the extensive Monte Carlo (MC) simulation experi-

ment confirm both consistency and asymptotic normality for regular HAR parameters

in HE–vech-HAR models. The nonlinear coefficient of the HE parameterization shows

a degree of bias depending on the degree of nonlinearity of the distribution generat-
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ing the data, i.e., multivariate Normal, Wishart, and Matrix F distributions. Such a

problem further amplifies for HE–HAR-DRD variants, where even some conventional

HAR coefficients appear biased and non-normal. In fact, using a more fat-tailed and

asymmetric Matrix F data generation process (DGP) compared to Wishart implies a

relatively small loss of satisfaction of asymptotic properties.

While distinct models have revealed that HF data provides important additional

information for modelling and forecasting covariance matrices, Chapter 3 documents

the importance of capturing the asymmetric responses of the RC to shocks, i.e., the

‘leverage effect’. The first method of accounting for the ‘asymmetry’ effect is based on

the decomposition of covariances via signs of daily returns and implies that, e.g., the

conditional variance of an asset today is higher if the corresponding lagged daily return

is negative than if it is positive. The second way is based on the estimates of realized

variances and covariances defined via signs of underlying HF returns, i.e., measures

known as realized semi-variances and semi-covariances proposed by Shephard and

Sheppard (2010) and Bollerslev et al. (2020a), respectively.

To perform empirical evaluations of the introduced models, a HF dataset for the

main S&P500 ETF and five large US stocks of the banking sector have been em-

ployed. Both the in-sample and forecasting results show that the asymmetric models

significantly outperform the symmetric benchmark specification, i.e., the conditional

autoregressive Wishart (CAW) model of Golosnoy et al. (2012), in all cases. Fur-

thermore, the results strongly indicate that the ‘daily’ asymmetric models not only

result in significantly better fitting but also tend to generate more accurate predic-

tions than the models built upon the semi-covariance decomposition. Such a finding

is not surprising since the close-to-close return incorporates the information of the

overnight period, whereas the intra-daily returns do not. To corroborate this finding,

we further confirm that the asymmetric models using the decomposition of the RC

matrix based on the signs of daily open-to-close returns fit less well and have worse

3



forecasting performance than the close-to-close returns-based ones.

Factor models have been widely used both theoretically and empirically in finance

to deal with the dimensionality problem. In this regard, the number of parameters in

covariance matrix estimation is significantly reduced by assuming that a few factors

can completely capture the cross-sectional risks.

Chapter 4 presents the third original contribution of the thesis, where we introduce

a class of models for high-dimensional covariance matrices, i.e., HD DCC-HEAVY,

by combining the hierarchical factor modelling approach of Hansen et al. (2014) and

recent dynamic conditional correlation formulation of a HEAVY model (Noureldin

et al. (2012)) introduced by Bauwens and Xu (2023). Such a framework is indepen-

dent of the cross-sectional dimension of the assets under consideration, allowing for

relatively straightforward estimation and forecasting schemes.

Given that there exists no evidence on the forecasting ability of the hierarchical-

type factor models, we assess the statistical and economic performance of the distinct

variants of our model in terms of the set of factors and attribution of asymmetric

dynamics, comparing them with the cDCC model (Aielli (2013)) considered a bench-

mark, the Realized Beta GARCHmodel (Hansen et al. (2014)), and its 3-Fama-French

(FF) extension (Archakov et al. (2020)).

An illustrative empirical study for the S&P500 constituents over the period from

January 1962 until January 2023 shows that the model’s forecasts consistently beat

both the existing hierarchical models of Hansen et al. (2014) and Archakov et al.

(2020), as well as the benchmark cDCC model. We confirm the robustness of our

findings under changing market conditions.
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Chapter 2

Nonlinear HAR Models and

Nonlinear Least Squares:

Asymptotic Properties

The contents of this chapter are the result of joint work with Prof. Edoardo Otranto

(University of Messina). The paper has been accepted for publication in Advanced

Methods in Statistics, Data Science, and Related Applications.

2.1 Introduction

Forecasting the covariance matrix of asset returns has paramount importance in asset

pricing, portfolio allocation, and risk management. As such, the majority of intro-

duced econometric models assume that variances and covariances are either assessable

conditional upon past daily information, i.e., multivariate GARCH (MGARCH) mod-

els (Bauwens et al. (2006)), or latent, i.e., multivariate stochastic volatility (MSV)

models (Asai et al. (2006)).
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In contrast, a recent preferable realized covariance (RC) method allows treating

the volatility as an ‘observable’ quantity via the high-frequency (HF) data (e.g., An-

dersen et al. (2003); Barndorff-Nielsen and Shephard (2004); Barndorff-Nielsen et al.

(2008, 2011)). However, RC models generally face several challenges, and the most

prominent include ensuring the positive definite (PD)-ness of forecasts coupled with

the dimensionality issue. The latter implies the rapid increase in the number of pa-

rameters with the cross-sectional dimension that has a potential pronounced impact

on the statistical efficiency of the estimation and often even renders the model es-

timation unfeasible. Hence, the RC modelling framework calls for parsimonious yet

flexible parameterizations, capable of capturing complex serial dependencies observed

in realized variances and covariances.

Among the HF data-based models, the multivariate extensions of the Heteroge-

neous Auto-Regressive (HAR) model (Corsi (2009)) are widely employed, i.e., vech-

HAR model (Chiriac and Voev (2011)), HAR-DRD model (Oh and Patton (2016)).

This class of models, originally inspired by the Heterogenous Market Hypothesis of

Müller et al. (1993) and asymmetric propagation of volatility between long and short

horizons, appears capable of capturing a commonly recognized long memory of RC

via simple linear regression structures.

Nevertheless, in face of the emphasized ‘curse of dimensionality’ issue, an easy-to-

implement framework contains the adoption of scalar versions of HAR-based models.

This implies that all variances and covariances, or correlations, obey the same dy-

namics, an assumption that is obviously highly restrictive. In this regard, using the

element-by-element Hadamard exponential (HE) function of the matrix, the asset

pair-specific and time-varying impact coefficients of lagged realized variances and co-

variances, or correlations, could be defined, adding great flexibility in dynamics via a

single parameter (Bauwens and Otranto (2020, 2023)).
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A practical advantage of the HAR family of models is the straightforward estima-

tion via OLS. By incorporating the HE extension, the nonlinear LS (NLS) could be

adopted. Thus, great computational advantages in terms of simplicity, stability, and

cost potentially arise on behalf of both flexible and parsimonious HE–HAR models

compared to all other maximum likelihood (ML)-based RC models. It has therefore

been natural to ask if the convincing NLS method would generate, at least asymptot-

ically, unbiased, efficient, and normally distributed estimates. The approach taken to

provide a reliable and empirically valid answer to this question contains the extensive

Monte Carlo (MC) simulation experiment.

As the LS method has been extensively adopted within the nonlinear regression

framework, the asymptotic properties of the estimator have been subject to notable

research interest. In general, the consistency is theoretically established by Wu (1981)

and Lai (1994), among others, whereas, e.g., Wooldridge (1986) and Pollard and

Radchenko (2006) prove the asymptotic normality under certain regularity conditions.

Recently, Wang (2021) extrapolates analogous theoretical results to nonstationary

and heteroscedastic models, which obviously contain a broad class of commonly used

volatility models such as GARCH (Bollerslev et al. (1988)), time-varying GARCH

(Rohan and Ramanathan (2013)), and nonlinear GARCH (Lanne and Saikkonen

(2005)). Correspondingly, Dias (2013) provides the empirical evidence via MC study

that the proposed nonlinear iterative LS (NL-ILS) estimator is consistent and even

outperforms the ML benchmark for many GARCH-type models. Not to mention,

Hamadeh and Zaköıan (2011) derive the proof of both consistent and asymptotically

normal LS estimates of the power-transformed ARCH model (Hwang and Kim (2004))

under analogous assumptions as for standard ARCH models (Bose and Mukherjee

(2003)).
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Earlier, the rate of the NLS convergence and asymptotic distribution have been

proved and empirically supported by Ciuperca (2011) for the long memory auto-

regressive fractionally integrated moving-average (ARFIMA) model (Granger and

Joyeux (1980); Hosking (1981)), widely advocated within the volatility modelling

framework. In addition, Chang and Park (2003) prove the consistency of the NLS

estimator for smooth transition regressions, often useful to capture the asymmetry in

volatility dynamics. Nevertheless, some components have a non-Gaussian distribution

that causes usual statistical methods to yield inefficient estimates and/or invalid tests.

Andreou (2016) compares the common LS regression models with corresponding

mixed data sampling (MIDAS) regressions (Ghysels et al. (2005, 2006)), assuming

the underlying MIDAS data generating process (DGP). The analytical and numeri-

cal results are presented for the asymptotic bias and relative efficiency of the slope

estimator in these two classes for a number of alternative HF volatilities. They show

that the LS estimator is asymptotically biased for all cases considered. In contrast,

the MIDAS-NLS slope estimator turns out to be not only unbiased but also relatively

more efficient. The analogous conclusions are achieved earlier by Andreou et al.

(2010), where asymptotic properties of the FLAT-LS and MIDAS-NLS are tested in

models that contain either the i.i.d., ARCH(1), or AR(1) HF regressors.

Chen et al. (2018) show that NLS estimates for the logarithmic auto-regressive

conditional duration (log-ACD) models utilized for the HF data analyses are consis-

tent and asymptotically normal, as well as strongly competitive with respect to the

ones generated via the quasi-ML method (QMLE).

In this work, we investigate asymptotic properties of the NLS for the multivariate

HE–HAR family of models (Bauwens and Otranto (2023)) via MC experiments. A

decision to examine NLS estimates for the HE–HAR class can be justified by the

possibility of having a very flexible but parsimonious model while maintaining the

computational advantages of the HAR family. Initially, we adopt the vech-HAR
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model of Chiriac and Voev (2011) in order to verify whether our exercise confirms the

theoretically established asymptotic properties of linear OLS estimates (e.g., McAleer

and Medeiros (2008); Hwang and Shin (2014)). Then, we consider the two HE-based

specifications introduced by Bauwens and Otranto (2023), extending the vech-HAR

model of Chiriac and Voev (2011) and HAR-DRD model of Oh and Patton (2016),

under different distributional assumptions, i.e., multivariate Normal (applied to the

log transformation of RC matrices), Wishart, and Matrix F distribution.

Our results show that the convergence is achieved for conventional HAR parame-

ters, while there is a small-medium bias for the HE coefficient. Asymptotic normality

seems satisfied only for the HE–vech-HAR specification with log-transformed RC ma-

trices under Normal distribution.

The rest of the chapter is organized as follows. Section 2.2 introduces the HAR-

type framework adopted for MC experiments; Section 2.3 presents the design of im-

plemented simulations and provides a discussion on empirical results; Section 2.4 gives

some concluding comments.

2.2 Modelling Framework

One of the most widespread models in the econometric literature for modelling the

realized volatility is the HAR model of Corsi (2009); its linear auto-regressive form

has a great advantage to be estimated via OLS. To account for not only serial but

also cross-correlation dynamics across the elements of covariance matrices, due to the

common movements among financial markets and the increasing degree of globaliza-

tion in the economy, among others, recent literature has attempted to extend the

most utilized univariate volatility models to the multivariate framework.
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Let us denote the m×m RC matrix of day t as Ct, the information set available

at time t − 1 as Ft−1 = {Ct−1,Ct−2, ...}, and the conditional expectation of Ct, i.e.,

E(Ct|Ft−1), as St.

2.2.1 Linear vech-HAR Model

A natural extension of the HAR model to the multivariate setting was proposed by

Chiriac and Voev (2011), i.e., the vech-HAR model:

vech(Ct) = (1− αD − αW − αM)C + αD vech(Ct−1) + αW vech(Ct−1:t−5)

+αM vech(Ct−1:t−22) + εt,
(2.1)

where vech(·) is the operator that stacks the lower triangular portion of its matrix

argument as a vector, C is the sample mean of RC matrices, regressors Ct−1:t−h are

the averages of past RC matrices between t − 1 and t − h (h = 5, 22), and α’s are

scalar parameters. Finally, εt is a vector of disturbances.

The use of the so-called targeting, i.e., (1−αD−αW−αM)C, as a constant, guarantees

that the estimated matrix St is positive-definite (PD), while at the same time reduces

significantly the number of parameters to be estimated.

We consider three alternative specifications for the distribution of εt, ensuring the

PD-ness of the RC series:

• Multivariate Normal, which implies the log transformation of RC (Bauer and

Vorkink (2011)), so that all variables in (2.1) are expressed in logarithms. We

call this model “log vech-HAR”;

• Wishart distribution (e.g., Golosnoy et al. (2012); Bonato et al. (2012); Bauwens

et al. (2012)), with Ct|Ft−1 ∼ Wm(v,St/v), where Wm(v,St/v) denotes the m-

dimensional central Wishart distribution with v ≥ m degrees of freedom and

m × m PD scale matrix St/v, i.e., E(Ct|Ft−1)) = St. We call this model
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“vech-HAR Wishart”;

• Matrix F distribution (e.g., Opschoor et al. (2018); Vassallo et al. (2021))

due to the sudden large movements in RC that might potentially impair es-

timated dynamics of the series if a ‘thin-tailed’ distribution, such as Wishart,

is adopted (e.g., Creal et al. (2011); Harvey (2013)). In this regard, we suppose

Ct|Ft−1 ∼ Fm(v1, v2, ((v2 −m− 1)/v1)St), where v1, v2 ≥ m + 1 are degrees of

freedom. When v2 is finite, the Matrix F distribution exhibits a leptokurtic be-

havior, typical of realized measures of variance and covariance. As v2 −→ ∞, the

convergence to the Wishart distribution prevails. We call this model “vech-HAR

Matrix F”.

2.2.2 Nonlinear HE–vech-HAR Model

The adoption of the scalar vech-HAR model requires imposing a very strong assump-

tion, i.e., all the variances and covariances obey the same dynamics. Bauwens and

Otranto (2023) suggest a way of adding great flexibility in model dynamics while

preserving the parsimonious parameterization, i.e., via a single additional parameter,

using the HE function of the matrix.

In practical terms, let us consider again the simple scalar vech-HAR model (2.1),

where each daily RC matrix is specified as a linear function of lagged daily, weekly, and

monthly covariances. Considering the HE operator’s algebraic properties, Bauwens

and Otranto (2023) propose replacing the scalar impact coefficient αD of the lagged

daily RC on the current RC matrix by a PD matrix of time-varying coefficients

determined via a unique new parameter.
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The new HE–vech-HAR model is given by:

vech(Ct) = (1− αD,t − αW − αM)C + αD exp⊙(ϕ vech(Pt−1 − Jm))⊙ vech(Ct−1)

+αW vech(Ct−1:t−5) + αM vech(Ct−1:t−22) + εt,

(2.2)

where ⊙ denotes the Hadamard product and exp⊙ the HE operator, i.e., element-by-

element exponential; ϕ is the new parameter and αD,t is the average of the entries of

αD exp⊙(ϕ vech(Pt−1 − Jm)), where Pt is the realized correlation matrix and Jm is a

m×mmatrix of ones. Thus, if ϕ differs from zero, the impact coefficient becomes both

asset pair-specific and time-varying. Indeed, the HE operator applied to a PD matrix

guarantees the PD-ness of the resulting matrix, whereas the Hadamard product of

two PD matrices is again PD.

The adoption of lagged correlations in the impact parameter can be justified by

the strong evidence that volatilities and correlations move together (e.g., Andersen

et al. (2001)). As such, we expect the transfer of the volatility clustering phenomenon

to correlations as well. During turbulent periods, the correlations increase, but the

level of persistence of such an increase can be distinct across asset pairs. Hence, by

adding a dependence of the impact coefficient on lagged correlations, we are able to

account for the volatility clustering effect on RC that differs across asset pairs and

changes through time.

The vech-HAR model with the HE extension could be estimated by NLS. In this

regard, we investigate the asymptotic properties of HE–vech-HAR NLS estimates

generated via the Gauss-Newton algorithm. Again, we consider RC in log form, thus

following the Normal distribution, conditional Wishart, as well as conditional Matrix

F distributed ones. The resulting models are denoted by “log HE–vech-HAR”, “HE–

vech-HAR Wishart”, and “HE–vech-HAR Matrix F”, respectively.
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2.2.3 Nonlinear HE–HAR-DRD Model

Inspired by the seminal DCC model of Engle (2002), Oh and Patton (2016) introduce

the widely utilized HAR-DRD. We begin by decomposing the RC matrix as:

Ct = V
1/2
t PtV

1/2
t , (2.3)

where Vt is the diagonal matrix of realized variances (RV) and Pt is the realized

correlation matrix, which allows for estimating the full model in two steps (see Engle

(2002)).

In particular, the first step consists of modelling m univariate volatilities, i.e.,

Vii,t (i = 1, . . . ,m), or their logs to ensure the positiveness, via the benchmark HAR

model (Corsi (2009)). Hence, the OLS estimator applies to:

Vii,t = ci + αi,DVii,t−1 + αi,WV ii,t−1:t−5 + αi,MV ii,t−1:t−22 + εi,t. (2.4)

Subsequently the benchmark HAR-type structure is adopted to model realized

correlations, i.e.,

vech(Pt) = (1− αD − αW − αM)P + αD vech(Pt−1) + αW vech(P t−1:t−5)

+ αM vech(P t−1:t−22) + εt,

(2.5)

where, similarly to (2.1), regressors are the averages of past realized correlation ma-

trices, P is the sample mean of the realized correlation series, and αi (i = D,W,M)

are scalar parameters to be estimated by OLS.
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To allow for distinct dynamics of realized correlations, Bauwens and Otranto

(2023) introduce the HE parameterization to (2.5), i.e.,

vech(Pt) = (1− αD,t − αW − αM)P + αD exp⊙(ϕ vech(Pt−1 − Jm))⊙ vech(Pt−1)

+ αW vech(P t−1:t−5) + αM vech(P t−1:t−22) + εt.

(2.6)

Similarly to HE–vech-HAR, HAR-DRD model with the HE extension could be

estimated by NLS. As follows, we examine the asymptotic properties of HE–HAR-

DRD NLS estimates generated via the Gauss-Newton algorithm for “log HE–HAR-

DRD”, “HE–HAR-DRD Wishart”, and “HE–HAR-DRD Matrix F” specifications.

2.3 Monte Carlo Experiments

For the subsequent empirical analyses, we employ the three HAR models under three

distributional assumptions, i.e., a total of 9 specifications. Specifically, 3 linear vech-

HAR (2.1), 3 nonlinear HE–vech-HAR (2.2), and 3 nonlinear HE–HAR-DRD specifi-

cations (2.3, 2.4, 2.6), distinguished by the distribution, i.e., Normal for logs, Wishart,

and Matrix F.

To evaluate the asymptotic properties of OLS/NLS, we generate data from each

specification referring to a 3–variate time series (m = 3) of increasing length T =

1000, 3000, 5000, 10000, 50000, with the corresponding parameters fixed in the range

of estimated values on real data for similar models.1 In particular, for vech-HAR, we

consider the range of values presented in Tables 1-3 in Buccheri and Corsi (2021); for

HE–vech-HAR, the values are taken from Table 14 of Bauwens and Otranto (2023),

but fixed ϕ = 0.15 to ensure PD matrices;2 for HE–HAR-DRD, we consider Table 2 of

Bollerslev et al. (2018) for the HAR part and keep ϕ = 0.15. The sample covariance

1We perform empirical exercises via the R software.
2In the paper of Bauwens and Otranto (2023), this coefficient is negative.
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matrix for each model is randomly generated from the underlying distribution. For

Wishart, we set v = 4 degrees of freedom, coupled with v1 = 22 and v2 = 35 for

Matrix F. We replicate each experiment N = 1000 times.

Concerning the RC in log form, we initially generate a disturbance term εt from

a standardized Normal distribution, with the series of Ct obtained iteratively from a

model considered, i.e., vech-HAR (2.1), HE–vech-HAR (2.2), HE–HAR-DRD (2.6).

Instead, disturbances do not enter models under Wishart and Matrix F distributions,

where RC matrices are generated by the conditional distribution of Ct. More in

detail, for both cases, we first generate the unconditional C discussed above, with

the expectation equal to the identity matrix.

Then, for the Wishart case, we simulate St from one of the three models, such that

the RC matrix Ct at time t is generated from W3(4,St/4).

Analogously, for the Matrix F case, we simulate St from one of the three models.

Then, Ct follows from F3(v1, v2, ((v2 − 3 − 1)/v1)St), with v1 = 22 and v2 = 35. To

guarantee both symmetry and PD-ness of the generated RC, we adopt the subsequent

decomposition property (Konno (1991)):

Ct = ((v2 −m− 1)/v1)S
1/2
t M

1/2
t L−1

t M
1/2
t S

1/2
t , (2.7)

where Mt and Lt are independent Wishart matrices, i.e., Mt ∼ Wm(v1, Im), Lt ∼

Wm(v2, Im).

For HE–HAR–DRD specifications, we do not consider the part relative to the RV, so

that we generate directly realized correlations Pt from the corresponding conditional

distribution, putting St = Rt, and implementing the same steps previously described.
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In the following tables, reporting results of our experiments, the second column

shows the ‘true’ value of each parameter. To evaluate the unbiasedness and efficiency,

we report the average and standard deviation of N estimates for each parameter and

T , as well as the degree of biasedness. Ultimately, we show the p-value of the Jarque-

Bera test (Jarque and Bera (1980)) on the set of N estimates for each coefficient to

evaluate the normality.

In what follows, we comment results for each DGP.

2.3.1 vech-HAR Model

We run experiments on the discussed linear vech-HAR variants to confirm the theo-

retical asymptotic properties under the Normal DGP and verify their validity under

the other two distributional assumptions.

Table 2.1 shows the corresponding results. For the log and Wishart cases, we

confirm the unbiasedness of αD and αW already at small sample sizes, whereas αM

converges to the true value at T = 3000 for the Wishart case and T = 5000 for the

log case. The decrease in standard deviations is consistent with the efficiency of the

OLS estimator, and the normality of estimates is also satisfied in small samples. A

different behavior characterizes the Matrix F case with some puzzling results. The

convergence seems to be achieved only asymptotically, and the normality of estimators

is ambiguous, in particular for the parameter αM . In practice, the strong asymmetric

and leptokurtic form of the Matrix F distribution may affect the goodness of the OLS

asymptotic performance.

2.3.2 HE–vech-HAR Model

The NLS estimates for HE–vech-HAR models are obtained by utilizing the Gauss-

Newton method, which is based on the Taylor series approximation to obtain the

linearized model and solve it via OLS (Greene (2018)). Such a choice might be sup-
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ported not only because this algorithm avoids computing the second-order derivatives

but also due to the absence of potential issues arising from initial starting values pro-

vided for estimations given the specified simulation parameters.

As indicated in Table 2.2, all NLS estimates of regular HAR parameters within

HE–vech-HAR models reach the convergence for the log and Wishart cases. The

full convergence of all coefficients prevails for the log case, i.e., at T = 5000, coupled

with the continuous reduction of respective standard deviations. Correspondingly, the

estimate of the HE term coefficient ϕ is featured by a relatively small but persistent

negative bias around 2%.

Concerning the Matrix F case, the partial convergence of conventional HAR pa-

rameters is attained by T = 5000, while the monthly coefficient αM subsequently fully

converges as well. At the same time, the bias does not exceed 1.3%, being less than

0.5% in the majority of cases. Similar comments with respect to the two previous

cases hold for regular HAR coefficients, while the bias of ϕ has an opposite sign but

higher maximum magnitude, i.e., around 6%.

Due to the absence of the overall consistency evidence for NLS estimates of HE–

vech-HAR variants and in line with related literature, the underlying distribution of

estimated coefficients often diverges from Normal. On the other hand, we confirm

the normality hypothesis for all parameter estimates, even at T = 5000, in log model.

2.3.3 HE–HAR-DRD Model

The MC results for HE–HAR-DRD variants reported in Table 2.3 suggest a relatively

inferior NLS performance compared to the estimation of HE–vech-HAR models.

The regular HAR coefficients only occasionally hit the ‘true’ value under Wishart

and Matrix F DGP. Considering the Normal, the coefficient αD exhibits bias for all

T . The HE term estimator is generally characterized by not only protracted but also

notable bias, close to 10% at T = 50000 for the Matrix-F case and more than the
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Table 2.1: vech-HAR Model: N = 1000 MC results in correspondence to three
different distributions

DGP Parameter/Sample Size T = 1000 T = 3000 T = 5000 T = 10000 T = 50000
αD = 0.45
Sample Mean 0.45 0.45 0.45 0.45 0.45
SD (0.00114) (0.00065) (0.00050) (0.00035) (0.00016)
Bias -0.239% -0.142% -0.110% -0.112% -0.013%
Jarque-Bera test (p-value) 0.8037 0.5434 0.6151 0.3466 0.3127
αW = 0.25
Sample Mean 0.24 0.25 0.25 0.25 0.25

Normal SD (0.00173) (0.00101) (0.00079) (0.00055) (0.00025)
Bias -0.560% -0.207% -0.079% -0.020% -0.079%
Jarque-Bera test (p-value) 0.1051 0.9129 0.2670 0.9632 0.1026
αM = 0.15
Sample Mean 0.14 0.14 0.15 0.15 0.15
SD (0.00174) (0.00103) (0.00080) (0.00055) (0.00024)
Bias -1.452% -0.519% -0.347% -0.177% -0.030%
Jarque-Bera test (p-value) 0.9688 0.8918 0.8063 0.4520 0.8113
αD = 0.45
Sample Mean 0.45 0.45 0.45 0.45 0.45
SD (0.00115) (0.00065) (0.00050) (0.00034) (0.00016)
Bias -0.198% -0.159% -0.140% -0.068% -0.047%
Jarque-Bera test (p-value) 0.4210 0.8894 0.2636 0.8559 0.1866
αW = 0.25
Sample Mean 0.25 0.25 0.25 0.25 0.25

Wishart SD (0.00176) (0.00102) (0.00080) (0.00055) (0.00025)
Bias -0.126% -0.181% -0.100% -0.122% -0.030%
Jarque-Bera test (p-value) 0.9815 0.6958 0.7642 0.3186 0.6312
αM = 0.15
Sample Mean 0.13 0.15 0.15 0.15 0.15
SD (0.00180) (0.00105) (0.00080) (0.00055) (0.00024)
Bias -1.547% -0.272% -0.147% -0.054% -0.023%
Jarque-Bera test (p-value) 0.1738 0.5051 0.8959 0.0413 0.4031
αD = 0.45
Sample Mean 0.49 0.47 0.45 0.46 0.44
SD (0.00069) (0.00041) (0.00037) (0.00026) (0.00018)
Bias 4.357% 1.616% 0.296% 0.622% -0.560%
Jarque-Bera test (p-value) 0.0008 0.1099 0.9438 0.0209 0.0025
αW = 0.25
Sample Mean 0.23 0.24 0.25 0.24 0.25

Matrix F SD (0.00055) (0.00042) (0.00031) (0.00021) (0.00015)
Bias -2.474% -0.686% -0.254% -1.409% -0.185%
Jarque-Bera test (p-value) 0.0222 0.5801 0.0322 0.0011 0.0000
αM = 0.15
Sample Mean 0.13 0.13 0.14 0.15 0.14
SD (0.00056) (0.00030) (0.00020) (0.00019) (0.00016)
Bias -2.097% -2.183% -0.986% -0.406% -1.085%
Jarque-Bera test (p-value) 0.3034 0.0000 0.0084 0.0004 0.0000

Notes: The table reports the sample mean of 1000 OLS estimates of each vech-HAR parameter with the corresponding
standard deviation in parentheses (at sample sizes T = 1000, 3000, 5000, 10000, 50000). The bias is calculated as the
difference between the sample mean and the true parameter value, multiplied by 100. We also show the p-value of
the Jarque-Bera test for each coefficient and respective sample size, where the entries in boldface indicate the failure
to reject the null hypothesis of normality at the 5% significance level.

negative 8% for the log case. The estimates do not follow Normal distribution, also

asymptotically, excluding αW and αM in “log HE–HAR-DRD”.
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2.4 Final Remarks

To accurately capture the cross-correlation dynamics among assets and volatility

spillovers in financial markets via the HF data, the multivariate HAR-type mod-

els have been widely adopted. This class of models appears particularly attractive,

being featured by a solid, empirically proved forecasting performance (e.g., Taylor

(2015); Oh and Patton (2016); Cubadda et al. (2017); Vassallo et al. (2021)), coupled

with a rather simple LS estimation method.

As such, this paper presents the empirical evidence on the asymptotic properties

of the LS estimator, i.e., consistency and normality, with respect to both linear and

nonlinear HAR-type framework. To the best of our knowledge, this is the first study

that not only verifies empirically consistent and asymptotically Normal OLS estimates

for benchmark HAR models but also investigates the properties of the NLS for flex-

ible yet parsimonious nonlinear HAR extensions. In particular, we consider adding

the HE extension (Bauwens and Otranto (2020, 2023)) to HAR benchmarks, which

implies the asset pair-specific and time-varying impact parameters of the lagged RC,

or correlations, adding great flexibility to scalar HAR dynamics via a unique addi-

tional parameter. Thus, it enables to adequately counteract the well-known ‘curse of

dimensionality’ issue of the RC modelling framework. Not to mention great computa-

tional advantages in terms of the simplicity, stability, and cost on behalf of HE–HAR

models with respect to all ML-based RC models.

Based on N = 1000 MC replication outcomes, we aim at verifying consistent,

efficient, and asymptotically Normal OLS/NLS estimates for benchmark multivari-

ate HAR specifications (with covariance targeting ), i.e., vech-HAR models, as well

as their HE version, under the three different distributions. Moreover, we consider

the HE–HAR-DRD specification under analogous distributional assumptions, as it

provides the possibility of a practically convenient 2-step estimation, separating the

estimation of the RV from the estimation of the correlation part. All nonlinear HE
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extensions are estimated by NLS, utilizing the Gauss-Newton algorithm.

Our experiments confirm both consistency and asymptotic normality of the OLS

for vech-HAR variants, except for the Matrix F DGP. In fact, using a stronger lep-

tokurtic and asymmetric distribution than Wishart to generate data, we notice a

(small) loss of satisfaction of asymptotic properties. Similar results are obtained for

regular HAR parameters in HE–vech-HAR models. The nonlinear coefficient of the

HE parameterization shows a degree of biasedness, which increases with the degree of

nonlinearity of the distribution generating data. This problem further amplifies for

HE–HAR-DRD specifications, where even some conventional HAR estimates exhibit

biasedness and non-normality.

Given the breadth of the HAR modelling framework and their widespread and

straightforward adoption in the context of the accurate RC matrix forecasting, these

results provide a valuable extension to existing ones in the literature and immedi-

ate practical implications. In general, we believe that it is important to highlight

advantages and problems in the performance of HAR estimators and to draw the

researchers’ attention to potential pitfalls in using them in empirical studies. Thus,

our findings suggest that researchers and practitioners can confidently adopt linear

HAR models estimated by OLS to obtain the RC estimates. In addition, they might

implement the NLS for the HE–HAR class with caution.

However, an avenue we have not explored in this study is building up alternative

flexible but still parsimonious multivariate HAR extensions subject to the NLS esti-

mation. E.g., incorporating the smooth transition structure within benchmark HAR

to explicitly account for the asymmetric behavior in RV and RC (see McAleer and

Medeiros (2008); Qu et al. (2016)). Hence, it remains completely an open empiri-

cal question whether the consistency and asymptotic normality of the NLS could be

confirmed for upcoming nonlinear HAR models for the RC matrix, which arguably

reflect interesting topics for further research.
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Table 2.2: HE–vech-HAR Model: N = 1000 MC results in correspondence to three
different distributions

DGP Parameter/Sample Size T = 1000 T = 3000 T = 5000 T = 10000 T = 50000
αD = 0.21
Sample Mean 0.21 0.21 0.21 0.21 0.21
SD (0.00060) (0.00034) (0.00026) (0.00019) (0.00009)
Bias -0.274% -0.335% -0.301% -0.275% -0.266%
Jarque-Bera test (p-value) 0.0579 0.4740 0.1157 0.0050 0.1787
αW = 0.33
Sample Mean 0.33 0.33 0.33 0.33 0.33
SD (0.00099) (0.00057) (0.00043) (0.00031) (0.00014)
Bias -0.041% 0.047% 0.015% -0.005% -0.004%

Normal Jarque-Bera test (p-value) 0.8834 0.9225 0.7298 0.3233 0.1471
αM = 0.22
Sample Mean 0.21 0.22 0.22 0.22 0.22
SD (0.00115) (0.00062) (0.00049) (0.00035) (0.00016)
Bias -1.327% -0.431% -0.249% -0.089%v -0.007%
Jarque-Bera test (p-value) 0.8069 0.1961 0.3642 0.8022 0.2799
ϕ = 0.15
Sample Mean 0.14 0.13 0.13 0.13 0.13
SD (0.00327) (0.00185) (0.00143) (0.00100) (0.00047)
Bias -1.005% -1.621% -1.757% -1.836% -2.082%
Jarque-Bera test (p-value) 0.0000 0.0379 0.5345 0.7134 0.7335
αD = 0.21
Sample Mean 0.21 0.18 0.20 0.21 0.19
SD (0.00068) (0.00056) (0.00043) (0.00041) (0.00028)
Bias 0.493% -2.737% -1.099% 0.202% -1.525%
Jarque-Bera test (p-value) 0.0000 0.0113 0.0001 0.0000 0.0000
αW = 0.33
Sample Mean 0.31 0.33 0.34 0.33 0.34
SD (0.00096) (0.00081) (0.00049) (0.00059) (0.00035)
Bias -2.208% 0.068% 0.891% 0.360% 0.770%

Wishart Jarque-Bera test (p-value) 0.0008 0.0000 0.0114 0.0055 0.0000
αM = 0.22
Sample Mean 0.19 0.19 0.19 0.21 0.22
SD (0.00173) (0.00117) (0.00088) (0.00073) (0.00017)
Bias -3.121% -2.985% -3.143% -1.482% 0.032%
Jarque-Bera test (p-value) 0.0000 0.0000 0.0000 0.0000 0.0000
ϕ = 0.15
Sample Mean 0.11 0.14 0.12 0.13 0.12
SD (0.00399) (0.00342) (0.00218) (0.00145) (0.00114)
Bias -3.634% -1.405% -2.519% -2.396% -3.215%
Jarque-Bera test (p-value) 0.3721 0.0000 0.0000 0.0000 0.0016
αD = 0.21
Sample Mean 0.24 0.22 0.21 0.22 0.21
SD (0.00031) (0.00034) (0.00032) (0.00020) (0.00016)
Bias 3.269% 0.936% 0.436% 1.250% -0.288%
Jarque-Bera test (p-value) 0.0491 0.0000 0.1033 0.0000 0.0000
αW = 0.33
Sample Mean 0.33 0.34 0.34 0.32 0.33
SD (0.00056) (0.00041) (0.00029) (0.00021) (0.00012)
Bias 0.325% 0.985% 0.505% -0.601% 0.052%

Matrix F Jarque-Bera test (p-value) 0.0000 0.0182 0.0153 0.2053 0.0000
αM = 0.22
Sample Mean 0.20 0.20 0.22 0.22 0.22
SD (0.00073) (0.00052) (0.00032) (0.00027) (0.00017)
Bias -2.456% -1.755% -0.043% 0.052% -0.413%
Jarque-Bera test (p-value) 0.0000 0.0000 0.1033 0.0000 0.0038
ϕ = 0.15
Sample Mean 0.21 0.16 0.17 0.21 0.14
SD (0.00209) (0.00173) (0.00128) (0.00080) (0.00084)
Bias 5.799% 1.183% 2.042% 6.319% -1.020%
Jarque-Bera test (p-value) 0.1970 0.0000 0.0000 0.0000 0.0000

Notes: The table reports the sample mean of 1000 NLS estimates of each HE–vech-HAR parameter with the corre-
sponding standard deviation in parentheses (at sample sizes T = 1000, 3000, 5000, 10000, 50000). The bias is calculated
as the difference between the sample mean and the true parameter value, multiplied by 100. We also show the p-value
of the Jarque-Bera test for each coefficient and respective sample size, where the entries in boldface indicate the failure
to reject the null hypothesis of normality at the 5% significance level.
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Table 2.3: HE–HAR-DRD Model: N = 1000 MC results in correspondence to three
different distributions

DGP Parameter/Sample Size T = 1000 T = 3000 T = 5000 T = 10000 T = 50000
αD = 0.05
Sample Mean 0.09 0.07 0.07 0.06 0.06
SD (0.01248) (0.00265) (0.00185) (0.00086) (0.00034)
Bias 4.130% 2.370% 2.028% 1.002% 0.517%
Jarque-Bera test (p-value) 0.0000 0.0000 0.0000 0.0000 0.0000
αW = 0.16
Sample Mean 0.16 0.16 0.16 0.16 0.16
SD (0.00185) (0.00088) (0.00068) (0.00047) (0.00021)
Bias 0.273% 0.106% 0.149% -0.029% -0.005%

Normal Jarque-Bera test (p-value) 0.5544 0.9242 0.3741 0.9167 0.5518
αM = 0.56
Sample Mean 0.55 0.55 0.55 0.56 0.56
SD (0.00199) (0.00101) (0.00080) (0.00057) (0.00026)
Bias -1.056% -0.927% -0.604% -0.303% -0.032%
Jarque-Bera test (p-value) 0.5414 0.9225 0.7957 0.2093 0.6409
ϕ = 0.15
Sample Mean 0.06 0.02 0.12 0.08 0.07
SD (0.04148) (0.02834) (0.02192) (0.01367) (0.00599)
Bias -8.599% -12.743% -3.256% -7.105% -8.307%
Jarque-Bera test (p-value) 0.0000 0.0000 0.0000 0.1189 0.5491
αD = 0.05
Sample Mean 0.15 0.03 0.05 0.04 0.05
SD (0.00645) (0.00076) (0.00066) (0.00033) (0.00011)
Bias 10.211% -2.272% 0.039% -1.166% -0.290%
Jarque-Bera test (p-value) 0.0000 0.0000 0.0000 0.0000 0.0000
αW = 0.16
Sample Mean 0.23 0.17 0.16 0.17 0.15
SD (0.00131) (0.00129) (0.00085) (0.00086) (0.00027)
Bias 7.146% 1.422% 0.049% 0.971% -0.780%

Wishart Jarque-Bera test (p-value) 0.0000 0.0000 0.0000 0.0000 0.0000
αM = 0.56
Sample Mean 0.45 0.52 0.54 0.55 0.56
SD (0.00061) (0.00011) (0.00006) (0.00046) (0.00075)
Bias -11.009% -4.354% -2.055% -1.070% 0.190%
Jarque-Bera test (p-value) 0.0000 0.0000 0.0000 0.0000 0.0000
ϕ = 0.15
Sample Mean 1.27 -0.47 0.04 0.14 0.10
SD (0.05209) (0.01711) (0.00742) (0.00286) (0.00110)
Bias 111.601% -62.171% -11.331% -0.750% -4.610%
Jarque-Bera test (p-value) 0.0000 0.0000 0.0000 0.0000 0.0000
αD = 0.05
Sample Mean 0.08 0.06 0.07 0.07 0.06
SD (0.00030) (0.00093) (0.00028) (0.00036) (0.00024)
Bias 3.285% 1.128% 1.945% 1.829% 1.078%
Jarque-Bera test (p-value) 0.0000 0.0000 0.0000 0.0000 0.0000
αW = 0.16
Sample Mean 0.17 0.15 0.15 0.16 0.17
SD (0.00005) (0.00002) (0.00008) (0.00014) (0.00022)
Bias 1.497% -0.578% -1.488% 0.471% 1.088%

Matrix F Jarque-Bera test (p-value) 0.0000 0.0000 0.0000 0.0000 0.0000
αM = 0.56
Sample Mean 0.51 0.52 0.56 0.55 0.54
SD (0.00193) (0.00089) (0.00081) (0.00068) (0.00056)
Bias -5.058% -3.662% 0.055% -0.634% -1.558%
Jarque-Bera test (p-value) 0.0000 0.0000 0.0000 0.0000 0.0000
ϕ = 0.15
Sample Mean 0.51 -0.05 0.18 0.39 0.25
SD (0.00273) (0.01592) (0.00925) (0.00036) (0.00041)
Bias 36.419% -19.616% 3.304% 24.420% 9.630%
Jarque-Bera test (p-value) 0.0000 0.0000 0.0000 0.0000 0.0000

Notes: The table reports the sample mean of 1000 NLS estimates of each HE–HAR-DRD parameter with the corre-
sponding standard deviation in parentheses (at sample sizes T = 1000, 3000, 5000, 10000, 50000). The bias is calculated
as the difference between the sample mean and the true parameter value, multiplied by 100. We also show the p-value
of the Jarque-Bera test for each coefficient and respective sample size, where the entries in boldface indicate the failure
to reject the null hypothesis of normality at the 5% significance level.
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Chapter 3

Asymmetric Models for Realized

Covariances

The contents of this chapter are the result of joint work with Prof. Luc Bauwens

(Université catholique de Louvain) and Prof. Christian Hafner (Université catholique

de Louvain).

3.1 Introduction

Forecasts of the covariance matrix of asset returns are a central input to asset pric-

ing, portfolio allocation, and risk management decisions. Such forecasts can be com-

puted using a multivariate generalized autoregressive conditional heteroskedasticity

(MGARCH) model – see Bauwens et al. (2006) for a survey – that specify the unob-

served covariance matrix as a function of past (usually daily) returns. Forecasts can

also be based on models for realized covariance (RC) matrices, which are ‘observable’

measures of variances and covariances based on high-frequency (intraday) returns,

see e.g., Andersen et al. (2003), Barndorff-Nielsen and Shephard (2004), Barndorff-

Nielsen et al. (2008), Barndorff-Nielsen et al. (2011). Several types of RC matrix

(RCM) models have been introduced in the literature, each facing the need to ensure
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the positive definite(PD)-ness of the RCM forecasts and to avoid parameter prolifer-

ation. In particular, the conditional autoregressive Wishart (CAW) class of models

specifies a probability distribution for the RCM, such that its conditional expectation

is a parametric function of past RC matrices (Gouriéroux et al. (2009)). The parame-

terization of this function is broadly similar to that of MGARCH models, in particular

the BEKK (Baba-Engle-Kent-Kroner)-type (Engle and Kroner (1995); Golosnoy et al.

(2012)) and DCC (dynamic conditional correlation)-type specifications (Engle (2002);

Bauwens et al. (2012)).1

Both RCM and MGARCH models are designed to capture the main properties of

the time series of covariance matrices of asset returns, corresponding to the clustering

and the persistence of the volatilities of financial returns. Another stylized fact,

specific to stock returns, is the negative correlation between returns and volatilities,

initially expounded by Black (1976) and developed by Christie (1982). Based on the

Modigliani-Miller framework, they explain that an unexpected stock price drop raises

the debt-to-equity ratio, i.e., leverage, of a firm, which implies increased riskiness

and higher volatility. The alternative interpretation, commonly referred to as the

volatility feedback effect, was proposed by French et al. (1987) – see also Campbell and

Hentschel (1992) and Wu (2001). It is based on the evidence of a positive correlation

between future volatility and market risk premium. I.e., in the occurrence of an

expected volatility increase, the risk premium increases as well, such that the risk

adverse investors sell the stock, putting a downward pressure on its price. Whatever

interpretation is favoured, it implies that the volatility increases more strongly after a

negative unexpected return than after a positive one of the same magnitude, what has

been named ‘asymmetry’ in volatility or (with some misuse of language) the ‘leverage

effect’.

1Most other RCM models are multivariate generalizations of the heterogenous autoregressive
(HAR) model of Corsi (2009), such as the vech-HAR model derived from Chiriac and Voev (2011)
and the HAR-DRD model of Oh and Patton (2016).
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In this regard, while this type of asymmetry has been widely and diversely in-

corporated in the specification of GARCH models, such as the widely used GJR-

GARCH model of Glosten et al. (1993), this is less the case for RCM models.2 Our

research contribution consists in developing a class of models for RC matrices based

on the BEKK-type CAW model of Golosnoy et al. (2012), to capture the asymmet-

ric responses of the elements of the RCM to shocks, and empirically assessing and

comparing these models.

We introduce the ‘asymmetry’ effect in RC models in two ways. The first one

consists of adding terms to the benchmark specification, which are active if the daily

returns at t − 1 are negative. This is designed in such a way that the conditional

variance of an asset at date t is higher if the daily return of the asset is negative at date

t− 1 than if it is positive. Likewise, the covariance at t between two assets is higher

if the returns are both negative at date t− 1 than if at least one of them is positive.

The conditional threshold autoregressive Wishart (CTAW) model of Anatolyev and

Kobotaev (2018) is of this type. We propose a more flexible model in Section 3.2.1.

The signs of returns to specify an ‘asymmetry’ effect have also been used, with some

noticeable differences, in MGARCH (Kroner and Ng (1998); De Goeij and Marquering

(2004); Cappiello et al. (2006); Audrino and Trojani (2011); Francq and Zaköıan

(2012)), HAR (Qu and Zhang (2022)), and HEAVY models (Bauwens and Xu (2023)).

The second way to introduce the ‘asymmetry’ effect is based on the estimates of

realized variances and covariances via the signs of high-frequency returns, i.e., mea-

sures known as realized semi-variances and semi-covariances proposed by Bollerslev

et al. (2020a) and subsequently used by Bollerslev et al. (2020b) to develop asym-

metric MGARCH and realized GARCH models. These authors show that the RCM

can be decomposed into the sum of three terms, i.e., the positive semi-covariance

term, the negative one, and relevant only for covariances, the mixed one. Instead of

2Univariate realized variance (RV) models that include an asymmetric effect have been developed
by Corsi and Renò (2012), McAleer and Medeiros (2008), Patton and Sheppard (2015).
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assuming that the conditional variance (i.e., the conditional mean of the RCM) of an

asset at date t depends on the realized variance of the same asset at date t − 1, we

assume that it depends additively on the realized positive semi-variance (at t − 1),

with a specific coefficient, and on the realized negative semi-variance, with another

coefficient. If the latter coefficient is larger than the former, an ’asymmetry‘ effect

is present, corresponding to the leverage effect described previously, whereas if the

coefficients are equal, there is no asymmetric effect. A similar specification can be

used for a realized covariance, by assuming that it depends linearly on the three

semi-covariances (positive, negative, mixed) with different coefficients, instead of the

realized covariance (when the three coefficients are equal).3 The detailed definitions

and specifications are provided in Section 3.2.2.

To perform empirical evaluations of the models, we have built a time series of

daily returns and RC matrices based on a high-frequency data set for five stocks

(of the banking sector) and an exchange traded fund (ETF) tracking the S&P500

market index. Statistical evaluation criteria consist of the in-sample fit and out-

of-sample forecast loss functions, i.e., mean squared error and quasi-likelihood. In

order to formally determine whether the quality of the forecasts differs significantly

across the models, we apply the model confidence set (MCS) procedure of Hansen

et al. (2011), which allows us to identify the subset of models that contains the best

forecasting model given a pre-specified level of confidence. We also compare the model

performances from a portfolio allocation perspective, using as loss functions the global

minimum variance portfolio (GMVP) and the mean-variance portfolio (MVP).

Both the in-sample and forecasting results essentially underscore that the asym-

metric models significantly outperform the symmetric benchmark specification in all

cases. Such results underline the importance of accounting for the asymmetries in

3In Bollerslev et al. (2020b), the same specification is used for the conditional mean of the outer
product of the daily return vector, as in the traditional MGARCH and realized GARCH models,
instead of being used for the conditional mean of the RCM, as we do.

26



modelling, estimating, and forecasting RC matrices. Furthermore, the results strongly

indicate that the models that rely on the sign of underlying daily returns to capture

asymmetry not only result in significantly better fitting but also tend to generate

more accurate predictions than the models built upon the semi-covariance decom-

position. This, perhaps surprisingly, suggests that the daily returns provide a more

useful information than the intra-daily returns to account for the ‘asymmetry’ effect

in RC matrices.

The rest of the chapter is organized as follows. Section 3.2 introduces the asym-

metric extensions of the benchmark ‘symmetric’ BEKK-CAWmodel of Golosnoy et al.

(2012). Section 3.3 explains the estimation method. Section 3.4 provides information

on the data used to obtain the empirical results presented in Section 3.5. Section 3.6

concludes.

3.2 Introducing ‘asymmetry’ effects in the BEKK

model

Let us consider the daily RCM Ct, defined as the sum of m outer-products of the

intraday return vectors over the day t (Barndorff-Nielsen and Shephard (2004)), i.e.,

Ct =
m∑
j=1

rj,tr
′
j,t, (3.1)

where rj,t is a n× 1 vector of returns for the j-th time interval of day t.

To capture the temporal and contemporaneous dependences of the elements in

Ct, the BEKK parameterization adopted by Golosnoy et al. (2012) and inspired by

the BEKK-MGARCH model of Engle and Kroner (1995), is used for the conditional

covariance matrix St, defined as the conditional expectation E(Ct|Ft−1) based on the

filtration Ft−1 = {Ct−1, Ct−2, ...}.
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The BEKK equation, with one lag of St and of Ct, is

St = CC ′ + ACt−1A
′ +BSt−1B

′, (3.2)

where C is a n×n full rank lower-triangular matrix and A and B are n×n parameter

matrices, for a total of n(n+1)/2+2n2 parameters to be estimated. Given a positive-

semidefinite (PSD) S0, the symmetry and PD-ness of St are automatically guaranteed.

Following Engle and Kroner (1995), sufficient conditions to identify the benchmark

BEKK-CAW model are positive diagonal elements of the matrix C, and that the first

diagonal elements of A and of B are positive.

The number of parameters is reduced by imposing the matrices A and B to be

diagonal, which leads to a total of n(n + 1)/2 + 2n parameters. In this case, each

conditional covariance only depends on the corresponding lagged realized and condi-

tional covariances. Finally, the scalar version, i.e., A = aIn and B = bIn, requires the

estimation of only n(n+ 1)/2 + 2 parameters.

3.2.1 ‘Asymmetry’ terms based on the signs of daily returns

To introduce ‘asymmetry’ terms in the BEKK-CAW model (3.2) that we consider a

benchmark, we decompose a RCM additively into several parts based on the signs of

daily returns.

Decomposition of a RCM based on the signs of daily returns

We denote by rt,i the daily return of asset i on day t, by I−t = [1{rt,1≤0}, . . . , 1{rt,n≤0}]
′

the indicator vector of the negative daily returns, and by I+t = [1{rt,1>0}, . . . , 1{rt,n>0}]
′

the indicator vector of the positive daily returns. The decomposition of Ct as defined

in (3.1) into positive (CP,t), negative (CN,t), and mixed (CM,t) parts based on the

28



signs of daily returns is then

Ct = CP,t + CN,t + CM,t, where

CP,t = Ct ⊙ I+t I
+′

t , CN,t = Ct ⊙ I−t I
−′

t ,

CM,t = Ct ⊙ (I+t I
−′

t + I−t I
+′

t ),

(3.3)

with ⊙ denoting the Hadamard (element-wise) product of matrices. The decompo-

sition holds because the elements of the matrix I+t I
+′

t + I−t I
−′

t + I+t I
−′

t + I−t I
+′

t are

all equal to 1. The positive and negative parts, i.e., CP,t and CN,t, are PSD; the

qualifier positive (negative) is a shortcut for ‘positively (negatively) signed’. So, it

does not indicate that the off-diagonal elements of CP,t (CN,t) are positive (negative).

The diagonal elements of I+t I
−′

t and I−t I
+′

t , and therefore of CM,t, are always equal

to zero, i.e., the mixed part CM,t is necessarily indefinite. We denote by c•,ij,t the

(i, j)-th entry of C•,t (where • stands for P , N , or M).

Models using the decomposition based on the signs of daily returns

To include an ‘asymmetry’ effect in RC matrices based on the signs of daily returns,

we add to (3.2) a term that uses the negative component CN,t. The conditional

covariance matrix dynamic equation is then

St = CC ′ + ACt−1A
′ + ÃNCN,t−1Ã

′
N +BSt−1B

′, (3.4)

where ÃN is a n×n parameter matrix. This specification is the same as the conditional

threshold autoregressive Wishart (CTAW) model of Anatolyev and Kobotaev (2018)

and in the context of MGARCH models, it corresponds to the multivariate version of

the GJR univariate GARCH model of Glosten et al. (1993). Using the decomposition
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of Ct in (3.3), we parameterize the previous equation equivalently as

St = CC ′ + AP (CP,t−1 + CM,t−1)A
′
P + ANCN,t−1A

′
N +BSt−1B

′, (3.5)

where AP and AN are equal to A and A + ÃN of (3.4), respectively. Note that if

AP = AN := A in (3.5), this model is equivalent to the benchmark symmetric model

(3.2).

To illustrate this model very simply, we consider two assets (n = 2), assuming

that AP = diag(aP11, aP22), AN = diag(aN11, aN22), and B = C = 0, because the

corresponding parameters are irrelevant for the asymmetry terms. Then, the dynamic

equations for the conditional variances s11,t, s22,t, and the conditional covariance s12,t

are

sii,t = a2PiicP,ii,t−1 + a2NiicN,ii,t−1, for i = 1, 2; (3.6)

s12,t = aP11aP22(cP,12,t−1 + cM,12,t−1) + aN11aN22cN,12,t−1. (3.7)

The leverage effect in the variances corresponds to a2Nii > a2Pii (i = 1, 2), i.e., this

implies that the conditional variance (sii,t) increases more if the lagged return (rt−1,i) is

negative than if it is positive, for a given value of the lagged realized variance (cii,t−1),

since cP,ii,t−1 = cii,t−11{rt−1,i>0} and cN,ii,t−1 = cii,t−11{rt−1,i≤0}. For the covariance,

the leverage effect corresponds to aN11aN22 > aP11aP22, which is surely true if the

effect holds for both variances, but may be true also if it holds only for one variance.

Indeed, for a given level of the lagged realized covariance (c12,t−1), the conditional

covariance (s12,t) increases more if the lagged returns (rt−1,i and rt−1,j) are negative

than if they are positive or of opposite signs.

A more flexible model is obtained by removing the constraint of equal coeffi-

cients of cP,12,t−1 and cM,12,t−1 in (3.7), resulting in the covariance equation s12,t =

aP11aP22cP,12,t−1 + aM11aM22cM,12,t−1 + aN11aN22cN,12,t−1. The corresponding more

30



flexible version of (3.5) is

St = CC ′ + APCP,t−1A
′
P + ANCN,t−1A

′
N + AMCM,t−1A

′
M +BSt−1B

′, (3.8)

where AM = (aMij) is a n×n parameter matrix. The scalar version of this formulation

is proposed by Bollerslev et al. (2020b) in the context of realized GARCH models. If

AP = AN = AM := A in (3.8), this model is equivalent to the benchmark symmetric

model (3.2).

Since CM,t = Ct ⊙ (I+t I
−′

t + I−t I
+′

t ), one can split the term AMCM,t−1A
′
M into two

terms with different parameter matrices, A+
M and A−

M , creating a more flexible model.

Extending the scalar version of Bollerslev et al. (2020b), this is done as follows:

St = CC ′ +APCP,t−1A
′
P +A′

NCN,t−1A
′
N +A+

MC+
M,t−1A

+′

M +A−
MC−

M,t−1A
−′

M +BSt−1B
′,

(3.9)

where C+
M,t = Ct ⊙ τ(I+t I

−′

t ), C−
M,t = Ct ⊙ τ(I−t I

+′

t ), and the operator τ(·) sets the

lower triangular part of the matrix argument equal to the upper triangular part.4

The τ(·) operator is needed to obtain the symmetry of the C+
M,t and C−

M,t matrices.

We refer to (3.5) as the tr-BEKK-CAW model (‘tr’ for ‘threshold’), to (3.8) as

the trPNM-BEKK-CAW model, and to (3.9) as the trPNτM-BEKK-CAW, omitting

BEKK-CAW when it is clear that we refer to this class of models. Diagonal and

scalar versions are obtained by restricting the parameter matrices in the same way as

for the model (3.2).

4Following He and Teräsvirta (2002), τ(M) = ivech(vech(M ′)), where vech(·) stacks the lower
triangle of a n× n matrix into a n(n+ 1)/2× 1 vector and ivech(·) is its inverse, thus generating a
symmetric matrix. E.g., for two assets, if I+t = (1 0)′ and I−t = (0 1)′ (the first return is positive,

the second is negative), I+t I−
′

t =

(
0 1
0 0

)
and τ(It

+I−
′

t ) =

(
0 1
1 0

)
.
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3.2.2 ‘Asymmetry’ terms based on the signs of intra-daily

returns

To enable refined intraday asymmetric RC dynamics (Bollerslev et al. (2020b)), we

exploit the semi-covariance decomposition of the RCM into several components.

Semi-covariance decomposition of a RCM

Bollerslev et al. (2020a) provide a decomposition of Ct, as defined in (3.1), into positive

(Pt), negative (Nt), and two mixed (M+
t , M−

t ) realized semi-covariance matrices

defined by using the signs of the underlying intraday returns, extending the idea

of Barndorff-Nielsen et al. (2010) to the multivariate setting. The semi-covariance

matrices are defined as

Pt =
m∑
j=1

r+j,tr
+′

j,t ; Nt =
m∑
j=1

r−j,tr
−′

j,t ;

M+
t =

m∑
j=1

r+j,tr
−′

j,t ; M
−
t =

m∑
j=1

r−j,tr
+′

j,t ,

(3.10)

where r+j,t = rj,t ⊙ I+j,t and r−j,t = rj,t ⊙ I−j,t denote the vectors of positive and negative

intra-daily returns, with I+j,t = [1{rj,t,1>0}, . . . , 1{rj,t,n>0}]
′
and I−j,t = [1{rj,t,1≤0}, . . . , 1{rj,t,n≤0}]

′

denoting the corresponding indicator vectors of the signs of intraday returns.

The positive and negative semi-covariance matrices, i.e., Pt and Nt, are PSD;

the qualifiers positive and negative do not imply that the off-diagonal elements of

these matrices are positive or negative. The mixed components M+
t and M−

t have

zero diagonal elements and, thus, are indefinite, with off-diagonal elements that are

necessarily negative. Obviously,

Ct = Pt +Nt +Mt, where Mt = M+
t +M−

t , (3.11)

given that M+
t = M−′

t .
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The corresponding positive, negative and mixed terms of the decompositions (3.3)

and (3.11) generally differ. They may be equal under specific conditions that are

unlikely to hold in practice. E.g., if rj,t > 0 ∀j, i.e., the intraday returns (of all stocks)

are positive during day t, and the daily return vector rt used to define CP,t is chosen to

be the return over the trading period, i.e.,
∑m

j=1 rj,t, then Pt = CP,t = Ct. Conversely,

if the daily return rt used to extract the positive daily return indicator vector I+t is

the close-to-close return and thus differs from
∑m

j=1 rj,t (unless the overnight return

is equal to zero), then Pt may differ from CP,t. A simple example is developed in

Appendix A.1.

Models using the semi-covariance decomposition

We exploit the realized semi-covariance decomposition of a RCM to define a semi-

BEKK-CAW model for the conditional covariance matrix St corresponding to the

RCM Ct:

St = CC ′ + APPt−1A
′
P + ANNt−1A

′
N + AMMt−1A

′
M +BSt−1B

′, (3.12)

where AP , AN , and AM are n × n parameter matrices, while Pt, Nt, and Mt denote

the positive, negative, and mixed semi-covariance matrices, respectively.

By construction,Mt has zero diagonal elements, implying that the termAMMt−1A
′
M

is irrelevant for the conditional variances. If AP = AN = AM := A, the semi-CAW

model is equivalent to the benchmark symmetric model (3.2).

To illustrate the terms of this model, we write its equations of the bivariate version,

eliminating the constant and BSt−1B
′ terms, and assuming that AP , AN , and AM are

lower triangular (LT), i.e., aP12 = aN12 = aM12 = 0. The triangularity assumption

could be relevant if the first asset is a market index and the second one is a particular

stock so that the market may have an impact on the stock but no impact of the stock
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on the market is allowed:

s11,t = a2P11p11,t−1 + a2N11n11,t−1;

s22,t = a2P22p22,t−1 + a2N22n22,t−1

+ a2P21p11,t−1 + a2N21n11,t−1

+ 2aP21aP22p12,t−1 + 2aN21aN22n12,t−1 + 2aM21aM22m12,t−1;

s12,t = aP11aP22p12,t−1 + aM11aM22m12,t−1 + aN11aN22n12,t−1

+ aP11aP21p11,t−1 + aN11aN21n11,t−1.

(3.13)

In each equation, the first line corresponds to the diagonal model (i.e., when both off-

diagonal elements of AP , AN , and AM are set to zero). It is clear that in the diagonal

model, each conditional variance only depends on the corresponding lagged positive

and negative semi-variances. A larger coefficient a2N11 (a2N22) of the negative semi-

variance than of the positive one a2P11 (a2P22) for the first (second) asset corresponds

to the ‘leverage’ effect. In the LT model, several other terms appear in the particular

asset conditional variance, i.e., two terms that correspond to the effect of the market

positive and negative semi-variances, with the possibility of a cross-leverage effect

(if a2N21 > a2P21), and three terms that correspond to the impacts of the three semi-

covariances, with coefficients that can be of any sign.

The conditional covariance equation has three terms that capture the effect of the

lagged positive, negative, and mixed semi-covariances (p12,t−1, n12,t−1, m12,t−1). It is

possible that the coefficient (aN11aN22 > 0) of the negative semi-covariance (n12,t−1) is

larger than that (aP11aP22 > 0) of the positive one (p12,t−1), which can be interpreted

as a ‘leverage’ effect on the conditional covariance. The coefficient aM11aM22 of the

mixed semi-covariance can be of any sign, since aM11 and aM22 do not appear squared

in the variance equations. The two additional terms of the LT version (in the third line

of the covariance equation) correspond to cross-effects of the market semi-variances,
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with a possibility of a ‘cross-leverage’ effect if aN11aN21 > aP11aP21; these coefficients

can be of any sign.

Like for the trPNM-CAW model, the ‘semi’ model can be made more flexible by

splitting the mixed semi-covariance matrix Mt into its two components M+
t and M−

t

(the positive and negative mixed semi-covariance matrices, respectively, such that

Mt = M+
t +M−

t ) and applying the τ transformation to each component (Bollerslev

et al. (2020a)), i.e.,

St = CC ′ +BSt−1B
′ + APPt−1A

′
P + ANNt−1A

′
N

+A+
Mτ(M+

t−1)A
+′

M + A−
Mτ(M−

t−1)A
−′

M ,

(3.14)

where A+
M and A−

M are n × n are parameter matrices. We refer to this specification

as the semi-τ -BEKK-CAW model. We further discuss the use of the mixed semi-

covariance decomposition in Appendix A.2.

3.3 Estimation

The estimation of the parameters of the models presented in Section 3.2 is carried

out by maximizing a log-likelihood function (LLF). As in Golosnoy et al. (2012), the

latter is based on the assumption that the probability density function of the RC

matrices Ct, conditional on the filtration Ft−1 = {Ct−1, Ct−2, ...}, is Wishart, i.e.,

Ct|Ft−1 ∼ Wn(v, St(θ)/v), (3.15)

where Wn(v, St(θ)/v) denotes the n-dimensional central Wishart distribution with

v degrees of freedom, with v ≥ n, and PD n × n scale matrix St(θ)/v, implying

E(Ct|Ft−1) = St(θ); θ is the vector of parameters appearing in the equation defining

St. E.g., for equation (3.2), θ consists of the elements of C, A, and B.
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The LLF for T observations is

LLF (θ|C1, . . . , CT ) = −ν

2

T∑
t=1

{
log |St(θ)|+ trace

[
St(θ)

−1Ct

]}
. (3.16)

Bauwens et al. (2012) show that the parameter v can be treated as nuisance

parameter, meaning that it can be fixed to an arbitrary value (in practice, 1) to

estimate θ. They also show that the Wishart-based LLF provides a quasi-maximum

likelihood (QML) estimator for the parameters θ, under suitable conditions, so that

the QML estimator is consistent.

The maximization of the LLF is typically difficult due to the dimension of θ,

denoted by dθ, which is of order n2. E.g., in the case of (3.14), dθ = n(n+1)/2+5n2(=

201 if n = 6); in the scalar version of the same model dθ = n(n+ 1)/2 + 5(= 26) and

in the diagonal version, dθ = n(n + 1)/2 + 5n(= 51). To get rid of the n(n + 1)/2

parameters of the C matrix in the maximization of the LLF, it is possible to estimate

CC ′ consistently in a first step. In a second step, the remaining parameters are

estimated by QML, conditional on the first step estimates. This procedure reduces

the number of parameters by n(n+ 1)/2 in the second step. The estimation of C in

the first step is called ‘covariance targeting’. It is based on writing the constant term

(CC ′) of each dynamic equation for St as a function of E(Ct), and replacing the latter

by the sample mean of the Ct matrices. The covariance targeting parameterizations

of the models are defined in Appendix A.3. When targeting is used, it is understood

that θ in (3.16) does not include the elements of C.
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3.4 Data construction and description

For the subsequent empirical analyses, we have constructed the time series of daily

RC matrices with the corresponding decompositions (3.3) and (3.11) into positive,

negative, and mixed matrices, based on a high-frequency data set for the SPDR

S&P500 (SPY or Spyder), an exchange traded fund that tracks the S&P500 index,

and five stocks of the banking sector, i.e., Bank of America Corp. (BAC), Citigroup

Inc. (C), Goldman Sachs Group Inc. (GS), JPMorgan Chase & Co. (JPM), and

Wells Fargo & Co. (WFC).5

To avoid the measurement drawbacks due to microstructure effects when sampling

returns at very high frequencies, we compute each daily realized (semi-)covariance

matrix as the sum of the outer products of the five-minute log-return vectors of the

trading period of the day. Given the high liquidity of all the stocks, the effect of

non-synchronicity is rather negligible at the chosen frequency; the synchronization

was done globally for all the stocks, using the closest prior price. The sample period

is January 3, 2012 - December 31, 2021, resulting in 2517 observations.

Table 3.1 reports, for each asset, the time series means and standard deviations of

the realized variances (annualized in percentage, i.e., multiplied by 252 and by 100),

and of their ‘positive’ and ‘negative’ components used in the two broad classes of

asymmetric models. The same statistics for the squared close-to-close and open-to-

close log-returns of each asset are shown in the first two rows.

5The data provider is the AlgoSeek company (30 Wall Street, New York, NY, 10005, USA). The
data provided to us by Algoseek are the prices of the assets, observed every minute during the
trading period (9:30-16:00), compiled from the trades that occurred in sixteen US exchanges and
marketplaces.
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Table 3.1: Time series means and standard deviations (between parentheses) of real-
ized variances, their positive and negative decompositions, and squared daily returns

Asset SPY BAC C GS JPM WFC

r2cc 2.63 (11.98) 9.87 (32.75) 10.44 (40.77) 7.71 (27.07) 7.02 (28.64) 7.92 (30.00)

r2oc 1.31 (3.75) 5.51 (13.07) 5.47 (13.66) 4.45 (10.60) 3.54 (7.91) 4.23 (11.74)

RV 5.16 (26.73) 5.45 (9.70) 5.78 (14.12) 4.62 (8.35) 4.06 (9.76) 4.63 (11.08)

P 2.55 (13.16) 2.77 (5.36) 2.89 (7.30) 2.36 (4.55) 2.08 (5.25) 2.34 (6.14)

N 2.61 (13.61) 2.68 (4.74) 2.89 (7.30) 2.26 (4.16) 1.99 (4.73) 2.29 (5.41)

CP -cc 2.43 (17.36) 2.70 (7.18) 2.68 (7.89) 2.29 (6.31) 1.93 (6.32) 2.28 (8.66)

CN -cc 2.73 (20.65) 2.75 (7.57) 3.10 (12.39) 2.33 (6.37) 2.13 (7.97) 2.35 (7.66)

CP -oc 2.71 (18.99) 2.74 (7.86) 2.73 (8.74) 2.37 (6.62) 2.00 (6.88) 2.35 (9.02)

CN -oc 2.45 (19.15) 2.71 (6.86) 3.05 (11.81) 2.25 (6.05) 2.06 (7.49) 2.28 (7.22)

r2cc: squared close-to-close daily return; r2oc: squared open-to-close daily return; RV : realized variance; P : positive
semi-variance; N : negative semi-variance; CP : RV if daily return is positive, 0 if negative; CN : RV if daily return is
negative, 0 if positive; the suffixes -cc and -oc indicate that the different terms of the decomposition (3.3) are based
on the signed daily close-to-close and open-to-close returns, respectively.

Regarding the statistics reported in Table 3.1, several comments are worth making:

1. In each row, the time series means are comparable between the six assets, ex-

cept for SPY squared returns. There is more heterogeneity in the standard

deviations. I.e., due to more extreme values, those for SPY are larger than for

the banks.

2. The average positive semi-variance (P ) of each asset is a bit larger than the

average positive component (CP -cc), and the average N is smaller than the

corresponding CN -cc (since P +N = CP +CN = C). Correspondingly, the ratio

P/C is slightly over 50% (except for SPY), and the ratio CP -cc/C under 50%.

3. The average standard deviations of CP -cc exceed those of P (by 51% on average

over the six assets), and likewise, but less strongly, for CN -cc with respect to N

(5% on average).

4. CP -cc is smaller than CP -oc (by 10% for SPY, and 3% for the other assets),

hence CN -cc is larger than CN -oc.
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5. Except for SPY, each average realized variance (covering the open-to-close trad-

ing period), is only a fraction of the corresponding average squared close-to-close

returns (between 55 and 60%), but it is much closer to the average squared open-

to-close returns. Also visible are the larger standard deviations of the time series

of squared close-to-close returns compared to those of the realized variances.
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SPY realized variance positively signed daily returns component 

SPY realized variance negatively signed daily returns component 

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
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SPY realized variance negatively signed daily returns component 

Figure 3.1: Annualized realized variances of SPY and the terms of their decomposition (3.3) using the signed daily
close-to-close returns
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Figure 3.2: Annualized realized variances of SPY and the terms of their decomposition (3.11)
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Figure 3.3: Annualized realized variances of JPM and the terms of their decomposition (3.3) using the signed daily
close-to-close returns
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Figure 3.4: Annualized realized variances of JPM and the terms of their decomposition (3.11)

Figures 3.1-3.4 show the time series of the realized variances of SPY and JPM,

and the components of their decompositions defined by (3.3), i.e., using close-to-close

returns, and (3.11). They illustrate the occurrence of a few extreme values, either

isolated (e.g., for JPM, on October 10, 2020) or clustered (mainly in March 2020). The

extreme value of the SPY realized variance (on October 17, 2017) is fully attributed

to its positive component in the decomposition (3.3) due to a positive return on the

day, and in almost equal proportions to the positive and negative semi-variances in

the decomposition (3.11). More generally, the profiles of the series on the two figures

relative to the same asset illustrate that the two decompositions differ.

This is more visible in Figure 3.5, which shows a zoom of the realized volatility of

SPY and its decompositions during the year 2020, with the very high volatility period

starting around the middle of February. One can see that in the decomposition using

the signed daily returns (right graphs), the realized volatility (in red on each graph)

of each day is fully attributed either to the positively signed component (in blue, top
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right graph) or to the negatively signed one (in black, bottom right graph). In the

decomposition into semi-variances, each realized volatility (in red) is split into a part

attributed to the positive semi-variance (in blue, top left graph) and the other to the

negative semi-variance (in black, bottom left graph).
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Figure 3.5: Annualized realized variances of SPY and their decompositions: zoom on the year 2020

In Appendix A.5, Table A5.1 shows the time series means and standard devia-

tions of the realized covariances between the six assets and their decomposition into

semi-covariances, Table A5.2 shows the analogous statistics with respect to the de-

composition using the signed daily close-to-close returns, and Table A5.3 the same

information when the signed open-to-close returns are used. Table 3.2 contains rep-

resentative extracts from the tables in the Appendix, for the asset pairs SPY-BAC

and BAC-JPM.
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Several comments can be made:

1. The average realized covariances (C) and their average components (in the

other columns) are smaller for SPY-BAC than for BAC-JPM. This holds also

for the standard deviations. The results in the full tables (in Appendix A.5)

show that the statistics for the five pairs with SPY as the first asset and a bank

as the second asset show a relative homogeneity, and likewise for the fifteen

pairs involving two banks, while the levels of the statistics in the two groups

are different.

2. A noticeable difference is the opposite signs of M and CM . Each average mixed

covariance (M) is negative because the mixed covariances of each day are nega-

tive by construction. The fact that each average mixed covariance term (CM) is

positive is not a necessity, but a feature of the data, i.e., the sample correlations

(and covariances) between the assets are positive, which is not a surprise since

five assets are in the same sector and the first one is tracking a market index.

Thus, we observe that the inequalities M < 0 < CM are confirmed for each

asset pair. Hence, P + N , which is positive, must be larger than CP + CN ,

which is also positive. This is even holding term by term, as stated below.

3. Each average positive semi-covariance (P ) is larger than the corresponding av-

erage positive component (CP ), and each average N is larger than the corre-

sponding CN .

4. The two parts M+ and M− of M are close; likewise for the two parts C+
M and

C−
M of CM .

5. Comparing the averages of the terms of decompositions using the close-to-close

and open-to-close returns reveals that CM is larger for open-to-close than for

close-to-close, and correspondingly, CP + CN , but mainly CN , is smaller. This

holds for all pairs, as can be seen in the full tables of Appendix A.5.
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Table 3.2: Time series means and standard deviations (between parentheses) of real-
ized covariances and the terms of three decompositions

Asset Pair C P N M M+ M−

SPY-BAC 1.58 (4.29) 1.00 (2.91) 0.98 (2.51) -0.41 (1.77) -0.20 (0.82) -0.21 (0.99)

BAC-JPM 3.44 (7.27) 1.84 (4.05) 1.78 (3.73) -0.18 (0.36) -0.09 (0.21) -0.09 (0.18)

Asset Pair C CP -cc CN -cc CM -cc C+
M -cc C−

M -cc

SPY-BAC 1.58 (4.29) 0.60 (3.21) 0.69 (3.00) 0.29 (0.83) 0.14 (0.56) 0.15 (0.65)

BAC-JPM 3.44 (7.27) 1.45 (5.07) 1.57 (5.70) 0.42 (1.30) 0.19 (0.91) 0.22 (0.97)

Asset Pair C CP -oc CN -oc CM -oc C+
M -oc C−

M -oc

SPY-BAC 1.58 (4.29) 0.61 (3.41) 0.63 (2.49) 0.34 (1.46) 0.16 (0.82) 0.18 (1.24)

BAC-JPM 3.44 (7.27) 1.42 (5.35) 1.45 (5.00) 0.57 (2.59) 0.28 (1.71) 0.29 (1.99)

C: realized covariance. Corresponding to decomposition (3.11): P : positive semi-covariance; N : negative semi-
covariance; M : total mixed semi-covariance; M+ and M−: positive and negative mixed semi-covariances. Corre-
sponding to decomposition (3.3): CP : positive part; CN : negative part; CM : total mixed part; C+

M and C−
M :

positive and negative mixed parts. The suffixes -cc and -oc in the last two panels indicate that the different terms of
the decomposition (3.3) are based on the signed daily close-to-close and open-to-close returns, respectively.

Figures 3.6 and 3.7 show the time series of the realized covariances between SPY

and BAC and the components of their decompositions (3.3), i.e., using the close-

to-close daily returns, and (3.11). The peaks of the covariances occur at the same

periods as those of the variances. The covariances are almost always positive, but

a close look at the (identical) top left graphs reveals a few isolated and slightly

negative covariances. In the decomposition based on the signed daily returns (Figure

3.6), these negative values are attributed to one of the three components (as is the

case of any positive value). In the decomposition based on the intra-daily returns

(Figure 3.7), positive and negative semi-covariances are positive, and the mixed one

is negative (by definition). The two figures illustrate the differences between the two

decompositions, in particular in their mixed components.
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Figure 3.6: Annualized realized covariances of SPY and JPM and the components of their decomposition (3.3) using
the signed daily close-to-close returns
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Figure 3.7: Annualized realized covariances of SPY and JPM and the semi-covariance components of their decompo-
sition (3.11)
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Table 3.3 shows the means of the indicators of the signed daily close-to-close and

open-to-close returns; the corresponding statistics of the two types of returns are close.

The daily close-to-close returns of SPY are positive for 56% of the days of the sample

period, and 51 or 52% for the other stocks (column 2); negative returns occur in the

corresponding complementary percentages (column 3). In column 4, the value 0.406

for SPY is indicating that in 40.6% of the days, both SPY and at least one of the five

other stocks have positive returns; the other values in the same columns are close to

41%. In column 5, the values fluctuate between 0.333 and 0.38; the latter (for stock

C) means that returns of C and at least one of the other assets were simultaneously

negative. The values in the last column are the proportions of days when the return of

the stock (in the first column) has a different sign than at least one of the other stocks.

Table 3.3: Time series means of indicators of signed daily returns

Ticker diag. I+I+
′

diag. I−I−
′

off-diag. I+I+
′

off-diag. I−I−
′

I+I−
′
+ I−I+

′

Close-to-close returns

SPY 0.557 0.443 0.406 0.333 0.261

BAC 0.521 0.479 0.418 0.373 0.209

C 0.512 0.488 0.418 0.380 0.202

GS 0.521 0.479 0.412 0.368 0.220

JPM 0.515 0.485 0.416 0.376 0.208

WFC 0.512 0.488 0.402 0.365 0.233

Open-to-close returns

SPY 0.548 0.452 0.384 0.319 0.297

BAC 0.510 0.490 0.397 0.364 0.239

C 0.514 0.486 0.399 0.362 0.239

GS 0.519 0.481 0.393 0.352 0.255

JPM 0.522 0.478 0.403 0.359 0.238

WFC 0.514 0.486 0.385 0.348 0.267

diag. I+I+
′
: indicator of positive returns; diag. I−I−

′
: indicator of negative returns; off-diag. I+I+

′
and off-diag.

I−I−
′
: for the asset indicated in the table row, the average of the five time series means of the off-diagonal elements

of the indicated matrix. See comments in the text.
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3.5 Empirical results

3.5.1 Estimation results

In this part of the empirical results, we present and interpret the estimates of the

symmetric and five asymmetric BEKK-CAW models defined in Section 3.2. Each

model is estimated in three versions, i.e., scalar, diagonal, and partly lower triangular,

which are explained below. The models are estimated for six assets on the dataset of

2517 observations described in Section 3.4, corresponding to the period from January

3, 2012 to December 31, 2021. The constant terms are estimated by covariance

targeting and the remaining parameters by maximizing the Wishart quasi-likelihood

function.

The covariance targeting formulas of the models presented in their general version

in Section 3.2 are derived in Appendix A.3. In the scalar versions, the parameter

matrices, except the constant terms, are restricted to be scalar (see Appendix A.4

for the covariance targeting formulas and the PD-ness conditions). In the diagonal

versions, the parameter matrices, except the constant terms, are restricted to be

diagonal, so that, like in the scalar versions, there is no influence of the SPY asset on

the five banking stocks. To include such effects, we modify each diagonal parameter

matrix by adding five parameters in the first column. E.g., the matrix AP in (3.12)

is parameterized as

AP =



aP11 0 0 0 0 0

aP21 aP22 0 0 0 0

aP31 0 aP33 0 0 0

aP41 0 0 aP44 0 0

aP51 0 0 0 aP55 0

aP61 0 0 0 0 aP66


, (3.17)

47



and thus appears as partly lower triangular (PLT). The same extensions are intro-

duced in the matrices A, AN , AM , A+
M , A−

M , but not B that remains diagonal. The

variance equation of asset 1 (SPY) is then like written in the first equation of (3.13),

and the variance equation of each other asset is as written in the second equation of

(3.13), replacing every index 2 by another value (3, 4, 5, 6) for another asset. The

covariance equations between asset 1 and the other assets are as written in the third

equation of (3.13) for the pair 1-2 (replacing 2 by 3, 4, 5, 6, for assets 3 to 6). Each

of these five covariance equations includes two terms that correspond to the impact

of the semi-variances of asset 1, due to the introduction of the parameters a•j1. The

ten covariance equations between the assets i and j (from 2 to 6) do not include these

two terms and are like

sij,t = aPiiaPjjpij,t−1 + aMiiaMjjmij,t−1 + aNiiaNjjnij,t−1. (3.18)

For the other models, the variables that multiply the coefficients of the variance

and covariance equations are changed according to the specification of each model

presented in Section 3.2.

The full sets of estimates of each model are reported in Tables A6.1-A6.3 of Ap-

pendix A.6. In these tables, the estimates of the models tr, trPNM, and trPNτM

are obtained with the data based on the decomposition (3.3) of Ct that uses the

close-to-close returns. The estimates of the same models with the data based on the

decomposition that uses the open-to-close returns are reported in Tables A7.1-A7.3

of Appendix A.7. These models are designated by troc, trPNMoc, and trPNτMoc

in the sequel.

48



In-sample fit comparisons and some hypothesis tests

Table 3.4 collects three in-sample fit criteria for each model: the maximized log-

likelihood function (LLF), the Akaike information criterion (AIC), and the Bayesian

information criterion (BIC). The LLF values are not always comparable (see further

down about this). In view of the information criteria, several conclusions can be

drawn:

1. The tr, trPNM, and trPNτM models have smaller AIC and BIC than the

corresponding models troc, trPNMoc, and trPNτMoc. Using the close-to-

close returns, instead of the open-to-close ones, improves the in-sample fit of

each model.

2. According to AIC, each asymmetric model has a better fit than the symmetric

benchmark model. According to BIC, this is also the case for the comparisons

that do not involve the oc models, where the exceptions are the following. For

the scalar versions, sym has a lower BIC than semi and semi-τ , and for the

PLT versions, sym has a lower BIC than trPNτM and semi-τ .

3. Among the asymmetric models, for each version and both information criteria,

the best fitting model is among tr, trPNM, and trPNτM.

4. The extensions of semi to semi-τ do not improve the information criteria,

i.e., the likelihood improvements are insufficient to counter the increases in the

number of parameters. For the extensions of trPNM to trPNτM, the AIC

values indicate a better fit of the latter in the scalar and PLT versions.
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Table 3.4: Maximum log-likelihood function (LLF), AIC, and BIC values of estimated
BEKK-CAW models

sym tr trPNM trPNτM semi semi-τ troc trPNMoc trPNτMoc

LLF-scalar -940.88 -919.30 -901.22 -897.39 -934.15 -932.78 -938.76 -934.44 -924.82

LLF-diagonal -929.52 -887.79 -835.76 -834.41 -856.09 -852.68 -922.08 -913.90 -900.21

LLF-PLT -926.78 -842.03 -822.42 -810.29 -837.69 -833.30 -879.97 -864.14 -858.24

AIC-scalar 9.490 9.473 9.460 9.458 9.486 9.486 9.489 9.486 9.479

AIC-diagonal 9.489 9.460 9.424 9.427 9.440 9.442 9.488 9.486 9.480

AIC-PLT 9.491 9.432 9.425 9.424 9.437 9.442 9.462 9.458 9.462

BIC-scalar 9.494 9.480 9.469 9.469 9.495 9.497 9.496 9.496 9.491

BIC-diagonal 9.517 9.502 9.479 9.497 9.496 9.511 9.529 9.541 9.549

BIC-PLT 9.530 9.497 9.515 9.540 9.528 9.558 9.527 9.549 9.578

LLF values have been shifted by adding 11,000. The values in bold correspond to the best model of each row.

Table 3.5 reports the likelihood ratio (LR) statistics for testing the null hypoth-

esis of a simpler version against a more complex one that nests it, not considering

the oc models. Each LR statistics is assumed to be asymptotically chi-squared, the

degrees of freedom are indicated below each LR value, and the corresponding p-value

in the next row. Based on the p-values, each diagonal version significantly improves

the corresponding scalar version, and each PLT version improves the corresponding

diagonal, except for sym, and scalar versions. Note that for the sym model, the

p-values are higher than for the asymmetric ones.
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Table 3.5: Likelihood ratio tests of scalar versus diagonal, diagonal versus PLT, and
scalar versus PLT

sym tr trPNM trPNτM semi semi-τ

LR s/d 22.72 63.02 130.92 125.96 156.12 160.20

df s/d 10 15 20 25 20 25

p s/d 0.012 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

LR d/plt 5.48 91.52 26.68 48.24 36.80 38.76

df d/plt 5 10 15 20 15 20

p d/plt 0.36 < 0.01 0.032 < 0.01 < 0.01 < 0.01

LR s/plt 28.2 154.54 157.6 174.2 192.92 198.96

df s/plt 15 25 35 45 35 45

p s/plt 0.02 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

LR s/d, df s/d, p s/d: respectively, likelihood ratio statistics, degrees of freedom, p-value for testing the scalar model
against the diagonal one; s/plt (d/plt) is for testing the scalar (diagonal) model against the partly lower triangular
(plt) one.

Table 3.6 reports the LR statistics and the associated degrees of freedom of the

possible nesting tests in each version of the models, not considering the oc models.

Each null hypothesis cannot be rejected at the 1% level of significance. Note that

some pairs of models are not nested, e.g., trPNM and trPNτM, semi and semi-

τ , any model in the set (tr, trPNM, trPNτM) and any model in the set (semi,

semi-τ) since the two sets use different data. However, even if this is the case, we can

compare, equivalently to using an information criterion, the maximized log-likelihood

values of models that have the same number of parameters since the penalty term of

a given information criterion does not differ. E.g., in the scalar versions, trPNτM

has 35 likelihood points more than semi-τ , and trPNM has 33 more than semi.

Table 3.6: Likelihood ratio statistics and their degrees of freedom for hypotheses
making some models restricted cases of the other

model version

nested nesting H0 scalar diagonal PLT

sym tr AP = AN in (2.7) 43.2 (1) 83.5 (6) 169.5 (11)

sym trPNM AP = AN = AM in (3.8) 79.3 (2) 188 (12) 209 (22)

sym semi AP = AN = AM in (3.12) 13.5 (2) 146 (12) 178 (22)

tr trPNM AP = AM in (3.8) 36.2 (1) 104 (6) 39.2 (11)

The p-value of each test is below 0.01, assuming a chi-squared distribution, with the degrees of freedom reported in
parentheses beside the corresponding LR statistics.
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Interpretations of the estimates

The estimates reported in the tables of Appendices A.6 and A.7 for the diagonal and

PLT versions of different models are difficult to interpret, because the coefficients of

the variables that appear in the conditional variance and covariance equations are

nonlinear functions of the parameters that are estimated, as illustrated, e.g., by the

equations (3.13) and (3.18) for the semi model. In Tables 3.7-3.10, we report the

estimates in an interpretable way, without considering the oc models.

In Table 3.7, we show the estimated coefficients, except the constant terms, that

appear in the variance equations of all models. Since the diagonal and PLT versions of

the different models have six variance equations with different parameters, we report

the estimates of the variance equation for SPY (asset 1), and only the averages of the

estimates for the five banking assets (numbered 2 to 6). Indeed, the estimates for the

banks are close to each other, but rather different from those of SPY. For the latter,

the diagonal element of B is higher than for the banking stocks, and correspondingly

the parameters of the AP and AN matrices are smaller. These differences reflect

the fact that the conditional volatility of SPY is smoother than for the banks, while

the bank conditional volatilities are more sensitive to the lagged realized volatility

changes.

By definition, the symmetric (sym) model has the same parameters for the lagged

cP,ii,t−1 and cN,ii,t−1 variables, i.e., its variance equations can be written as (3.6),

where a2Pii = a2Nii. The estimates reported in Table 3.7 show that for the asymmetric

models, these coefficients differ, with a2Nii in most cases much larger than a2Pii. There

are minor exceptions to this for assets 2, 3, and 4 in the diagonal and PLT versions of

both semi models, as can be seen in the tables of Appendix A.6. Hence, the leverage

effect is essentially confirmed in the variance equations.
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Table 3.7: Variance equations of scalar, diagonal, and PLT BEKK-CAW models:
average coefficients of variables present in all models

Coeff: b2ii a2Pii a2Nii

Model Version Asset sii,t−1 cP,ii,t−1 cN,ii,t−1

scalar 1-6 0.78 0.20 0.20

diagonal 1 0.75 0.02 0.02

sym diagonal 2-6 0.42 0.12 0.12

PLT 1 0.84 0.16 0.16

PLT 2-6 0.66 0.32 0.32

scalar 1-6 0.79 0.17 0.22

diagonal 1 0.70 0.004 0.07

tr diagonal 2-6 0.54 0.04 0.10

PLT 1 0.86 0.08 0.22

PLT 2-6 0.71 0.26 0.30

scalar 1-6 0.79 0.14 0.23

diagonal 1 0.76 0.004 0.05

trPNM diagonal 2-6 0.51 0.06 0.11

PLT 1 0.89 0.05 0.21

PLT 2-6 0.71 0.24 0.32

scalar 1-6 0.83 0.11 0.20

diagonal 1 0.76 0.004 0.05

trPNτM diagonal 2-6 0.50 0.06 0.11

PLT 1 0.88 0.05 0.25

PLT 2-6 0.70 0.24 0.34

sii,t−1 pii,t−1 nii,t−1

scalar 1-6 0.78 0.14 0.26

diagonal 1 0.66 0.03 0.10

semi diagonal 2-6 0.38 0.13 0.24

PLT 1 0.82 0.13 0.33

PLT 2-6 0.62 0.33 0.45

scalar 1-6 0.78 0.14 0.26

diagonal 1 0.66 0.02 0.10

semi-τ diagonal 2-6 0.38 0.13 0.24

PLT 1 0.82 0.13 0.33

PLT 2-6 0.61 0.35 0.45

Each row corresponds to the conditional variance equation of the model identified in the first two columns. For a
scalar model, the coefficients are the same for assets 1 to 6; for a diagonal and PLT model, the coefficients are reported
for assets 2 to 6 as the means of the coefficients for these 5 assets. The coefficients, as defined in the first row, are
computed using the estimates reported in Table A6.1 for the scalar models, A6.2 for the diagonal models, and A6.3
for the PLT models. Each coefficient multiplies the variable written in row 2 below it for the models of the first four
blocks and the variable shown above the ‘semi’ model for the last two blocks. For PLT models and assets 2-6, the
additional terms of the variance equations are reported in Table 3.8.

53



Table 3.8: Variance equations of PLT BEKK-CAW models: average coefficients of
additional terms for assets 2-6

Coefficient Variable sym tr trPNM trPNτM Variable semi semi-τ

a2Pi1 cP,11,t−1 0.00084 0.0012 0.0031 0.0035 p11,t−1 0.0034 0.0059

a2Ni1 cN,11,t−1 0.00084 0.00034 0.0029 0.00075 n11,t−1 0.00089 0.0013

2aPi1aPii cP,1i,t−1 -0.025 0.022 0.035 0.0035 p1i,t−1 -0.0022 -0.059

2aNi1aNii cN,1i,t−1, -0.025 0.017 -0.018 0.030 n1i,t−1 -0.0025 0.0022

2aMi1aMii cM,1I,t−1, -0.025 0.022 0.11 - m1i,t−1 -0.15 -

2a+Mi1a
+
Mii c+M,1i,t−1 - - - 0.26 τ(m+

1i,t−1) - -0.15

2a−Mi1a
−
Mii c−M,1i,t−1 - - - -0.06 τ(m−

1i,t−1) - -0.21

The coefficient values for each model are computed using the estimates reported in Table A6.3 and the coefficients
as defined in the first column, corresponding to the variables in the second column for the models in columns 3 to 6,
and the variables in column 7 for the last two models.

In Table 3.8, we report the average estimated coefficients of the additional terms

that appear only in the variance equations of the PLT models of the five banking

stocks, due to the introduction of the off-diagonal parameters in the first column of

the A matrices, as shown in (3.17). The coefficients (a2Pi1 and a2Ni1), measuring the

impact of the positive and negative components of the lagged realized variance of

SPY on the other asset variances, are very small and do not reveal a cross-leverage

effect. The coefficients in the last five rows of the table correspond to the impacts of

components of covariance terms, being negligible only for the sym and tr models.

In Tables 3.9 and 3.10, we report the average estimated coefficients of the covari-

ance equations. For the diagonal and PLT versions, we report separately the averages

for the five covariance equations between asset 1 and the five banking stocks, and the

averages for the ten equations between the five banking stocks. We find an asym-

metric effect in the covariance equations, i.e., aNiiaNjj is always larger than aPiiaPjj

and aMiiaMjj, with a single and minor exception for the latter. Moreover, the condi-

tional covariances between the five banks are less smooth and more reactive to lagged

realized covariance terms than the covariances between the banks and SPY. The ad-

ditional terms in these five covariances of the PLT models, i.e., last two columns of

Table 3.10, have a very small impact.
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Table 3.9: Covariance equations of scalar, diagonal, and PLT models, part 1

Coeff: aPiiaPjj aNiiaNjj aMiiaMjj a+Miia
+
Mjj a−Miia

−
Mjj

Model Version Asset cP,ij,t−1 cN,ij,t−1 cM,ij,t−1 c+M,ij,t−1 c−M,ij,t−1

scalar 1-6 0.20 0.20 0.20 -

diagonal 1-other 0.05 0.05 0.05 -

sym diagonal 2-6 0.12 0.12 0.12 -

PLT 1-other 0.22 0.22 0.22 -

PLT 2-6 0.32 0.32 0.32 -

scalar 1-6 0.17 0.22 0.17 -

diagonal 1-other 0.01 0.08 0.01 -

tr diagonal 2-6 0.04 0.09 0.04 -

PLT 1-other 0.15 0.26 0.15 -

PLT 2-6 0.26 0.30 0.26 -

scalar 1-6 0.14 0.23 0.18 -

diagonal 1-other 0.02 0.07 0.04 -

trPNM diagonal 2-6 0.06 0.11 0.08 -

PLT 1-other 0.11 0.26 0.26 -

PLT 2-6 0.24 0.32 0.27 -

scalar 1-6 0.11 0.20 - 0.15 0.17

diagonal 1-other 0.02 0.07 - 0.05 0.04

trPNτM diagonal 2-6 0.06 0.11 - 0.08 0.08

PLT 1-other 0.11 0.29 - 0.30 0.19

PLT 2-6 0.24 0.33 - 0.28 0.28

pij,t−1 nij,t−1 mij,t−1 τ(m+
ij,t−1) τ(m−

ij,t−1)

scalar 1-6 0.14 0.26 0.17 -

diagonal 1-other 0.06 0.14 0.02 -

semi diagonal 2-6 0.12 0.22 0.002 -

PLT 1-other 0.20 0.38 0.05 -

PLT 2-6 0.33 0.43 0.12 -

scalar 1-other 0.14 0.26 - 0.21 0.15

diagonal 1-other 0.05 0.15 - 0.02 0.50

semi-τ diagonal 2-6 0.12 0.22 - 0.00 0.37

PLT 1-other 0.21 0.38 - 0.03 -0.01

PLT 2-6 0.34 0.44 - 0.13 0.00

Each row corresponds to the conditional covariance equation of the model identified in the first two columns. For a
scalar model, the coefficients are the same for all covariance equations. For a diagonal and PLT ‘1-other’ model, the
reported coefficient values are the means of the coefficients of the 5 covariance equations between asset 1 and assets
2 to 6. For a diagonal and PLT ‘2-6’ model, the reported coefficient values are the means of the coefficients of the 10
covariance equations between the assets 2 to 6. The coefficients, as defined in the first row, are computed using the
estimates reported in Table A6.1 for the scalar models, A6.2 for the diagonal models, and A6.3 for the PLT models.
Each coefficient multiplies the variable written in row 2 below it for the models of the first four blocks and the variable
shown above the ‘semi’ model for the last two blocks.
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Table 3.10: Covariance equations of scalar, diagonal, and PLT models, part 2

Coeff: biibjj aP11aPi1 aN11aNi1

Model Version Asset sij,t−1 cP,11,t−1 cN,11,t−1

scalar 1-6 0.78 - -

diagonal 1-other 0.55 - -

sym diagonal 2-6 0.41 - -

PLT 1-other 0.75 -0.0088 -0.0088

PLT 2-6 0.66 - -

scalar 1-6 0.79 - -

diagonal 1-other 0.61 - -

tr diagonal 2-6 0.55 - -

PLT 1-other 0.78 0.0061 0.0076

PLT 2-6 0.71 - -

scalar 1-6 0.79 - -

diagonal 1-other 0.62 - -

trPNM diagonal 2-6 0.50 - -

PLT 1-other 0.79 0.0077 -0.0073

PLT 2-6 0.71 - -

scalar 1-6 0.83 - -

diagonal 1-other 0.62 - -

trPNτM diagonal 2-6 0.50 - -

PLT 1-other 0.78 0.0099 0.0130

PLT 2-6 0.70 - -

Variable mij,t−1 p11,t−1 n11,t−1

scalar 1-6 0.78 - -

diagonal 1-other 0.50 - -

semi diagonal 2-6 0.38 - -

PLT 1-other 0.71 -0.00078 0.0000

PLT 2-6 0.61 - -

scalar 1-6 0.78 - -

diagonal 1-other 0.50 - -

semi-τ diagonal 2-6 0.38 - -

PLT 1-other 0.71 -0.017 0.010

PLT 2-6 0.61 - -

See note below Table 3.9.

Appendix A.8 illustrates graphically the estimated variance equations of SPY and

JPM and the covariance equations between them for the two models.
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3.5.2 Forecast comparisons using statistical loss functions

To compare the out-of-sample forecasting accuracy of the symmetric and asymmetric

BEKK-CAW models, we use the so-called James-Stein loss (James and Stein (1976)),

which is usually referred to as the multivariate Quasi-Likelihood (QLIK) loss function,

i.e.,

QLIKt(S
(i)
t , Ct) = ln |S(i)

t |+ trace([S
(i)
t ]−1Ct), (3.19)

where S
(i)
t is a forecast by model i of the observed RC matrix Ct that is used as

a proxy for the unobservable covariance matrix Σt. This loss function satisfies the

conditions for producing a consistent ranking (Hansen and Lunde (2006); Laurent

et al. (2013)).6

To jointly compare the forecasts of a set of models, we rely on the model confidence

set (MCS) of Hansen et al. (2003, 2011). The procedure does not necessarily select

a single best model, allowing for the possibility of equal forecasting ability. Hence, a

model is removed from the MCS only if it is significantly inferior to the other models.

In particular, starting with a set of candidate models M0, given a loss function,

the loss difference between each pair of models in the set is computed at every time

point t = 1, . . . , T , so that for models i and j, we get dt,ij = Lt,i − Lt,j, where

Lt,(·) = Lt(S
(·)
t , Ct) is (3.19). At each step of the procedure, the null hypothesis of

equal predictive accuracy, i.e., H0 : E[dt,ij] = 0, is tested for ∀i > j ∈ M, a subset

of models M ⊂ M0, with M = M0 at the initial step. If H0 is rejected at a chosen

significance level α, the worst performing model is removed. This process continues

until a set of models remains that includes no model that can be rejected at the level

α.

6We have also used the squared Frobenius norm loss but do not report the results since this loss
function does not help to discriminate clearly between the models.
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We adopt the range statistics of Hansen et al. (2011) to test H0, i.e.,

TR,M = max
i,j∈M

| dij |√
V̂ar(dij)

, (3.20)

where dij = 1
T

∑T
t=1 dt,ij, and V̂ar(dij) is obtained by a circular block bootstrap ap-

proach (Hansen et al. (2003)), which we implement with 10,000 replications and the

varying block length to verify the robustness of the results.

To compute the forecasts, each model is estimated five times using a rolling window

scheme. We start with the fitting period from January 3, 2012 to June 30, 2020 (T =

2137) and compute 76 one-step-ahead forecasts after the last in-sample date, assuming

that the information related to returns is updated each day. Then, we re-estimate

the parameters using the next window of 2137 observations obtained by removing

the first 76 observations of the previous window and adding 76 new observations to

it, and forecast again the next 76 observations following the end of the estimation

sample. This procedure is continued until the end of the sample, resulting in 380

out-of-sample forecasts.

Table 3.11 reports the model confidence sets at the 90% confidence level obtained

for several starting model sets, in each case using the QLIK loss function. The values

of the loss function are reported for each model. The sym model is always excluded

from the reported model confidence sets. For the PLT models, all asymmetric models

are included in the MCS, except the oc models. For the diagonal models, compared

to the PLT models, the tr model is not in the MCS. For the scalar models, only

trPNτM and trPNτMoc are included, the latter being the single case of inclusion

of an oc model.

When all twenty-seven models are compared together, the composition of the MCS

is the same as when only the PLT models are compared, i.e., all scalar and diagonal

models are excluded, as well as the oc models and the symmetric model.
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Table 3.11: Model confidence sets at 90% level of BEKK-CAW models, with QLIK
loss function

Version Model QLIK MCS by version MCS all

sym 54.216 0.0000 0.0000

tr 54.262 0.0000 0.0000

trPNM 54.299 0.0000 0.0000

trPNτM 54.087 0.4297 0.0000

Scalar troc 54.215 0.0001 0.0000

trPNMoc 54.241 0.0000 0.0000

trPNτMoc 54.062 1.0000 0.0000

semi 54.203 0.0001 0.0000

semi-τ 54.128 0.0002 0.0000

sym 54.246 0.0000 0.0000

tr 53.939 0.0058 0.0000

trPNM 53.823 0.5500 0.0000

trPNτM 53.825 0.2660 0.0000

Diagonal troc 54.136 0.0000 0.0000

trPNMoc 54.144 0.0000 0.0000

trPNτMoc 54.085 0.0000 0.0000

semi 53.796 1.0000 0.0000

semi-τ 53.865 0.2660 0.0000

sym 54.111 0.0000 0.0000

tr 53.756 0.4367 0.4262

trPNM 53.788 0.3469 0.3521

trPNτM 53.769 0.4367 0.4262

PLT troc 53.825 0.0000 0.0000

trPNMoc 53.936 0.0000 0.0000

trPNτMoc 53.834 0.0000 0.0000

semi 53.691 0.4367 0.4262

semi-τ 53.676 1.0000 1.0000

‘QLIK’ column: average value of QLIK losses over the forecast period; bold values identify the minimum loss over the
nine models of each version.
‘MCS by version’ column: p-values of the tests of the MCS procedure when the starting set consists of the nine models
of a given version; bold values identify the models included in the MCS at the 90% confidence level (i.e., p-values
larger than 0.10).
‘MCS all’ column: same as previous column when the starting set consists of the twenty-seven models of the table.
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3.5.3 Forecast comparisons using economic loss functions

Given that the statistical superiority of one model over another does not automatically

translate into a more meaningful impact on investment decisions that depend on

the covariance matrix forecasts (Fleming et al. (2003)), we further evaluate the out-

of-sample forecasting performance of all the considered models from an economic

perspective. We consider two loss functions, i.e., the standard deviation of the out-

of-sample global minimum variance portfolio (GMVP) and the standard deviation of

the out-of-sample mean-variance portfolio (MVP).

We start by performing a GMVP optimization, where the investor is focused

exclusively to reduce the portfolio volatility and ignores the use of the mean of returns.

Hence, the optimal portfolio weights are independent of the expected returns, thus

allowing to exclusively evaluate the covariance matrix forecasts.

The GMVP optimization problem can be expressed as:

min
wt

w′
tΣtwt s. t. w′

t1 = 1, wt ≥ 0, (3.21)

where Σt is the unobservable covariance matrix of returns for time t, 1 is a n×1 vector

of ones, and wt represents a vector of non-negative portfolio weights, i.e., short-selling

is not allowed. In practice, Σt is replaced by the forecast S
(i)
t of model i. Given that

the short-selling restrictions prevent an analytical solution for the optimal weights,

numerical optimization is used, for which we rely on the MATLAB Financial Toolbox.

The computed weights (Appendix A.9) are applied to the observed returns of the

forecasting period, resulting in 380 optimal GMVP returns. The standard deviation of

these returns is computed and serves as a loss function (e.g., Engle and Kelly (2012),

Bauwens and Xu (2023)). The best model minimizes the portfolio standard deviation.
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The MCS procedure is implemented to evaluate the performance of different start-

ing sets of models, with the results presented in Table 3.12. The MCS of the PLT

models includes seven models, only two oc models being excluded. The MCS of the

diagonal models includes only the tr and trPNτM models, while the MCS of the

scalar models excludes the semi models. The MCS of the twenty-seven models coin-

cides with the MCS of the scalar models. Thus, it even includes the symmetric model

and the oc models.

The second loss function is based on the classical mean-variance portfolio (MVP)

optimization, which adds to the GMVP optimization problem a constraint that the

targeted portfolio return is larger than a pre-set threshold that we set at 3.5% per

year. Once the optimal weights are computed, the procedure is the same as for the

GMVP loss function. Table 3.13 provides the results. In the comparisons of the

scalar models, and of all models, each MCS consists only of the scalar trPNτM and

trPNτMoc models.

As follows, in contrast to the statistical performance where the PLT asymmetric

models based on the signs of close-to-close daily or intra-daily returns are superior,

only the scalar models using the decomposition based on daily (cc and oc) returns

appear preferable from an economic perspective.
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Table 3.12: Model confidence sets at 90% level of BEKK-CAW models, with GMVP
loss function

Version Model Loss MCS by version MCS all

sym 1.578 0.8167 0.8153

tr 1.577 0.9200 0.9206

trPNM 1.576 1.0000 1.0000

trPNτM 1.577 0.9200 0.9206

Scalar troc 1.578 0.8167 0.8153

trPNMoc 1.578 0.8167 0.8153

trPNτMoc 1.579 0.7031 0.3555

semi 1.581 0.0006 0.0028

semi-τ 1.580 0.0243 0.0224

sym 1.634 0.0007 0.0003

tr 1.600 1.0000 0.0028

trPNM 1.603 0.0013 0.0028

trPNτM 1.602 0.5094 0.0028

Diagonal troc 1.642 0.0007 0.0001

trPNMoc 1.609 0.0013 0.0028

trPNτMoc 1.618 0.0013 0.0028

semi 1.633 0.0013 0.0003

semi-τ 1.612 0.0013 0.0028

sym 1.628 0.7733 0.0003

tr 1.623 0.8073 0.0028

trPNM 1.619 0.8073 0.0028

trPNτM 1.614 1.0000 0.0028

PLT troc 1.624 0.8073 0.0028

trPNMoc 1.651 0.0034 0.0000

trPNτMoc 1.645 0.0045 0.0000

semi 1.643 0.1048 0.0000

semi-τ 1.639 0.2452 0.0003

‘Loss’ column: standard deviation of GMVP returns over the forecast period; bold values identify the minimum loss
over the nine models of each version.
‘MCS by version’ column: p-values of the tests of the MCS procedure when the starting set consists of the nine models
of a given version; bold values identify the models included in the MCS at the 90% confidence level (i.e., p-values
larger than 0.10).
‘MCS all’ column: same as previous column when the starting set consists of the twenty-seven models of the table.
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Table 3.13: Model confidence sets at 90% level of BEKK-CAW models, with MVP
loss function

Version Model Loss MCS by version MCS all

sym 1.683 0.0001 0.0004

tr 1.683 0.0001 0.0004

trPNM 1.681 0.0001 0.0004

trPNτM 1.677 1.0000 1.0000

Scalar troc 1.683 0.0001 0.0004

trPNMoc 1.685 0.0001 0.0004

trPNτMoc 1.681 0.3469 0.3457

semi 1.684 0.0001 0.0004

semi-τ 1.683 0.0001 0.0004

sym 1.738 0.0001 0.0000

tr 1.709 0.0103 0.0004

trPNM 1.695 0.1068 0.0004

trPNτM 1.694 1.0000 0.0004

Diagonal troc 1.734 0.0001 0.0000

trPNMoc 1.696 0.1068 0.0004

trPNτMoc 1.712 0.0066 0.0004

semi 1.724 0.0001 0.0001

semi-τ 1.703 0.0103 0.0004

sym 1.723 0.0038 0.0001

tr 1.708 0.5565 0.0004

trPNM 1.711 0.4396 0.0004

trPNτM 1.698 1.0000 0.0004

PLT troc 1.706 0.5565 0.0004

trPNMoc 1.720 0.0038 0.0004

trPNτMoc 1.719 0.0038 0.0004

semi 1.728 0.0001 0.0001

semi-τ 1.730 0.0001 0.0001

‘Loss’ column: standard deviation of MVP returns over the forecast period; bold values identify the minimum loss
over the nine models of each version.
‘MCS by version’ column: p-values of the tests of the MCS procedure when the starting set consists of the nine models
of a given version; bold values identify the models included in the MCS at the 90% confidence level (i.e., p-values
larger than 0.10).
‘MCS all’ column: same as previous column when the starting set consists of the twenty-seven models of the table.
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3.6 Conclusions

This paper introduces and compares empirically BEKK-CAW models that account

for asymmetric dynamics in RC matrices, based on a high-frequency dataset for the

main S&P500 ETF and five large US banks. While distinct RC models have revealed

that high-frequency data provides important additional information for modelling

and forecasting covariance matrices, our study documents the importance of captur-

ing distinct responses of the conditional variances and covariances to lagged realized

(co)variances decomposed additively into components weighted either by signed daily

returns or by signed intra-daily returns.

The proposed asymmetric BEKK-CAW models show a better in-sample fit and

out-of-sample forecasting performance than the benchmark symmetric model. We

find that the forecasts of the more flexible (PLT) asymmetric models based on either

signed daily close-to-close or intra-daily returns statistically dominate the forecasts

of their scalar and diagonal versions. Conversely, in terms of portfolio optimization,

the scalar models that capture the asymmetry via the signs of the daily close-to-close

returns are superior to the (scalar or more general) models that attempt the same

via the signs of the intra-daily returns.

The finding that the asymmetric models using the decomposition of the RCM

based on the signs of the daily close-to-close returns have better forecasting per-

formances than the models that use the decomposition based on intra-daily returns

is not surprising, since the close-to-close return incorporates the information of the

overnight period, whereas the intra-daily returns do not.

In general, we also find that the asymmetric models (tr, trPNM, trPNτM)

using the decomposition of the RCM based on the signs of the daily open-to-close

returns fit less well and have worse forecasting performances than those using the

decomposition based on the signs of the close-to-close returns. Hence, we conclude

that it seems preferable to use close-to-close returns in the decomposition based on
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daily returns, and to use the latter rather than the decomposition based on intra-daily

returns.

This conclusion differs from that of Bollerslev et al. (2020b), who conclude in

favour of the models using the decomposition based on intra-daily returns. There are

several explanations to this difference: i) the data sets are different in terms of asset

number, composition, and sample period; ii) Bollerslev et al. (2020b) model the daily

covariance matrix, i.e., the covariance matrix of the daily returns, as a function of

the decomposed RCM of the trading period, which does not take into account the

volatility during the non-trading (overnight) period, whereas we model the RCM of

the trading period.

Several research tracks are open: i) developing asymmetric dynamic conditional

correlation (DCC)-type models based on the decompositions of the RCM; ii) adding

HAR-type dynamics to asymmetric BEKK-CAW models to explicitly account for the

possible long memory feature of volatility and see how this impacts the forecasting

performance; iii) using the maximum likelihood estimation of the asymmetric models

assuming a Matrix-F conditional distribution instead of a Wishart (e.g., Zhou et al.

(2022); Opschoor et al. (2018)).
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A Appendix of Chapter 3

A.1 Impact of the definition of daily return on decomposi-

tions of Ct

Let n = 2, rj,t = (x, y)′/
√
m, ∀j = 1, 2, . . . ,m, with x, y > 0.

Then, r+j,t = (x, y)′/
√
m, r−j,t = (0, 0)′, and

Ct =
m∑
j=1

rj,tr
′
j,t =

x2 xy

xy y2

 , Pt = Ct, Nt = Mt =

0 0

0 0

 .

If the daily return rt is the open-to-close return
∑m

j=1 rj,t =
√
m(x, y)′, then

I+t = (1, 1)′, I−t = (0, 0)′, and

CP,t = Pt, CN,t = Nt, CM,t = Mt.

If the daily close-to-close return rt is different from the open-to-close one, e.g.,

rt = (z, 0)′ with z > 0, then I+t = (1, 0)′, I−t = (0, 1)′, and

CP,t =

x2 0

0 0

 ̸= Pt, CN,t =

0 0

0 y2

 ̸= Nt, CM,t =

 0 xy

xy 0

 ̸= Mt.

A.2 Use of the decomposition of Mt

The adoption of the semi-covariance decomposition in the modelling framework with

or without separating the components of the mixed matrix Mt depends on the ap-

plication context. In a bivariate model of the volatility of a specific asset and of a

market index, separating the effect of the two realized semi-covariance matrices M+
t

and M−
t might be relevant. The off-diagonal elements of the M+

t and M−
t matrices

are necessarily negative.
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The covariance equation of the model (3.14) for 2 assets (asset 1 is the market

portfolio, asset 2 is a stock), assuming that all the A matrices are lower triangular,

e.g.,

A−
M =

a−M11 0

a−M21 a−M22


is

s12,t = aP11aP22p12,t−1 + aN11aN22n12,t−1

+ a+M11a
+
M22[τ(M

+
t−1)]12 + a−M11a

−
M22[τ(M

−
t−1)]12

+ aP11aP21p11,t−1 + aN11aN21n11,t−1,

where [τ(M+
t )]12 is the (1,2) element of the matrix τ(M+

t ).

Given the mixed matrix τ(M−) implied via a negative market return and a positive

stock return, a negative value of the coefficient a−M11a
−
M22 implies that the covariance

between the asset and the market increases, which is consistent with the stylized fact

that in a ‘bear’ market period, the covariances tend to increase. The opposite holds

for a ‘bull’ period, i.e., given the mixed matrix τ(M+) implied via a positive market

return and a negative stock return, a positive a+M11a
+
M22 coefficient implies that the

covariance declines.

The above arguments readily extend to a partially lower triangular model of higher

dimension, such as estimated in the empirical application (see Section 3.5.1).
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A.3 Covariance targeting parameterizations of BEKK-CAW

models

To define their targeting parameterizations, the models presented in Section 3.2 are

transformed in vector form, i.e., for st = vech(St), where vech(·) is the operator

that stacks the lower triangular part of a symmetric n × n matrix argument into a

n(n+1)/2× 1 vector. Matrices appearing in the equations specifying St, such as Ct,

Ci,t for i = P,N,M, ..., and Pt, Nt, Mt, ..., are transformed in the same way and the

corresponding vectors are denoted by lower-case letters (e.g., ct, cN,t, pt, ...). Adjust-

ment matrices Ki, of order n(n+1)/2, for i = P,N,M, ..., as above, are introduced in

the targeting terms to account for the difference between the unconditional levels of ct

and the vectors corresponding to the covariances of (signed) daily/intraday returns.

In each adjustment matrix, the matrix C̄ =
∑T

t=1 Ct/T appears.

The parameter matrices of the vectorized models are obtained as M̃ = Ln(M ⊗

M)Dn, where M is a parameter square matrix of order n (e.g., A, AN , AP , ...) of

the model in matrix format, and Ln and Dn denote the n(n+ 1)/2× n2 elimination

and n2 × n(n + 1)/2 duplication matrices, respectively.7 Hence M̃ is in each case

square and of order n(n+ 1)/2. We refer to Noureldin et al. (2012) for details. Each

targeting term below is the product of a matrix of order n(n + 1)/2 and the vector

vech(C̄).

Symmetric model (sym):

st = (In(n+1)/2−Ã− B̃)c+ Ãct−1 + B̃st−1. (A3.1)

Noureldin et al. (2012) prove that the unconditional mean of ct exists, corresponding

to the condition derived in Engle and Kroner (1995), if the eigenvalues of the matrix

7Ln is defined such that for any n × n matrix Q, vech(Q) = Ln vec(Q), and Dn such that for
any symmetric matrix R, vec(R) = Dn vech(R) (see e.g., Lütkepohl (1996)), with vec(·) denoting
the operator that stacks the columns of a n× n matrix into a n2 × 1 vector.
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Ã+ B̃ are less than one in modulus.

As a result, E(ct) = (In(n+1)/2−(Ã+ B̃))−1c, and c can be estimated by c̄.

Threshold model (tr):

st = (In(n+1)/2−Ã∗ − B̃)c+ ÃP (cP,t−1 + cM,t−1) + ÃNcN,t−1 + B̃st−1, (A3.2)

where cP,t = vech(Ct⊙I+t I
+′

t ), cN,t = vech(Ct⊙I−t I
−′

t ), and cM,t = vech(Ct⊙(I+t I
−′

t +

I−t I
+′

t )); Ã∗ =
∑2

i=1 ÃiKi, with Ãi = Ln(Ai ⊗ Ai)Dn, for i = P,N ,

KP = Ln[
(
CP

)1/2
C

−1/2 ⊗
(
CP

)1/2
C

−1/2
+
(
CM

)1/2
C

−1/2 ⊗
(
CM

)1/2
C

−1/2
]Dn,

with CP = 1/T
∑T

t=1 Ct ⊙ I+t I
+′

t , CM = 1/T
∑T

t=1Ct ⊙ (I+t I
−′

t + I−t I
+′

t ), and

KN = Ln[
(
CN

)1/2
C

−1/2 ⊗
(
CN

)1/2
C

−1/2
]Dn, with CN = 1/T

∑T
t=1Ct ⊙ I−t I

−′

t .

Threshold model with PNM terms (trPNM):

st = (In(n+1)/2−Ã∗ − B̃)c+ ÃP cP,t−1 + ÃNcN,t−1 + ÃMcM,t−1 + B̃st−1, (A3.3)

where cP,t, cN,t, and cM,t are defined under (A3.2); Ã∗ =
∑3

i=1 ÃiKi, with Ãi =

Ln(Ai ⊗ Ai)Dn and Ki = Ln[
(
Ci

)1/2
C

−1/2 ⊗
(
Ci

)1/2
C

−1/2
]Dn, with Ci as under

(A3.2), for i = P,N,M .

Threshold model with PNτ(M) terms (trPNτM):

st = (In(n+1)/2−Ã∗ − B̃)c+ ÃP cP,t−1 + ÃNcN,t−1 + Ã+
Mc+M,t−1 + Ã−

Mc−M,t−1 + B̃st−1,

(A3.4)

where c+M,t = vech(C+
M,t) with C+

M,t = Ct ⊙ τ(I+t I
−′

t ), and c−M,t = vech(C−
M,t) with

C−
M,t = Ct⊙τ(I−t I

+′

t ); Ã∗ =
∑2

i=1 ÃiKi+ Ã+
MK+

M + Ã−
MK−

M , with Ãi = Ln(Ai⊗Ai)Dn

and Ki = Ln[
(
Ci

)1/2
C

−1/2 ⊗
(
Ci

)1/2
C

−1/2
]Dn, for i = P,N ,

Ã+
M = Ln(A

+
M ⊗ A+

M)Dn, K
+
M = Ln[

(
C

+

M

)1/2
C

−1/2 ⊗
(
C

+

M

)1/2
C

−1/2
]Dn,

Ã−
M = Ln(A

−
M ⊗ A−

M)Dn, K
−
M = Ln[

(
C

−
M

)1/2
C

−1/2 ⊗
(
C

−
M

)1/2
C

−1/2
]Dn, with

C
+

M = 1/T
∑T

t=1 C
+
M,t and C

−
M = 1/T

∑T
t=1C

−
M,t.
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Semi-covariance model (semi):

st = (In(n+1)/2−Ã∗ − B̃)c+ ÃPpt−1 + ÃNnt−1 + ÃMmt−1 + B̃st−1, (A3.5)

where pt = vech(Pt), nt = vech(Nt), and mt = vech(Mt); Ã∗ =
∑3

i=1 ÃiKi, with

Ãi = Ln(Ai ⊗ Ai)Dn and Ki = Ln[
(
i
)1/2

C
−1/2 ⊗

(
i
)1/2

C
−1/2

]Dn, for i = P,N,M ,

with P = 1/T
∑T

t=1 Pt, N = 1/T
∑T

t=1Nt, and M = 1/T
∑T

t=1Mt.

Semi-covariance model (semi-τ):

st = (In(n+1)/2−Ã∗ − B̃)c+ ÃPpt−1 + ÃNnt−1 + Ã+
Mm+

t−1 + Ã−
Mm−

t−1 + B̃st−1, (A3.6)

where m+
t = vech(τ(M+

t )) and m−
t = vech(τ(M−

t ));

Ã∗ =
∑2

i=1 ÃiKi + Ã+
MK+

M + Ã−
MK−

M , Ki is defined as under (A3.5), for i = P,N ,

K+
M = Ln[

(
M

+)1/2
C

−1/2 ⊗
(
M

+)1/2
C

−1/2
]Dn, with M

+
= 1/T

∑T
t=1 τ(M

+
t ), and

K−
M = Ln[

(
M

−)1/2
C

−1/2 ⊗
(
M

−)1/2
C

−1/2
]Dn, with M

−
= 1/T

∑T
t=1 τ(M

−
t ).

A.4 Scalar BEKK-CAW models with covariance targeting

With scalar parameter matrices, it is convenient to write the equations using the

matrix format. The equations below are obtained as particular cases of the corre-

sponding equations of Appendix A.3, when the parameter matrices A, AN , ..., are

scalar, i.e., A = aIn, AN = aNIn, .... The largest eigenvalue of a matrix M is denoted

by ρ(M); ρ(M) < 1 means that the largest eigenvalue is smaller than 1 in modulus.

Symmetric model (sym):

St = (1− a2 − b2)C + a2Ct−1 + b2St−1, (A4.1)

C = (1/T )
∑T

t=1 Ct (PD);

a2 + b2 < 1 (covariance stationarity of St and PD target).
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Threshold model (tr):

St = (1− b2)C − A∗C + a2Ct−1 + a2N(I
−
t−1I

−′

t−1)⊙ Ct−1 + b2St−1, (A4.2)

A∗ = a2 In+(a2N × CN × C
−1
); CN = (1/T )

∑T
t=1Ct ⊙ I−t I

−′

t (PSD);

ρ(A∗ + b2 In) < 1 (covariance stationarity of St and PD target).

For the models listed below, it seems impossible to derive sufficient conditions to

guarantee the PD-ness of St. Consequently, we impose no a priori restrictions on the

parameters. However, during the estimation, we require that the coefficients jointly

behave in such a way that St is PD ∀t.

Threshold model with PNM terms (trPNM):

St =(1− b2)C − A∗C + (a2P I
+
t−1I

+′

t−1 + a2NI
−
t−1I

−′

t−1

+ a2M(I+t−1I
−′

t−1 + I−t−1I
+′

t−1))⊙ Ct−1 + b2St−1,

(A4.3)

A∗ = (a2PCP +a2NCN +a2MCM)×C
−1
; CP = (1/T )

∑T
t=1Ct⊙ I+t I

+′

t (PSD), with CN

(PSD) and CM (indefinite) defined analogously;

ρ(A∗ + b2 In) < 1 (covariance stationarity of St).

Threshold model with PNτ(M) terms (trPNτM):

St =(1− b2)C − A∗C + (a2P I
+
t−1I

+′

t−1 + a2NI
−
t−1I

−′

t−1

+ (a+M)2τ(I+t−1I
−′

t−1) + (a−M)2τ(I−t−1I
+′

t−1))⊙ Ct−1 + b2St−1,

(A4.4)

A∗ = (a2PCP +a2NCN +(a+M)2C
+

M +(a−M)2C
−
M)×C

−1
; C

+

M = (1/T )
∑T

t=1 Ct⊙τ(I+t I
−′

t )

(indefinite), with C
−
M (indefinite) defined analogously;

ρ(A∗ + b2 In) < 1 (covariance stationarity of St).
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Semi-covariance model (semi):

St = (1− b2)C − A∗C + a2PPt−1 + a2NNt−1 + a2MMt−1 + b2St−1, (A4.5)

A∗ = (a2PP + a2NN + a2MM)×C
−1
; P = (1/T )

∑T
t=1 Pt (PSD), with N (PSD) and M

(indefinite) defined analogously;

ρ(A∗ + b2 In) < 1 (covariance stationarity of St).

Semi-covariance model (semi-τ):

St =(1− b2)C − A∗C + a2PPt−1 + a2NNt−1

+ (a+M)2τ(M+
t−1) + (a−M)2τ(M−

t−1) + b2St−1,

(A4.6)

A∗ = (a2PP + a2NN + (a+M)2M
+
+ (a−M)2M

−
)× C

−1
; M

+
= (1/T )

∑T
t=1 τ(M

+
t ) and

M
−
= (1/T )

∑T
t=1 τ(M

−
t );

ρ(A∗ + b2 In) < 1 (covariance stationarity of St).

72



A.5 Complete tables of the statistics of covariance decompo-

sitions

Table A5.1: Time series means and standard deviations (between parentheses) of
realized covariances and their decomposition into semi-covariances

Asset Pair C P N M M+ M−

SPY-BAC 1.58 (4.29) 1.00 (2.91) 0.98 (2.51) -0.41 (1.77) -0.20 (0.82) -0.21 (0.99)

SPY-C 1.64 (4.85) 1.03 (3.21) 1.03 (2.92) -0.42 (1.99) -0.21 (1.06) -0.22 (1.00)

SPY-GS 1.48 (4.08) 0.94 (2.75) 0.91 (2.35) -0.37 (1.65) -0.18 (0.70) -0.20 (0.99)

SPY-JPM 1.42 (4.22) 0.90 (2.94) 0.87 (2.32) -0.35 (1.59) -0.17 (0.79) -0.18 (0.86)

SPY-WFC 1.35 (4.16) 0.89 (2.93) 0.88 (2.59) -0.42 (1.85) -0.20 (0.81) -0.22 (1.08)

BAC-C 4.10 (8.38) 2.18 (4.96) 2.14 (4.59) -0.22 (0.61) -0.10 (0.25) -0.11 (0.38)

BAC-GS 3.20 (6.35) 1.78 (3.64) 1.72 (3.40) -0.31 (0.53) -0.15 (0.27) -0.15 (0.37)

BAC-JPM 3.44 (7.27) 1.84 (4.05) 1.78 (3.73) -0.18 (0.36) -0.09 (0.21) -0.09 (0.18)

BAC-WFC 3.19 (7.05) 1.76 (3.97) 1.71 (3.76) -0.27 (0.51) -0.13 (0.25) -0.14 (0.33)

C-BS 3.37 (7.74) 1.84 (4.27) 1.82 (4.14) -0.29 (0.51) -0.15 (0.27) -0.14 (0.29)

C-JPM 3.54 (8.28) 1.88 (4.63) 1.84 (4.33) -0.18 (0.49) -0.09 (0.33) -0.09 (0.22)

C-WFC 3.30 (8.07) 1.81 (4.51) 1.80 (4.53) -0.30 (0.91) -0.14 (0.34) -0.16 (0.63)

GS-JPM 2.88 (6.47) 1.58 (3.65) 1.53 (3.37) -0.23 (0.42) -0.12 (0.26) -0.12 (0.24)

GS-WFC 2.62 (6.35) 1.51 (3.80) 1.47 (3.36) -0.35 (0.65) -0.17 (0.34) -0.18 (0.42)

JPM-WFC 2.83 (6.55) 1.56 (3.93) 1.50 (3.38) -0.23 (0.64) -0.11 (0.27) -0.12 (0.44)

C: realized covariance; P : positive semi-covariance; N : negative semi-covariance; M : total mixed semi-covariance;
M+ and M−: positive and negative mixed semi-covariances. See Section 3.2.2 for definitions.
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Table A5.2: Time series means and standard deviations (between parentheses) of
realized covariances and their decomposition into parts via daily close-to-close returns

Asset Pair C CP CN CM C+
M C−

M

SPY-BAC 1.58 (4.29) 0.60 (3.21) 0.69 (3.00) 0.29 (0.83) 0.14 (0.56) 0.15 (0.65)

SPY-C 1.64 (4.85) 0.59 (2.90) 0.74 (3.63) 0.31 (1.90) 0.13 (0.54) 0.19 (1.84)

SPY-GS 1.48 (4.08) 0.57 (2.86) 0.68 (3.05) 0.23 (0.70) 0.11 (0.46) 0.13 (0.55)

SPY-JPM 1.42 (4.22) 0.55 (3.08) 0.64 (3.01) 0.24 (0.71) 0.11 (0.47) 0.13 (0.55)

SPY-WFC 1.35 (4.16) 0.52 (3.05) 0.60 (2.93) 0.23 (0.77) 0.10 (0.48) 0.13 (0.63)

BAC-C 4.10 (8.38) 1.70 (5.02) 1.91 (6.82) 0.49 (2.94) 0.20 (0.97) 0.29 (2.79)

BAC-GS 3.20 (6.35) 1.30 (4.52) 1.41 (4.93) 0.49 (1.36) 0.23 (0.99) 0.26 (1.00)

BAC-JPM 3.44 (7.27) 1.45 (5.07) 1.57 (5.70) 0.42 (1.30) 0.19 (0.91) 0.22 (0.97)

BAC-WFC 3.19 (7.05) 1.34 (5.35) 1.39 (5.03) 0.47 (1.40) 0.22 (0.92) 0.25 (1.11)

C-BS 3.37 (7.74) 1.34 (4.57) 1.54 (6.24) 0.49 (2.64) 0.27 (2.50) 0.22 (0.93)

C-JPM 3.54 (8.28) 1.40 (4.67) 1.63 (6.35) 0.50 (2.96) 0.28 (2.81) 0.23 (1.01)

C-WFC 3.30 (8.07) 1.30 (4.70) 1.47 (6.24) 0.53 (3.28) 0.29 (3.09) 0.24 (1.17)

GS-JPM 2.88 (6.47) 1.18 (4.42) 1.31 (5.11) 0.39 (1.08) 0.19 (0.79) 0.19 (0.79)

GS-WFC 2.62 (6.35) 1.05 (4.89) 1.11 (4.36) 0.46 (1.30) 0.22 (0.86) 0.24 (1.03)

JPM-WFC 2.83 (6.55) 1.14 (4.68) 1.23 (4.91) 0.45 (1.37) 0.22 (0.90) 0.23 (1.09)

C: realized covariance; CP : positive part; CN : negative part; CM : total mixed part; C+
M and C−

M : positive and
negative mixed parts. See Section 3.2.1 for definitions.

Table A5.3: Time series means and standard deviations (between parentheses) of
realized covariances and their decomposition into parts via daily open-to-close returns

Asset Pair C CP CN CM C+
M C−

M

SPY-BAC 1.58 (4.29) 0.61 (3.41) 0.63 (2.49) 0.34 (1.46) 0.16 (0.82) 0.18 (1.24)

SPY-C 1.64 (4.85) 0.58 (2.79) 0.67 (3.21) 0.39 (2.67) 0.15 (0.85) 0.24 (1.24)

SPY-GS 1.48 (4.08) 0.57 (2.84) 0.57 (2.47) 0.34 (1.97) 0.16 (0.86) 0.18 (1.79)

SPY-JPM 1.42 (4.22) 0.56 (3.24) 0.56 (2.55) 0.30 (1.44) 0.14 (1.00) 0.16 (1.06)

SPY-WFC 1.35 (4.16) 0.50 (2.87) 0.52 (2.49) 0.33 (2.01) 0.15 (1.10) 0.18 (1.70)

BAC-C 4.10 (8.38) 1.67 (5.23) 1.81 (6.29) 0.62 (3.69) 0.28 (1.34) 0.34 (3.47)

BAC-GS 3.20 (6.35) 1.29 (4.79) 1.30 (4.39) 0.61 (2.13) 0.31 (1.32) 0.30 (1.72)

BAC-JPM 3.44 (7.27) 1.42 (5.35) 1.45 (5.00) 0.57 (2.59) 0.28 (1.71) 0.29 (1.99)

BAC-WFC 3.19 (7.05) 1.29 (5.44) 1.27 (4.67) 0.63 (2.18) 0.31 (1.27) 0.32 (1.83)

C-GS 3.37 (7.74) 1.33 (5.03) 1.42 (5.84) 0.62 (2.76) 0.35 (2.59) 0.27 (1.05)

C-JPM 3.54 (8.28) 1.39 (5.03) 1.51 (6.22) 0.64 (3.53) 0.35 (3.22) 0.29 (1.51)

C-WFC 3.30 (8.07) 1.24 (4.71) 1.37 (6.14) 0.69 (3.50) 0.37 (3.18) 0.32 (1.54)

GS-JPM 2.88 (6.47) 1.15 (4.70) 1.17 (4.53) 0.56 (2.13) 0.27 (1.68) 0.29 (1.36)

GS-WFC 2.62 (6.35) 1.07 (4.99) 1.04 (4.17) 0.51 (1.53) 0.24 (0.92) 0.27 (1.27)

JPM-WFC 2.83 (6.55) 1.13 (4.79) 1.15 (4.56) 0.55 (2.07) 0.28 (1.24) 0.27 (1.70)

C: realized covariance; CP : positive part; CN : negative part; CM : total mixed part; C+
M and C−

M : positive and
negative mixed parts. See Section 3.2.1 for definitions.
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A.6 Estimation results of BEKK-CAW models

Table A6.1: Scalar BEKK-CAW model QML estimates with robust standard errors
in parentheses

sym tr trPNM trPNτM semi semi-τ

(A4.1) (A4.2) (A4.3) (A4.4) (A4.5) (A4.6)

b2
0.782

(0.057)

0.787

(0.057)

0.793

(0.057)

0.828

(0.035)

0.784

(0.057)

0.784

(0.057)

a2
0.199

(0.049)

a2P
0.166

(0.052)

0.141

(0.052)

0.113

(0.034)

0.139

(0.046)

0.138

(0.045)

a2N
0.217

(0.048)

0.232

(0.050)

0.201

(0.031)

0.258

(0.059)

0.259

(0.059)

a2M
0.184

(0.050)

0.173

(0.037)

(a+M )2
0.145

(0.030)

0.209

(0.048)

(a−M )2
0.170

(0.035)

0.149

(0.036)

LLF -11940.88 -11919.30 -11901.22 -11897.39 -11934.15 -11932.78

AIC 9.490 9.473 9.460 9.458 9.486 9.486

BIC 9.494 9.480 9.469 9.469 9.495 9.497

Each column corresponds to a model; the models are defined in Appendix A.4, corresponding to the headers in row
1; row 2 refers to the equation numbers in the appendix. The last lines report the obtained maximum value of the
log-likelihood function (LLF) and the corresponding Akaike (AIC) and Bayesian information criteria (BIC) values.
The models are estimated using the dataset of 2517 observations described in Section 3.4.
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Table A6.2: Diagonal BEKK-CAW model QML estimates
sym tr trPNM trPNτM semi semi-τ
(A3.1) (A3.2) (A3.3) (A3.4) (A3.5) (A3.6)

A

0.134*
0.294*
0.314*
0.284*
0.387*
0.432*

AP

0.062
0.187*
0.189*
0.175*
0.228*
0.259*

0.065
0.261*
0.247*
0.229*
0.281*
0.228*

0.064
0.263*
0.251*
0.229*
0.279*
0.231*

0.158*
0.455*
0.420*
0.285*
0.416*
0.177*

0.151*
0.434*
0.403*
0.341*
0.424*
0.154*

AN

0.259*
0.267*
0.273*
0.240*
0.342*
0.413*

0.222*
0.335*
0.319*
0.281*
0.368*
0.335*

0.224*
0.330*
0.315*
0.281*
0.373*
0.334*

0.308*
0.429*
0.404*
0.308*
0.485*
0.723*

0.314*
0.424*
0.397*
0.328*
0.515*
0.705*

AM

0.149*
0.298*
0.283*
0.249*
0.339*
0.239*

0.487*
0.032
0.045
0.082
0.031
0.041

A+
M

0.174*
0.297*
0.264*
0.243*
0.334*
0.253*

1.024
0.010
0.021
0.019
0.005
0.038

A−
M

0.123*
0.294*
0.305*
0.254*
0.351*
0.229*

0.015
0.092
0.085
0.865
0.023
0.015

B

0.866*
0.706*
0.686*
0.716*
0.613*
0.474*

0.835*
0.768*
0.756*
0.787*
0.710*
0.662*

0.873*
0.701*
0.711*
0.742*
0.673*
0.723*

0.873*
0.703*
0.711*
0.742*
0.671*
0.721*

0.812*
0.589*
0.613*
0.720*
0.580*
0.583*

0.814*
0.600*
0.622*
0.678*
0.561*
0.602*

LLF -11929.52 -11887.79 -11835.76 -11834.41 -11856.09 -11852.68
AIC 9.489 9.460 9.424 9.427 9.440 9.442
BIC 9.517 9.502 9.479 9.497 9.496 9.511

* denotes statistical significance at the 5% level. In each cell, the first value is the estimate for the market index
(SPY), the next ones are for the banking stocks (ordered as BAC, C, GS, JPM, WFC). Each column corresponds to
a model; the models are defined in Appendix A.3, corresponding to the headers in row 1; row 2 refers to the equation
numbers in the appendix. The last lines report the obtained maximum value of the log-likelihood function (LLF) and
the corresponding Akaike (AIC) and Bayesian information criteria (BIC) values. The models are estimated using the
dataset of 2517 observations described in Section 3.4.
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Table A6.3: Partly lower triangular BEKK-CAW model QML estimates
sym tr trPNM trPNτM semi semi-τ
(A3.1) (A3.2) (A3.3) (A3.4) (A3.5) (A3.6)

A

-0.029
-0.025
-0.026
0.012
-0.044*

0.394*
0.520*
0.535*
0.514*
0.617*
0.644*

AP

-0.002
0.007
0.006
0.075
0.018

0.292*
0.530*
0.516*
0.487*
0.537*
0.482*

0.008
0.029
0.011
0.119
0.009

0.219
0.517*
0.494*
0.473*
0.508*
0.456*

0.016
0.041
0.018
0.121
0.021

0.228
0.519*
0.506*
0.479*
0.508*
0.455*

-0.033
-0.003
-0.038
0.111
-0.048

0.357*
0.658*
0.635*
0.548*
0.556*
0.472*

-0.100
-0.037
-0.096
0.061
-0.073

0.356*
0.661*
0.638*
0.602*
0.553*
0.483*

AN

0.030
0.022
0.013
0.004
0.011

0.474*
0.552*
0.543*
0.513*
0.581*
0.571*

-0.007
-0.020
-0.012
-0.024
-0.016

0.461*
0.581*
0.566*
0.527*
0.601*
0.561*

0.038*
0.029
0.024*
0.017
0.024

0.495*
0.591*
0.573*
0.539*
0.624*
0.563*

0.035
-0.006
0.025
-0.051
-0.003

0.572*
0.613*
0.598*
0.557*
0.695*
0.838*

0.066
0.015
0.020
-0.031
0.020

0.578*
0.615*
0.596*
0.584*
0.714*
0.821*

AM

0.076*
0.088*
0.093*
0.162*
0.099*

0.495*
0.551*
0.523*
0.486*
0.565*
0.467*

-0.215
-0.125
-0.263*
-0.300
0.002

0.151
0.414*
0.269
0.573*
0.357*
0.136

A+
M

0.227*
0.209*
0.201*
0.322*
0.251*

0.573*
0.557*
0.522*
0.495*
0.586*
0.476*

-0.170
-0.300
0.398
-0.299
-0.300

0.077
0.536
0.445
0.157
0.287
0.383

A−
M

-0.093
-0.055
-0.040
-0.058
-0.027

0.360*
0.556*
0.549*
0.493*
0.577*
0.455*

1.000
0.666
0.772
0.974
0.123

0.123
-0.201
-0.093
-0.135
-0.300
0.044

B

0.919*
0.854*
0.845*
0.858*
0.787*
0.720*

0.930*
0.836*
0.841*
0.862*
0.814*
0.848*

0.943*
0.834*
0.843*
0.863*
0.814*
0.861*

0.937*
0.829*
0.835*
0.857*
0.806*
0.858*

0.905*
0.777*
0.796*
0.829*
0.769*
0.756*

0.905*
0.772*
0.792*
0.820*
0.762*
0.755*

LLF -11926.78 -11842.03 -11822.42 -11810.29 -11837.69 -11833.30
AIC 9.491 9.432 9.425 9.424 9.437 9.442
BIC 9.530 9.497 9.515 9.540 9.528 9.558

* denotes statistical significance at the 5% level. Each column corresponds to a model; the models are defined in Appendix A.3, corresponding to
the headers in row 1; row 2 refers to the equation numbers in the appendix. For each parameter matrix A, the first column of coefficients gives the
impacts of SPY on the banking stocks (ordered as BAC, C, GS, JPM, WFC), and the second column reports the diagonal parameters, with SPY
first. The last lines report the obtained maximum value of the log-likelihood function (LLF) and the corresponding Akaike (AIC) and Bayesian
information criteria (BIC) values. The models are estimated using the dataset of 2517 observations described in Section 3.4.
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A.7 Estimation results of BEKK-CAWmodels based on daily

open-to-close returns

Table A7.1: Scalar OC BEKK-CAW model QML estimates

tr trPNM trPNτM

(A4.2) (A4.3) (A4.4)

b2
0.782

(0.055)

0.783

(0.052)

0.784

(0.052)

a2P
0.192

(0.041)

0.180

(0.030)

0.182

(0.029)

a2N
0.205

(0.054)

0.217

(0.063)

0.220

(0.066)

a2M
0.200

(0.047)

(a+M )2
0.195

(0.046)

(a−M )2
0.241

(0.065)

LLF -11938.76 -11934.44 -11924.82

AIC 9.489 9.486 9.479

BIC 9.496 9.496 9.491

Each column corresponds to a model; the models are defined in Appendix A.4, corresponding to the headers in
row 1, with indicator vectors in each specification defined via OC returns; row 2 refers to the equation numbers
in the appendix. The last lines report the obtained maximum value of the log-likelihood function (LLF) and the
corresponding Akaike (AIC) and Bayesian information criteria (BIC) values. The models are estimated using the
dataset of 2517 observations described in Section 3.4.
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Table A7.2: Diagonal OC BEKK-CAW model QML estimates
tr trPNM trPNτM

(A3.2) (A3.3) (A3.4)

AP

0.149*
0.265*
0.262*
0.245*
0.301*
0.282*

0.185*
0.305*
0.295*
0.270
0.329*
0.253

0.191
0.286*
0.281
0.259*
0.308
0.367

AN

0.177*
0.369*
0.357*
0.312*
0.416*
0.415*

0.174*
0.357*
0.319*
0.301*
0.419*
0.331

0.176*
0.349*
0.329*
0.300*
0.408
0.448

AM

0.104*
0.316*
0.315
0.266*
0.387*
0.255

A+
M

0.090*
0.311*
0.284
0.261*
0.376
0.418

A−
M

0.127*
0.303*
0.310*
0.274*
0.383
0.390

B

0.841*
0.664*
0.660*
0.709*
0.626*
0.536*

0.832*
0.653*
0.647*
0.702*
0.608*
0.703*

0.828*
0.673*
0.681*
0.712*
0.623
0.576

LLF -11922.08 -11913.90 -11900.21
AIC 9.488 9.486 9.480
BIC 9.529 9.541 9.549

* denotes statistical significance at the 5% level. In each cell, the first value is the estimate for the market index
(SPY), the next ones are for the banking stocks (ordered as BAC, C, GS, JPM, WFC). Each column corresponds to
a model; the models are defined in Appendix A.3, corresponding to the headers in row 1, with indicator vectors in
each specification defined via OC returns; row 2 refers to the equation numbers in the appendix. The last lines report
the obtained maximum value of the log-likelihood function (LLF) and the corresponding Akaike (AIC) and Bayesian
information criteria (BIC) values. The models are estimated using the dataset of 2517 observations described in
Section 3.4.
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Table A7.3: PLT OC BEKK-CAW model QML estimates
tr trPNM trPNτM

(A3.2) (A3.3) (A3.4)

AP

0.015
0.029
0.011
0.038
0.013

0.435*
0.561*
0.551*
0.529*
0.572*
0.544

0.041
0.056
0.028
0.071
0.036

0.450*
0.549*
0.539*
0.527*
0.569*
0.530*

0.026
0.041
0.017
0.054
0.027

0.461
0.539*
0.536*
0.517*
0.555*
0.523*

AN

0.002
-0.009
-0.005
-0.007
-0.002

0.429*
0.579*
0.568*
0.542*
0.608*
0.600

-0.011
-0.022
-0.009
-0.024
-0.015

0.456*
0.604*
0.596*
0.565*
0.667*
0.611*

0.017
0.006
0.012
0.003
0.007

0.458*
0.611*
0.598*
0.570*
0.674*
0.619*

AM

0.078*
0.094*
0.078*
0.088*
0.041

0.503*
0.574*
0.564*
0.538*
0.645*
0.541*

A+
M

0.216*
0.214*
0.186*
0.223*
0.114*

0.478*
0.577*
0.558*
0.532*
0.638*
0.522*

A−
M

-0.032
0.007
-0.008
-0.031
-0.004

0.559*
0.569*
0.569*
0.537*
0.645*
0.558*

B

0.917*
0.816*
0.821*
0.841*
0.797*
0.820

0.913*
0.813*
0.816*
0.834*
0.777*
0.823*

0.911*
0.814*
0.816*
0.836*
0.780*
0.822*

LLF -11879.97 -11864.14 -11858.24
AIC 9.462 9.458 9.462
BIC 9.527 9.549 9.578

* denotes statistical significance at the 5% level. Each column corresponds to a model; the models are defined in
Appendix A.3, corresponding to the headers in row 1, with indicator vectors in each specification defined via OC
returns; row 2 refers to the equation numbers in the appendix. For each parameter matrix A, the first column of
coefficients gives the impacts of SPY on the banking stocks (ordered as BAC, C, GS, JPM, WFC), and the second
column reports the diagonal parameters, with SPY first. The last lines report the obtained maximum value of the
log-likelihood function (LLF) and the corresponding Akaike (AIC) and Bayesian information criteria (BIC) values.
The models are estimated using the dataset of 2517 observations described in Section 3.4.
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A.8 Graphical illustrations of (co)variance equations

Figures A8.1 and A8.2 show the fitted conditional variances of SPY over the three

years of different levels of volatility, i.e., 2014 (low level), 2020 (extreme level, in

March and April), 2021 (medium level). Each graph also shows the contribution of

each term of the right-hand side of the conditional variance equation of the chosen

model, which is semi-τ for Figure A8.1 and trPNτM for Figure A8.2, both in their

PLT version. The equations for SPY (asset 1) are

semi-τ : s11,t = a2P11p11,t−1 + a2N11n11,t−1 + b211s11,t−1 + constant;

trPNτM: s11,t = a2P11CP11,t−1 + a2N11CN11,t−1 + b211s11,t−1 + constant.

On each graph, the red line corresponds to the first term on the right-hand side, the

blue line to the sum of the first two terms, and the green line to the fitted conditional

variance. Hence, the spread between the green and blue lines is the cumulative

contribution of the last two terms term (where the constant is relatively small).

For the same models, Figures A8.3 and A8.4 report the fitted conditional variances

of JPM and the terms of the corresponding variance equations, only for the year 2021.

There are six more terms in the variance equations of JPM than of SPY, due to the

spillover effects introduced by the PLT specification. The variance equations for JPM

(asset 5) are

semi-τ : s55,t = a2P55p55,t−1 + a2N55n55,t−1 + a2P51p11,t−1 + a2N51n11,t−1

+ b255s55,t−1 + 2aP51aP55p51,t−1 + 2aN51aN55n51,t−1 + constant

+ 2a+M51a
+
M55[τ(M

+
t−1)]51 + 2a−M51a

−
M55[τ(M

−
t−1)]51;

trPNτM: s55,t = a2P55CP55,t−1 + a2N55CN55,t−1 + a2P51CP11,t−1 + a2N51CN11,t−1

+ b255s55,t−1 + 2aP51aP55CP51,t−1 + 2aN51aN55CN51,t−1 + constant

+ 2a+M51a
+
M55C

+
M51,t−1 + 2a−M51a

−
M55C

−
M51,t−1.
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The correspondence between the lines on the different graphs and the terms on the

right-hand side of the equations is explained below each figure.

Figures A8.5 and A8.6 report the fitted conditional covariances of the pair SPY-

JPM and the terms of the corresponding covariance equations, only for the year 2021.

The equations are

semi-τ : s51,t = b11b55s51,t−1 + aP11aP51p11,t−1 + aN11aN51n11,t−1 + constant

+ aP11aP55p51,t−1 + aN11aN55n51,t−1

+ a+M11a
+
M55[τ(M

+
t−1)]51 + a−M11a

−
M55[τ(M

−
t−1)]51;

trPNτM: s51,t = b11b55s51,t−1 + aP11aP51CP11,t−1 + aN11aN51CN11,t−1 + constant

+ aP11aP55CP51,t−1 + aN11aN55CN51,t−1

+ a+M11a
+
M55C

+
M51,t−1 + a−M11a

−
M55C

−
M51,t−1.

82



Figure A8.1: Terms of the SPY variance equation of the semi-τ model during the years 2014, 2020, and 2021
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P: a2P11p11,t−1; P+N: P+a2N11n11,t−1; s11,t: P+N+b211s11,t−1+constant, i.e., fitted conditional variance. Values on
the vertical axes are annualized.

Figure A8.2: Terms of the SPY variance equation of the trPNτM model during the years 2014, 2020, and 2021
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P: a2P11CP11,t−1; P+N: P+a2N11CN11,t−1; s11,t: P+N+b211s11,t−1+constant, i.e., fitted conditional variance. Values
on the vertical axes are annualized.
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Figure A8.3: Terms of the JPM variance equation of the semi-τ model during the year 2021
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P55: a2P55p55,t−1; P55+N55: P55+a2N55n55,t−1; P51: a2P51p11,t−1; P51+N51: P51+a2N51n11,t−1;
sum of semi-cov 51 terms: sum of the four terms plotted in the bottom left graph;
P semi-cov 51: 2aP51aP55p51,t−1; N semi-cov 51: 2aN51aN55n51,t−1;

τ(M+) semi-cov 51: 2a+M51a
+
M55[τ(M

+
t−1)]51; τ(M

−) semi-cov 51: 2a−M51a
−
M55[τ(M

−
t−1)]51;

lagged S55+constant: b255s55,t−1+constant;
s55,t: P55+N55+P51+N51+sum of 4 semi-cov 51 terms+lagged S55+constant, i.e., fitted conditional variance. Values
on the vertical axes are annualized.
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Figure A8.4: Terms of the JPM variance equation of the trPNτM model during the year 2021
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Figure A8.5: Terms of the SPY-JPM covariance equation of the semi-τ model during the year 2021
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Figure A8.6: Terms of the SPY-JPM covariance equation of the trPNτM model during the year 2021
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A.9 Optimal GMVP weights

Figure A9.1: Optimal GMVP weights
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Chapter 4

Hierarchical DCC-HEAVY Model

for High-Dimensional Covariance

Matrices

The contents of this chapter are the result of joint work with Prof. Matteo Barigozzi

(University of Bologna). The paper is available at 2305.08488[econ.EM].

4.1 Introduction

In this paper, we develop a flexible framework that accurately captures the latent

covariance structure of the high-dimensional asset returns and allows for sophisticated

asymmetric dynamics in the covariances while at the same time keeping the estimation

and forecasting straightforward and independent of the cross-sectional dimension of

the assets under consideration.

Our methodology relates to the Realized Beta GARCH model of Hansen et al.

(2014) and the corresponding extension of Archakov et al. (2020) that introduce the

hierarchical-type factor framework based on the realized GARCH model (Hansen

et al. (2012)), taking realized measures as direct inputs. In contrast, we model the
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dynamics of both conditional and realized covariances (RC) in a GJR-type spirit

(Glosten et al. (1993)). In addition, they focus on modelling the dynamics of daily

returns and adopt intra-daily realized measures, leaving the dynamics of the residuals

unspecified. Instead, we use monthly returns and construct realized measures via daily

data. As such, we estimate and test our model that defines the conditional covariance

matrices completely for much longer sample periods.

Given that no prior study investigates the forecasting ability of the hierarchical-

type factor models, we assess both the statistical and economic performance of the

distinct versions of our model in terms of the factor set and asymmetric dynam-

ics, comparing them with the benchmark cDCC model (Aielli (2013)), the Realized

Beta GARCH model (Hansen et al. (2014)), and its 3-Fama-French (FF) extension

(Archakov et al. (2020)).

To perform empirical evaluations of the models, we utilize the data from a Kenneth

French library on the three FF factors (Fama and French (1993)), i.e., market risk,

size, and value, together with the momentum factor (Carhart (1997)), coupled with

Yahoo Finance time series of the daily and monthly adjusted prices for a selected

cross-section of individual assets, including all the stocks that belong to the S&P500

Index during the entire sample period from January 1962 until January 2023, i.e.,

T = 732.

Statistical evaluation criteria consist of the in-sample fit and out-of-sample forecast

loss functions, i.e., the Euclidean distance (ED) and Frobenius norm (FN). From the

economic point of view, we focus on the global minimum variance portfolio (GMVP)

optimization, as the corresponding weights are determined solely by forecasts of the

conditional covariance matrices over the given investment horizon. In this regard,

the models are evaluated in terms of the forecasted conditional portfolio volatility. In

order to formally determine whether the quality of the forecasts differs significantly

across the models, we apply the model confidence set (MCS) procedure of Hansen
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et al. (2011), which allows us to identify the subset of models that contains the

best forecasting model given a pre-specified level of confidence. We also consider

some typical features of the implied portfolio allocations, such as portfolio turnover

rates and the short-selling proportion. Finally, we examine the economic significance

of differences in portfolio volatility via a utility-based framework of Fleming et al.

(2001, 2003).

Both the in-sample and forecasting results imply that our High-Dimensional (HD)

DCC-HEAVY class of models significantly outperforms the existing hierarchical mod-

els of Hansen et al. (2014) and Archakov et al. (2020), as well as the benchmark cDCC

model (Aielli (2013)). With regard to the latter, we prove the benefits of employ-

ing the higher-frequency data to model conditional covariances of lower-frequency

returns. Conversely, the importance of specifying the RC dynamics could explain the

poor performance of Realized GARCH-based models (Hansen et al. (2014); Archakov

et al. (2020)). We confirm the robustness of our findings under changing market

conditions.

The rest of the chapter is organized as follows. Section 4.2 introduces the hier-

archical HD DCC-HEAVY models. Section 4.3 expounds on the estimation scheme,

while the forecast formulas are provided in Section 4.4. Section 4.5 describes the

empirical methodology, details the data used in the paper, and presents the in- and

out-of-sample results of empirical exercises. Section 4.6 concludes.

4.2 Modelling Framework

Let us define a K × 1 vector of returns related to the set of factors on month t as rct

and the corresponding RC matrix as RCc
t . In addition, for i = 1, . . . , N , we consider

an individual asset return ri,t and associated realized measure between an individual

asset and the set of factors RCc
i,t.
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In this regard, we observe the two types of information sets. F c
t , composed of the vari-

ables related to the set of factors, and F c,i
t , which further incorporates the observable

information on an individual asset (for i = 1, . . . , N).

We consider the factor model for an individual asset return:

ri,t = αi,t + (βi,t)
′rct + εi,t; (4.1)

βi,t = Var(rct |F c
t−1)

−1Cov(ri,t, r
c
t |F

c,i
t−1)

= (diag(Hc
t )

1/2Rc
t diag(H

c
t )

1/2)−1 diag(Hc
t )

1/2ρi,t(hi,t)
1/2

= (diag(Hc
t )

1/2)−1(Rc
t)

−1ρi,t(hi,t)
1/2;

αi,t = µi − (βi,t)
′µc,

(4.2)

where ri,t is a close-to-close return of an individual asset on month t, rct is a K × 1

vector of returns of K factors, αi,t and εi,t are the intercept and idiosyncratic return

component related to ri,t, respectively, and βi,t is a K × 1 vector of asset betas;

diag(Hc
t ) is a K×K diagonal matrix composed of the conditional variances of factors

on month t, Rc
t is the corresponding K ×K conditional correlation matrix, while hi,t

denotes the conditional variance of an asset i and ρi,t a K × 1 vector of conditional

correlations between an asset and the factors.

Similarly, the factor model for N individual asset returns:

rt = αt +Btr
c
t + εt, (4.3)

where rt is a N × 1 vector of returns of individual assets on month t, αt and εt are

the corresponding N × 1 vectors of intercepts and idiosyncratic return components,

respectively, and Bt is a N ×K matrix of asset betas. It follows readily:

Var(rt|F c,i
t−1) = Bt Var(r

c
t |F c

t−1)(Bt)
′ + Σt, (4.4)

92



with Σt = E(εtε
′
t|F

c,i
t−1).

To model (4.1)-(4.4), we primarily rely on a hierarchical method introduced by

Hansen et al. (2014). In particular, F c
t is adopted to build up the model for the

dynamics of the set of factors. Subsequently, conditional on former estimates, we set

up the framework for the dynamics between each individual asset and the factors by

utilizing F c,i
t . Ultimately, the nonlinear shrinkage method (Ledoit and Wolf (2017))

is employed to define the covariances between idiosyncratic return components of the

individual assets.

4.2.1 Marginal Model for a Set of Factors

We initially specify the marginal model for a set of factors by extending the recent

DCC-HEAVY model (Bauwens and Xu (2023)) to allow for sophisticated asymmetric

dynamics in the covariance matrices.

In this regard, we decompose a K×K conditional covariance matrix of K factors,

i.e., E(rctr
c′
t |F c

t−1) = Hc
t , as

Hc
t = diag(hc

t)
1/2Rc

t diag(h
c
t)

1/2, (4.5)

where hc
t is a K×1 vector of the conditional variances of factors on month t and Rc

t is

the corresponding K ×K conditional correlation matrix, given E(diag(rctr
c′
t )|F c

t−1) =

diag(hc
t) and E(uc

tu
c′
t |F c

t−1) = Rc
t , with uc

t = rct ⊙ (hc
t)

−1/2.

The dynamics of the conditional variances and correlations, allowing for asymmetric

effects, are specified as

hc
t = wh + A+

h v
c
t−1 ⊙ I+t−1+A−

h v
c
t−1 ⊙ I−t−1+Bhh

c
t−1, (4.6)

where vct is a K × 1 vector of the realized variances of factors on month t, wh is

a K × 1 positive vector, and A+
h , A

−
h , and Bh are the K × K diagonal matrices of
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coefficients with positive diagonal entries less than 1, with ⊙ denoting the Hadamard

(element-wise) product of matrices, I+t = [1{rc1,t>0}, . . . , 1{rcK,t>0}]
′ the indicator vector

of the positive monthly returns, and I−t = [1{rc1,t≤0}, . . . , 1{rcK,t≤0}]
′ the indicator vector

of the negative monthly returns.

Correspondingly,

Rc
t = R̃ + αRRLc

t−1 + βRR
c
t−1, (4.7)

where RLc
t is a K × K realized correlation matrix of the factors on month t, and

αR and βR are non-negative scalar parameters, i.e., βR = 0 if αR = 0 and βR < 1,

with R̃ = (1− βR)R − αRP , i.e., E(uc
tu

c′
t ) = R and E(RLc

t) = P set to the empirical

counterparts.

Analogously, we decompose a K × K conditional mean of the RC matrix of K

factors, i.e., E(RCc
t |F c

t−1) = M c
t , as

M c
t = diag(mc

t)
1/2P c

t diag(m
c
t)

1/2, (4.8)

where mc
t is a K×1 vector of the conditional means of realized variances of factors on

month t and P c
t is the corresponding K×K conditional mean of realized correlations,

i.e., E(RLc
t |F c

t−1) = P c
t .

The dynamics of the realized variances and correlations, allowing for daily asymmetric

effects, are specified as

mc
t = wm + A+

mv
c+
t−1 + A−

mv
c−
t−1 +Bmm

c
t−1, (4.9)

where vc+t and vc−t are the K × 1 vectors of the positive and negative realized semi-

variances (Shephard and Sheppard (2010)) of factors, respectively, wm is a K × 1

positive vector, and A+
m, A

−
m, and Bm are the K ×K diagonal matrices of coefficients

with positive diagonal entries below 1.
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Specifically, for i = 1, . . . , K and j = 1, . . . ,m, vc+i,t =
∑m

j=1(r
c+
i,j,t)

2 and vc−i,t =∑m
j=1(r

c−
i,j,t)

2, where rc+i,j,t = rci,j,t × 1{rci,j,t>0} and rc−i,j,t = rci,j,t × 1{rci,j,t≤0} denote the

positive and negative daily returns, respectively.

Correspondingly,

P c
t = (1− αP − βP )P + αPRLc

t−1 + βRP
c
t−1, (4.10)

where αP and βP are non-negative scalar parameters, i.e., βP = 0 if αP = 0 and

αP + βP < 1, with E(RLc
t) = P set to the empirical counterpart.

4.2.2 Model for Individual Asset Returns

By assuming that the conditional distribution of individual asset returns depends on

the factors but not vice versa (Hansen et al. (2014)), the standardized return of each

asset is conditionally jointly distributed with ‘degarched’ factors, i.e.,

 uc
t

ui,t

 |F c,i
t−1 ∼ N


0K×1

01×1

 , Rc
i,t

 , (4.11)

where a (K + 1)× (K + 1) joint conditional correlation matrix Rc
i,t is given by:

Rc
i,t =

 Rc
t ρi,t

(ρi,t)
′ 1

 , (4.12)

where Rc
t and ρi,t denote the K ×K conditional correlation matrix of factors filtered

from a marginal model and K × 1 vector of correlations between an individual asset

and the factors on month t, respectively.

In accordance to the framework for a set of factors, the dynamics of the conditional

and realized variance of an individual asset, allowing for corresponding asymmetric
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effects are specified as

hi,t = ci,h + a+i,hvi,t−11[ri,t−1>0] + a−i,hvi,t−11[ri,t−1≤0] + bi,hhi,t−1, (4.13)

where hi,t and vi,t denote the conditional and realized variance of an asset i on month

t, respectively, and ci,h, a
+
i,h, a

−
i,h, and bi,h are non-negative scalar coefficients;

mi,t = ci,m + a+i,mv
+
i,t−1 + a−i,mv

−
i,t−1 + bi,mmi,t−1, (4.14)

where mi,t, v
+
i,t, and v−i,t denote the conditional mean of the realized variance, positive

and negative semi-variance of an asset i on month t, respectively, and ci,m, a
+
i,m, a

−
i,m,

and bi,m are non-negative scalar coefficients.

Finally, to model the vectors of correlations between the returns of an individual

asset and the set of factors, we utilize the Fisher transformation, i.e., F(·), to map

each element from a closed interval (−1, 1) into R within the typical HEAVY-type

recursions (Noureldin et al. (2012); Bauwens and Xu (2023)):

F(ρi,t) = ϕi,R + αi,RF(rli,t−1) + βi,RF(ρi,t−1), (4.15)

where ρi,t and rli,t denote the K × 1 vectors of conditional and realized correlations

of an asset i with factors on month t, respectively, and ϕi,R, αi,R, and βi,R are non-

negative scalar parameters;

F(pi,t) = ϕi,P + αi,PF(rli,t−1) + βi,PF(pi,t−1), (4.16)

where pi,t denotes a K × 1 vector of the conditional means of realized correlations of

an asset i with factors on month t, and ϕi,P , αi,P , and βi,P are non-negative scalar

parameters.
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4.2.3 Idiosyncratic Dynamics

Based on formulas (4.1)–(4.4), to fully specify the conditional covariance matrices

of individual asset returns, we should define the dynamics of the residuals, i.e.,

E(εtε
′
t|F

c,i
t−1).

In line with most of the literature, we treat the assumption of an exact factor

model as strict. As such, for the underlying approximate factor model, we propose

applying the nonlinear (NL) shrinkage method of Ledoit and Wolf (2017) to the sam-

ple covariance matrix of the residuals, which has been proved preferable with respect

to both the linear shrinkage of Ledoit and Wolf (2004) (Ledoit and Wolf (2017)) and

thresholding schemes (De Nard et al. (2021)).1 This methodology implies shifting the

eigenvalues of the empirical covariance matrix via the out-of-sample optimization of

the minimum variance loss function subject to a required return constraint (Engle

and Colacito (2006)).

It follows directly:

β̂i,t = (diag(Ĥc
t )

1/2)−1(R̂c
t)

−1ρ̂i,t(ĥi,t)
1/2 (4.17)

and

V̂ar(rt|F c,i
t−1) = B̂tV̂ar(r

c
t |F c

t−1)(B̂t)
′ + Σ̂ε̂ = B̂tĤ

c
t (B̂t)

′ + Σ̂ε̂, (4.18)

where matrices Ĥc
t and R̂c

t are filtered from the core model, i.e., (4.5)-(4.10), whereas

each conditional variance ĥi,t and the corresponding correlation vector ρ̂i,t are ex-

tracted from the individual factor model related to an asset i, i.e., (4.13)-(4.16), for

i = 1, ..., N . The NL shrinkage method (Ledoit and Wolf (2017)) delivers Σ̂ε̂.

1Alternatively, the dynamic Σt could be defined via the benchmark dynamic conditional corre-
lation (DCC) model (Engle (2002)) for the cross-section of N ≤ 100 assets. Conversely, when the
number of individual assets is large, the DCC-NL model introduced by Engle et al. (2019) might be
adopted. In each case, the estimation of the additional 3N + 2 parameters is required.
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4.3 Estimation

The hierarchical structure of the introduced model suggests a convenient step-by-

step estimation procedure independent of the cross-sectional dimension of the assets

under consideration. As follows, we discuss the quasi-maximum likelihood (QML)

estimation scheme and define the corresponding log-likelihood functions (LLF).

Initially, to estimate the core model for a set of factors, we essentially follow

the approach of Bauwens and Xu (2023), by partitioning the parameters of both

conditional and realized covariances into the coefficients of the corresponding variance

and correlation equations.2

In particular, let us define the two parameter sets θcH and θcM for the conditional and

realized covariances of factors, respectively.

Given the hypothesis that the distribution of the ‘degarched’ monthly return vec-

tor is multivariate Gaussian (4.11), the first step consists of estimating the parameters

of the conditional variances (4.6), i.e., θcH1, and correlations (4.7), i.e., θcH2, for the

set of factors by maximizing the following QML functions:

LLF c
H1(θ

c
H1|F c

t−1) = −1

2

T∑
t=1

{
2 log

∣∣diag(hc
t)

1/2
∣∣+ uc′

t u
c
t

}
;

LLF c
H2(θ

c
H2|θ̂cH1;F c

t−1) = −1

2

T∑
t=1

{
log |Rc

t |+ ûc′

t (R
c
t)

−1ûc
t

}
,

(4.19)

where ûc
t = rct ⊙ (ĥc

t)
−1/2, with ĥc

t defined via θ̂cH1.

Bauwens and Xu (2023) show that the estimated parameters for conditional correla-

tions (4.7), i.e., (αR, βR), do not automatically guarantee the PD-ness of Rc
t . As such,

we proceed by checking the condition during the numerical maximization of LLF c
H2.

To specify the dynamics of realized measures, we assume that the probability

density function of RC matrices RCc
t , conditional on the filtration F c

t−1, is Wishart,

2The parameter sets can be alternatively estimated without splitting by maximizing the corre-
sponding full LLFs (see Bauwens and Xu (2023)).
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i.e.,

RCc
t |F c

t−1 ∼ WK(ν,M
c
t (θ

c
M)/ν), (4.20)

where WK(ν,M
c
t (θ

c
M)/ν) denotes the K-dimensional central Wishart distribution

with ν ≥ K degrees of freedom and PD K × K scale matrix M c
t (θ

c
M)/ν, implying

E(RCc
t |F c

t−1) = M c
t (θ

c
M).

Correspondingly, we split θcM into the parameters for realized variances (4.9), i.e.,

θcM1, and realized correlations (4.10), i.e., θcM2. The second-step objective functions

for T observations are given by:

LLF c
M1(θ

c
M1|F c

t−1) =− ν

2

T∑
t=1

{
2 log |Lc

t |+ trace
[
(Lc

t)
−1RCc

t (L
c
t)

−1
]}

;

LLF c
M2(θ

c
M2|θ̂cM1;F c

t−1) =− ν

2

T∑
t=1

{
log |P c

t |+ trace
[
((P c

t )
−1 − IK)(L̂

c
t)

−1RCc
t (L̂

c
t)

−1
]}

,

(4.21)

where IK denotes the identity matrix of order K, Lc
t = diag(mc

t)
1/2, with L̂c

t defined

via θ̂cM1, and the parameter ν set equal to 1.3

Next, we consider the likelihood contributions for the conditional model of each

individual asset return. It follows from the assumptions (4.11) and (4.12), the condi-

tional distribution of the standardized monthly asset return:

ui,t|uc
t ∼ N

(
(ρi,t)

′(Rc
t)

−1uc
t , 1− (ρi,t)

′(Rc
t)

−1ρi,t
)
. (4.22)

As such, the underlying LLF with regard to the conditional covariances of an asset i

LLF c,i
Hi
(θHi

|F c,i
t−1) = −1

2

T∑
t=1

{
log

(
hi,t

(
1− (ρi,t)

′(Rc
t)

−1ρi,t
))

+
(ui,t − (ρi,t)

′(Rc
t)

−1uc
t)

2

(1− (ρi,t)′(Rc
t)

−1ρi,t)

}
,

(4.23)

3The score for θcM is proportional to ν (Bauwens et al. (2012)).
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directly follows from:

Cov(ri,t, r
c
t |F

c,i
t−1) = diag(hc

t)
1/2ρi,t(hi,t)

1/2;

Var(ri,t|rct ,F
c,i
t−1) = hi,t −

(diag(hc
t)

1/2ρi,t(hi,t)
1/2)′(diag(hc

t)
1/2ρi,t(hi,t)

1/2)

diag(hc
t)

1/2Rc
t diag(h

c
t)

1/2

= hi,t

(
1− (ρi,t)

′(Rc
t)

−1ρi,t
)
;

E(ri,t|rct ,F
c,i
t−1) = µi +

(diag(hc
t)

1/2ρi,t(hi,t)
1/2)′

diag(hc
t)

1/2Rc
t diag(h

c
t)

1/2
(rct − µc) = µi + (hi,t)

1/2(ρi,t)
′(Rc

t)
−1uc

t .

(4.24)

To ensure the positivity of the joint conditional correlation matrix Rc
i,t (4.12), we must

ensure (ρi,t)
′(Rc

t)
−1ρi,t < 1 for each t = 1, ..., T , during the estimation (Archakov et al.

(2020)).

In analogous fashion as for the conditional correlations (4.12), we use a partition-

ing of the realized measures so that a (K + 1) × (K + 1) joint conditional mean of

the realized correlation matrix, i.e., P c
i,t, is given by:

P c
i,t =

 P c
t pi,t

(pi,t)
′ 1

 , (4.25)

where P c
t and pi,t denote the K × K conditional mean of the realized correlation

matrix of factors filtered from a marginal model and K × 1 vector of the conditional

expectations of correlations between an individual asset and the factors on month t,

respectively.

In this regard, the QML function reads as

LLF c,i
Mi
(θMi

|F c,i
t−1) = −ν

2

T∑
t=1

{
log

(
mi,t(1− pi|c,t)

)
+

vi,t − (rci,t)
′(RCc

t )
−1rci,t

mi,t(1− pi|c,t)

}
,

(4.26)

where mi,t denotes the conditional mean of the realized variance of an asset i, i.e.,

vi,t, rci,t is a K × 1 vector of RC between an asset i and K factors, and
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pi|c,t = (pi,t)
′(P c

t )
−1pi,t. Analogously, we set ν equal to 1.

In order to estimate the model for the cross-section of N assets, we initially es-

timate the marginal model for a set of factors followed by the separate estimations

of individual models for i = 1, ..., N , conditional on variables obtained via the core

model. Finally, we apply the NL shrinkage of Ledoit and Wolf (2017) to obtain the

conditional covariances of derived residuals, i.e., ε̂t = rt − α̂t − B̂tr
c
t .

Considering the estimation of the core model, the total number of parameters

with respect to K factors is 8K + 4. Given the assumption of the diagonal matrices

of coefficients for the variance equations, we split the estimation of 8K parameters

for the variances into K univariate HEAVY models (Shephard and Sheppard (2010)).

Conversely, the model for each individual asset requires the specification of 14 addi-

tional parameters. As follows, a total of 8K + 4 + 14N coefficients is generated for

the cross-sectional dimension of N assets.

4.4 Forecasting

Forecasting the covariance matrices of asset returns is paramount in derivative pric-

ing, asset allocation, and risk management decisions.

In this regard, in our experiments, we focus on the 1-step-ahead predictions of the con-

ditional covariances of monthly returns for the selected cross-section of N individual

assets, i.e., Var(rt+1|F c,i
t ), directly computable via

V̂ar(rt+1|F c,i
t ) = B̂t+1V̂ar(r

c
t+1|F c

t )(B̂t+1)
′ + Σ̂ε̂ = B̂t+1Ĥ

c
t+1(B̂t+1)

′ + Σ̂ε̂, (4.27)

where Ĥc
t+1 is a K × K predicted conditional covariance matrix of factors for the

month t + 1, B̂t+1 is a N × K matrix of predicted asset betas, and Σ̂ε̂ is a N × N

conditional covariance matrix of the forecasted residuals.
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In particular, for each asset i and time t+ 1:

β̂i,t+1 = (diag(Ĥc
t+1)

1/2)−1(R̂c
t+1)

−1ρ̂i,t+1(ĥi,t+1)
1/2, (4.28)

where diag(Ĥc
t+1) is a K ×K diagonal matrix composed of the conditional variances

of factors for the month t+1, R̂c
t+1 is the corresponding K×K conditional correlation

matrix, ĥi,t+1 denotes the predicted conditional variance of an asset i, and ρ̂i,t+1 a

K × 1 vector of the forecasted conditional correlations between an asset i and the

factors.

4.5 Empirical Application

4.5.1 Data Construction and Description

For the subsequent empirical analyses, we use monthly returns on factors and assets,

and construct realized measures of variances and covariances using daily returns ob-

served within each month. In particular, we compute monthly covariance matrices

with the corresponding realized analogues with respect to the three FF factors (Fama

and French (1993)), i.e., market risk, size, and value, together with the momentum

factor (Carhart (1997)), based on the data obtained from a Kenneth French library.

Our model is tested for a selected cross-section of individual assets, consisting of

all the stocks that belong to the S&P500 Index during the entire sample period from

January 1962 until January 2023, i.e., N = 20 and T = 732.

The stock names and tickers are: American Electric Power Company Inc. (AEP), The

Boeing Company (BA), Caterpillar Inc. (CAT), Chevron Corporation (CVX), DTE

Energy Company (DTE), Consolidated Edison Inc. (ED), General Dynamics Corpo-

ration (GD), General Electric Company (GE), Honeywell International Inc. (HON),

International Business Machines Corporation (IBM), International Paper Company
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(IP), The Coca-Cola Company (KO), The Kroger Co. (KR), 3M Company (MMM),

Altria Group Inc. (MO), Merck & Co. Inc. (MRK), Marathon Oil Corporation

(MRO), Motorola Solutions Inc. (MSI), The Procter & Gamble Company (PG), and

Exxon Mobil Corporation (XOM).

We build the corresponding time series of the monthly and close-to-close daily returns

for each asset based on the prices adjusted for dividends and splits available on Yahoo

Finance.

As a result, the empirical application at the monthly frequency with realized

measures built upon daily data allows for estimating and testing the models for a

long sample period.4

Table 4.1 reports, for each factor, the time series means and standard deviations

of the realized variances, their ‘positive’ and ‘negative’ components used to specify

the asymmetric dynamics, and squared monthly returns.5 The last row indicates

the average of the time series means and standard deviations of realized correlations

between the factors. The same statistics for the individual assets are shown in the

Appendix B.1, i.e., Table B.1.1.

Table 4.1: Summary statistics for the 3 FF and MOM factors

Factor MKT SMB HML MOM

r2cc 2.51 (5.07) 1.09 (2.78) 1.05 (2.21) 2.25 (9.37)

RV 2.65 (5.75) 0.73 (1.34) 0.83 (1.66) 1.49 (3.40)

P 1.25 (2.30) 0.34 (0.47) 0.44 (0.93) 0.65 (1.19)

N 1.40 (3.73) 0.39 (0.98) 0.39 (0.82) 0.84 (2.40)

GJRP 1.12 (2.15) 0.31 (0.49) 0.46 (1.30) 0.66 (1.60)

GJRN 1.53 (5.65) 0.42 (1.35) 0.37 (1.19) 0.83 (3.17)

RL –0.10 (0.50) –0.03 (0.42) –0.14 (0.44) 0.01 (0.50)

r2cc: squared close-to-close monthly return; RV : realized variance; P : positive semi-variance; N : negative semi-
variance; GJRP : RV if monthly return is positive, 0 if negative; GJRN : RV if monthly return is negative, 0 if
positive; RL: realized correlation, the average of the 3 time series means and sd-s of realized correlations with the
other 3 factors.

4N.B. In order to estimate and forecast daily conditional covariances within the current frame-
work, the accurate replication of the factors intra-daily requires high-frequency (HF) data access with
respect to the entire universe of stocks listed on the NYSE, NASDAQ, and AMEX (see Aı̈t-Sahalia
et al. (2020)).

5The data are annualized in percentage, i.e., multiplied by 1200.
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Considering the statistics reported in Table 4.1, the market and momentum factors

appear more volatile compared to the size and value factors. Except for the market

factor, each average realized variance is only a fraction of the corresponding average

squared close-to-close return. The average negative semi-variance (N) of each factor,

except HML, is larger than the average positive component (P ). The same applies

for the portions of the variances with respect to the signs of monthly returns, i.e.,

GJRP and GJRN . Besides MOM, all the factors have a negative average realized

correlation with respect to the others.

The analogous summary measures for the individual assets, i.e., Table B.1.1, gen-

erally suggest that the average realized variance exceeds the corresponding average

squared close-to-close return. It might not be suprising, given the realized measures

obtained via daily returns that account for the overnight information. In contrast to

the set of factors, the average positive semi-variance (P ) is larger than the negative

component (N). Conversely, the portions of the variances with respect to the nega-

tive monthly returns, i.e., GJRN , exceed the GJRP . Ultimately, the average realized

correlations of all the assets with factors lie in a narrow interval, ranging from 0.28

to 0.36, with rather similar standard deviations.

Figures 4.1-4.2 show the time series of the realized variances of the market and

momentum factors and the components of their semi-variance decompositions. They

illustrate the occurrence of a few clustered extreme values, consistent with periods of

financial turbulence. In both cases, the extreme volatility is largely attributed to the

negative semi-variance due to the prevailing negative daily returns during the crises.

Figure 4.3 illustrates the time series of the realized correlations between BA and

each factor. The patterns of correlations with the three FF factors are comparable,

with BA being correlated the most with the market factor. On the other hand, the

correlations with MOM are more dispersed and volatile.
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Figure 4.1: Annualized realized variances of the market factor and the corresponding semi-variance decomposition

Figure 4.2: Annualized realized variances of the momentum factor and the corresponding semi-variance decomposition
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Figure 4.3: Realized correlations of BA with the three FF factors and MOM

4.5.2 In-Sample Fit

To evaluate the in-sample fit of the benchmark HD DCC-HEAVY model, i.e., “4F-

HD DCC-HEAVY” with K = 4 (3 FF and MOM factors), we additionally consider

restricted versions with respect to the set of factors and asymmetric effects.

In particular, we estimate the variants by assuming that equity returns are either

explained via the 3 FF factors (“FF-HD DCC-HEAVY”) or market factor only (“M-

HD DCC-HEAVY”).

In addition, we examine whether allowing for asymmetries in the covariance dy-

namics allows for improving the fit by specifying the modelling equations of the

benchmark model without accounting for the signs of underlying returns (“sym-HD

DCC-HEAVY”).
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The corresponding variance equations for “sym-HD DCC-HEAVY” are given by:

hc
t = wh + Ahv

c
t−1 +Bhh

c
t−1, (4.29)

where vct is a K × 1 vector of the realized variances of factors on month t, wh is a

K×1 positive vector, and Ah and Bh are the K×K diagonal matrices of coefficients;

mc
t = wm + Amv

c
t−1 +Bmm

c
t−1, (4.30)

where mc
t is a K × 1 vector of the conditional means of realized variances of factors

on month t, wm is a K × 1 positive vector, and Am and Bm are the K ×K diagonal

matrices of coefficients;

hi,t = ci,h + ai,hvi,t−1 + bi,hhi,t−1, (4.31)

where hi,t and vi,t denote the conditional and realized variance of an asset i on month

t, respectively, and ci,h, ai,h, and bi,h are non-negative scalar coefficients;

mi,t = ci,m + ai,mvi,t−1 + bi,mmi,t−1, (4.32)

where mi,t denotes the conditional mean of the realized variance of an asset i on

month t, and ci,m, ai,m, and bi,m are non-negative scalar coefficients.

Correspondingly, to capture potential additional information provided by the

‘high-frequency (HF)’ daily data, we estimate cDCC model (Aielli (2013)) built ex-

clusively upon monthly data, which has been widely applied to capture the dynamics

of time-varying betas (e.g., Engle and Kelly (2012); Bali et al. (2017)).
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In cDCC model (Aielli (2013)), the variance of the market and individual as-

set is modelled as the benchmark univariate GARCH (Bollerslev (1986)), while the

dynamics of the conditional correlations are specified as:

Rt = diag(Qt)
−1/2Qt diag(Qt)

−1/2,

Qt = (1− α− β)S + α[diag(Qt−1)
1/2ut−1u

′
t−1 diag(Qt−1)

1/2] + βQt−1,

(4.33)

where Rt denotes the conditional correlation matrix on month t, S is a symmetric

matrix with unit diagonal elements, ut = rt ⊙ (ht)
−1/2, with the vector of returns of

the market and individual asset rt = (rm,t, ri,t)
′, coupled with conditional variances

ht = (hm,t, hi,t)
′, and α and β are scalar coefficients.

Ultimately, we consider the existing hierarchical factor models, including the

benchmark Realized Beta GARCH model (Hansen et al. (2014)) and the extended

version introduced by Archakov et al. (2020) (“Multivariate Realized Beta GARCH”).

We estimate each model for a cross-section of N selected assets.5 The in-sample

fit of the seven models has been assessed using the three criteria, i.e., the value of

the maximized LLF, the Akaike information criterion (AIC), and the Bayesian in-

formation criterion (BIC). Given all the models assume that monthly returns are

conditionally normal, the LLFs evaluated using only monthly data are directly com-

parable, i.e., the highest value indicates a superior in-sample fit. Conversely, the

lower AIC/BIC values are better. For all models, we present the average value of

each criterion with respect to the N assets.6

5Given all the competing models leave the conditional covariance matrices of idiosyncratic return
components unspecified, we do not account for them in the in- and out-of-sample comparisons.

6The full set of results is available upon request.

108



Table 4.2 collects the three in-sample fit criteria for each model and comparison.

In view of the results obtained, several conclusions can be drawn:

1. The “4F-HD DCC-HEAVY” model has a larger LLF value and correspond-

ingly smaller AIC and BIC than the symmetric version “sym-HD DCC-

HEAVY” with respect to both core and conditional models for individual

assets. As follows, allowing for the asymmetric dynamics in the covariances of

factors, as well as an individual asset vs. the set of factors, based on the signs

of underlying daily/monthly returns, improves the in-sample fit of the model.

2. Among the market factor-based models, considering the total LLF values and

both information criteria evaluated at the monthly data, the best fitting model

is “M-HD DCC-HEAVY”. The relative superiority of our model suggests the

benefits of adopting the higher-frequency data to model conditional covariances

of lower-frequency returns as opposed to cDCCmodel. Furthermore, specifying

the dynamics of the RC is important as “M-HD DCC-HEAVY” readily

outperforms Realized Beta GARCH model of Hansen et al. (2014). The

latter provides for a better fit with respect to each criterion compared to the

low-frequency data-based cDCC model.

3. The “FF-HD DCC-HEAVY” model outperforms the scalar version of the

competing “Multivariate Realized Beta GARCH” of Archakov et al. (2020)

in terms of a possible comparison of the conditional LLF for individual assets

vs. factors evaluated at the monthly data, thus confirming the advantages of

explicitly modelling the dynamics of realized measures.
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Table 4.2: Maximized log-likelihood function (LLF), AIC, and BIC values of esti-
mated models

4F-HD DCC-HEAVY sym-HD DCC-HEAVY

LLFc -17912.52 -18469.61

AIC 49.040 50.551

BIC 49.266 50.752

LLFc,i -3509.52 -3548.47

AIC 9.627 9.728

BIC 9.715 9.803

LLFc + LLFc,i -21422.04 -22018.08

AIC 58.667 60.279

BIC 58.981 60.555

M-HD DCC-HEAVY Real. Beta GARCH cDCC

LLFc
H + LLFc,i

Hi
-3672.63 -3991.02 -4111.86

AIC 10.065 10.943 11.256

BIC 10.134 11.031 11.307

FF-HD DCC-HEAVY Mult. Real. Beta GARCH

LLFc,i
Hi

-1678.84 -1962.60

AIC 4.606 5.384

BIC 4.650 5.434

LLFc: total LLF for the core model;
LLFc,i: average (across N assets) total LLF for the conditional model for individual assets;

LLFc
H + LLFc,i

Hi
: average (across N assets) total LLF evaluated at the monthly data;

LLFc,i
Hi

: average (across N assets) LLF for the conditional model for individual assets evaluated at the monthly data;

For each maximum value of the log-likelihood function (LLF), we report the corresponding Akaike (AIC) and Bayesian
information criteria (BIC). The values in bold correspond to the best model of each row. The models are estimated
using the dataset of 732 observations described in Section 4.5.1.

The estimates of the parameters of the core model for each asymmetric HD DCC-

HEAVY version are reported in Table 4.3. The results demonstrate that the co-

efficients in columns III-V noticeably differ for the three models, implying distinct

dynamics of the variances of factors.

In each case, the average estimate of the bh parameter is much smaller compared

to standard GARCH models, while the average estimates of the a+h and a−h parameters

are much larger compared to conventional ARCH terms. In line with the findings of

Shephard and Sheppard (2010), Noureldin et al. (2012), and Bauwens and Xu (2023),

these results suggest that the dynamics of conditional variances are better captured
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by realized variances than by squared returns. Columns VI-VII present the parameter

estimates of the correlations, implying rather responsive series.7

Table 4.3: Parameter estimates of the core model for HD DCC-HEAVY variants

Coeff. wh a+h a−h bh αR βR

Model

4F-HD DCC-HEAVY 0.000 0.699 0.519 0.495 0.272 0.669

FF-HD DCC-HEAVY 0.000 0.418 0.543 0.518 0.229 0.729

M-HD DCC-HEAVY 0.000 0.286 0.826 0.487 - -

Coeff. wm a+m a−m bm αP βP

Model

4F-HD DCC-HEAVY 0.000 0.140 0.103 0.752 0.249 0.739

FF-HD DCC-HEAVY 0.000 0.061 0.115 0.819 0.221 0.639

M-HD DCC-HEAVY 0.000 0.000 0.135 0.860 - -

Presented are the estimates of the parameters that appear in the HD DCC-HEAVY equations of the core model
for the conditional variances and correlations (upper panel) and the corresponding realized analogues (lower panel).
Columns II-V provide the (average of the) estimates of univariate models for the variance of each factor. Columns
VI-VII provide the estimates of the parameters of correlations. The estimation period is January 1962 - December
2022, i.e., T = 732.

All three FF factors exhibit a significant asymmetry effect with respect to under-

lying monthly and daily returns, i.e., the greater a−h and a−m parameters compared to

a+h and a+m, respectively. Thus, one of the main stylized facts of the financial time se-

ries, i.e., the stronger impact of negative returns on the volatility, seems incorporated

in the dynamics of the FF portfolio returns. The same conclusion no longer holds

with the addition of a MOM factor.

In Figure 4.4, we plot realized variances and correlations for the market and HML

factors against fitted conditional variances and correlations via the benchmark “4F-

HD DCC-HEAVY” model. Clearly, conditional variances track the corresponding

realized series closely. In addition, Figure 4.4 demonstrates a significant temporal

variation in the correlation dynamics of selected factors, suggesting the potential

importance of accounting for time-varying factor covariances.

7The conditional models for individual assets (e.g., Table 4.4) would suggest very persistent
correlations typically found in the literature. However, these estimates cannot be directly associated
with the correlations between the individual assets and factors because we model the dynamics of
the (Fisher transformed) vectors of correlations and not the correlation elements directly.
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Figure 4.4: Annualized realized and fitted conditional variances of the market and HML factors and the corresponding
correlation series

In our empirical analyses, we estimate conditional models for the cross-section of

N = 20 individual assets (see Section 4.5.1). The corresponding estimation results

for the “FF-HD DCC-HEAVY” model are reported in Table 4.4.

The effects of the lagged realized variances on the current conditional variances

are high, on average. Thus, we further confirm realized measures as more informative

about volatility than squared returns. Correspondingly, the average a−i,h exceeds a+i,h,

indicating the presence of the asymmetry effect. Ultimately, the coefficients associ-

ated with the dynamics of the realized variances of individual stocks are relatively

dispersed, implying distinct dynamics of corresponding series.
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Table 4.4: “FF-HD DCC-HEAVY” parameter estimates of the conditional models for
individual assets

Coeff. ci,h a+i,h a−i,h bi,h ϕi,R αi,R βi,R

mean 0.000 0.159 0.222 0.755 0.017 0.022 0.944

min 0.000 0.026 0.082 0.545 0.001 0.001 0.631

1 0.000 0.031 0.085 0.561 0.001 0.001 0.675

5 0.000 0.048 0.097 0.626 0.001 0.001 0.849

10 0.000 0.052 0.099 0.661 0.002 0.002 0.892

25 0.000 0.093 0.144 0.692 0.002 0.002 0.922

50 0.000 0.145 0.213 0.752 0.003 0.002 0.978

75 0.000 0.198 0.278 0.827 0.014 0.014 0.984

90 0.000 0.293 0.305 0.872 0.022 0.026 0.987

95 0.000 0.313 0.442 0.886 0.056 0.082 0.989

99 0.000 0.412 0.458 0.889 0.149 0.236 0.991

max 0.000 0.436 0.462 0.890 0.168 0.275 0.991

Coeff. ci,m a+i,m a−i,m bi,m ϕi,P αi,P βi,P

mean 0.000 0.134 0.110 0.751 0.000 0.028 0.819

min 0.000 0.042 0.024 0.603 0.000 0.000 0.611

1 0.000 0.043 0.027 0.611 0.000 0.000 0.616

5 0.000 0.046 0.037 0.632 0.000 0.000 0.636

10 0.000 0.082 0.043 0.653 0.000 0.000 0.689

25 0.000 0.121 0.080 0.687 0.000 0.000 0.745

50 0.000 0.133 0.096 0.748 0.000 0.000 0.844

75 0.000 0.147 0.131 0.803 0.000 0.055 0.905

90 0.000 0.181 0.201 0.853 0.000 0.069 0.931

95 0.000 0.221 0.205 0.869 0.000 0.134 0.940

99 0.000 0.225 0.239 0.914 0.000 0.151 0.941

max 0.000 0.226 0.248 0.925 0.000 0.155 0.941

Presented are the estimates of the parameters that appear in the “FF-HD DCC-HEAVY” equations of the conditional
model for an individual asset, i.e., conditional variances and conditional correlation vectors (upper panel), and the
corresponding realized analogues (lower panel). Estimation period is January 1962 - December 2022, i.e., T = 732.

For HD DCC-HEAVY models, we implicitly assume that the correlations across

the selected cross-section of asset returns are explained via either, a single, three, or

four sources of the systematic risk, i.e., market, size, value, and momentum. In this

regard, the vector of model-implied betas for each asset given by (4.2) is obtained by

accounting for the information from higher- and lower-frequency data.
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To present the rich dynamics of estimated betas, we graphically illustrate the “4F-

HD DCC-HEAVY” fitted measures for IP in Figure 4.5. The average market beta

is close to 1, implying the IP closely tracks the S&P500 dynamics. Conversely, the

means of the value and MOM factors lie in the interval 0.5-0.8, while the average SMB

beta is around -0.1. The exposure to the size risk factor varies the most. All the betas

hit a range of extreme values during the financial crisis episode. The corresponding

summary statistics are given in Table 4.5.

Figure 4.5: Fitted betas for IP for the period 1962–2022
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Table 4.5: “4F-HD DCC-HEAVY” beta estimates for IP

β̂M β̂SMB β̂HML β̂MOM β̂M β̂SMB β̂HML β̂MOM

mean 0.959 -0.116 0.763 0.567 1.433 -0.858 0.628 0.794

sd. 0.541 0.990 0.552 0.378 1.157 2.704 1.181 0.450

min -0.369 -17.697 -6.852 -0.466 -0.369 -17.697 -6.852 -0.466

1 0.273 -2.549 -0.051 -0.015 -0.251 -13.556 -4.387 -0.378

5 0.414 -0.844 0.195 0.100 0.404 -2.654 -0.648 0.062

10 0.499 -0.541 0.302 0.145 0.473 -1.858 0.302 0.241

25 0.645 -0.221 0.491 0.299 0.678 -0.928 0.507 0.535

50 0.886 0.003 0.717 0.514 1.091 -0.193 0.690 0.764

75 1.122 0.203 0.983 0.763 1.805 0.203 1.066 1.113

90 1.426 0.384 1.384 1.008 3.006 0.363 1.483 1.340

95 1.705 0.514 1.621 1.296 3.364 0.450 1.671 1.446

99 3.190 0.753 2.106 1.755 5.141 1.634 2.273 1.745

max 7.185 2.006 2.582 2.433 7.185 2.006 2.536 2.026

Presented are the “4F-HD DCC-HEAVY” estimates of betas for IP for the full sample period, i.e., 1962-2022 (left
panel), and the financial crisis turbulence, i.e., 2007-2012 (right panel).

4.5.3 Out-of-Sample Forecasting

We compute the out-of-sample forecasts discussed in Section 4.4 with regard to all

the asymmetric hierarchical-type factor models, which fit the data better compared

to the cDCC model, i.e., “4F-HD DCC-HEAVY”, “FF-HD DCC-HEAVY”,“M-HD

DCC-HEAVY”, Realized Beta GARCH, and “Multivariate Realized Beta GARCH”.

Starting from the fitting period from January 1962 to December 2016 (Te = 660), we

generate the forecasts by re-estimating the models every year on a rolling window with

Te monthly observations and then producing a sequence of the twelve 1-step-ahead

predictions based on the updated parameter estimates. We consider the two out-of-

sample forecasting periods.8 The first, characterized by the relatively low volatility of

returns, includes the years 2017-2019. The second period lasts until the end of 2022,

with volatility at a relatively high level, triggered by the COVID pandemic.

8The results for a full out-of-sample period are available in Appendix B.2.
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Statistical Accuracy

In order to assess the statistical accuracy of all models, we adopt the two loss functions

that produce the consistent ranking (Patton (2011); Laurent et al. (2013)), i.e., the

Euclidean distance (ED) and squared Frobenius norm (FN).

The first is based on the vech(·)9 transformation of the forecast error matrix,

where the prediction errors on variances and covariances are equally weighted:

EDt(Ct+1, Ĥt+1) = vech(Ct+1 − Ĥt+1)
′ IN∗ vech(Ct+1 − Ĥt+1), (4.34)

where Ĥt+1 is the conditional forecast of the covariances of rt+1, Ct+1 is a proxy for

the unobserved covariance matrix at time t + 1, and IN∗ is the identity matrix of

order N(N + 1)/2. Indeed, the natural proxy for latent covariances is given by rtr
′
t,

although others, such as the RC, can be used.10

The second loss function is the matrix equivalent of the MSE loss function, where

the weights on the covariance forecast errors are doubled compared to the ones on

variances:

FNt(Ct+1, Ĥt+1) = trace[(Ct+1−Ĥt+1)
′(Ct+1−Ĥt+1)] =

∑
i,j

(cij,t+1− ĥij,t+1)
2. (4.35)

For assessing the significance of differences in the ED and FN losses across the

five models, we rely on the model confidence set (MCS) approach of Hansen et al.

(2011). The MCS identifies the model or subset of models with the best forecasting

performance, given the pre-specified confidence level. It is computed at the 10% sig-

nificance level using a block bootstrap (Hansen et al. (2003)) with 10,000 replications

and the varying block length to verify the robustness of the results.

9The operator that stacks the lower triangular part of a symmetric N ×N matrix argument into
a N(N + 1)/2× 1 vector.

10The adoption of rtr
′
t appears more suitable when forecasting the covariances over the entire

month.
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Table 4.6: Model confidence sets at 90% level of hierarchical factor models, with ED
and FN loss functions

Model ED MCS 2017-2019 ED MCS 2020-2022

4F-HD DCC-HEAVY 0.080 0.006 0.828 0.002

FF-HD DCC-HEAVY 0.075 1.000 0.796 1.000

M-HD DCC-HEAVY 0.075 0.885 0.879 0.002

Realized Beta GARCH 0.078 0.091 0.951 0.002

Multivariate Realized Beta GARCH 0.093 0.000 0.954 0.002

Model FN MCS 2017-2019 FN MCS 2020-2022

4F-HD DCC-HEAVY 0.138 0.002 1.340 0.002

FF-HD DCC-HEAVY 0.132 0.320 1.276 1.000

M-HD DCC-HEAVY 0.129 1.000 1.399 0.002

Realized Beta GARCH 0.135 0.008 1.514 0.002

Multivariate Realized Beta GARCH 0.164 0.000 1.527 0.002

‘ED/FN’ columns: the average annualized value of ED/FN losses over the corresponding forecast period; bold values
identify the minimum loss over the five models.
‘MCS 2017-2019’ columns: p-values of the MCS tests over the out-of-sample period including the years 2017-2019;
bold values identify the models included in the MCS at the 90% confidence level (i.e., p-values larger than 0.10).
‘MCS 2020-2022’ columns: the analogous results for the period 2020-2022.

Table 4.6 reports the model confidence sets at the 90% confidence level using

the ED and FN loss functions. The hierarchical models of Hansen et al. (2014) and

Archakov et al. (2020) are always excluded from the reported model confidence sets.

The “FF-HD DCC-HEAVY” significantly outperforms all the other models during

financial turbulence, while during calm times the MCS also incorporates the “M-HD

DCC-HEAVY”.

As follows, when all the hierarchical factor models are compared in statistical

terms, the new HD DCC-HEAVY models are superior compared to the models built

upon the Realized GARCH framework in all cases. Considering the full out-of-sample

period, only the “FF-HD DCC-HEAVY” model enters the MCS in terms of both ED

and FN losses (Appendix B.2, Table B.2.1).
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Economic Performance

In order to perform the economic evaluation of the forecasting performance, we rely on

the global minimum variance portfolio (GMVP) optimization (e.g., Engle and Kelly

(2012); Bauwens and Xu (2023)) since it does not require the estimation of expected

returns, providing an essentially clean framework for assessing the merits of distinct

covariance forecasting models.

Given a covariance matrix forecast Ĥt+1, the portfolio weights ω̂t+1 are obtained

by solving the minimization problem:

min
ωt+1

ω′
t+1Ĥt+1ωt+1 s. t. ω′

t+11 = 1, (4.36)

where 1 is a N× 1 vector of ones.

It follows readily that the optimal GMVP weights are given by:

ω̂t+1 =
Ĥ−1

t+11

1′Ĥ−1
t+11

. (4.37)

In addition, we consider the optimization under a short-selling restriction and

compute the weights via numerical optimization, i.e., MATLAB Financial Toolbox,

given the absence of a closed-form analytical solution. The results are available in

Appendix B.2 (Table B.2.3). Given the main aim of assessing the accuracy of distinct

covariance matrix estimators, our performance measures do not account for transac-

tion costs.

Initially, we adopt the MCS to select the best-performing models that minimize

the standard deviation (SD) of the portfolios obtained by applying the computed

weights to the observed returns.
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The results presented in Table 4.7 show that the “M-HD DCC-HEAVY” model

provides for the lowest out-of-sample SD during the calm periods, whereas only the

“4F-HD DCC-HEAVY” enters the MCS when the volatility is at a relatively high

level. Considering the entire out-of-sample period, the MCS includes only the “4F-HD

DCC-HEAVY” model (Appendix B.2, Table B.2.2), while the analogous conclusion

applies for long-only portfolios (Appendix B.2, Table B.2.3). Therefore, in contrast

to the statistical performance where the “FF-HD DCC-HEAVY” model is superior,

the “4F-HD DCC-HEAVY” appears preferable from a variance minimization perspec-

tive.

In general, the “M-HD DCC-HEAVY” model outperforms the competing market

factor-based Realized Beta GARCH of Hansen et al. (2014) in all cases. The same ap-

plies for a corresponding comparison between the three-factor “FF-HD DCC-HEAVY”

and “Multivariate Realized Beta GARCH” (Archakov et al. (2020)) models (see Ta-

bles 4.7, B.2.2, and B.2.3).

Table 4.7: Model confidence sets at 90% level of hierarchical factor models, with
GMVP loss function

Model SD MCS 2017-2019 SD MCS 2020-2022

4F-HD DCC-HEAVY 0.653 0.098 0.571 1.000

FF-HD DCC-HEAVY 0.715 0.000 0.709 0.088

M-HD DCC-HEAVY 0.565 1.000 0.952 0.000

Realized Beta GARCH 0.643 0.098 0.878 0.000

Multivariate Realized Beta GARCH 0.723 0.000 0.718 0.067

‘SD’ columns: the average annualized standard deviation of GMVP returns over the corresponding forecast period;
bold values identify the minimum loss over the five models.
‘MCS 2017-2019’ column: p-values of the MCS tests over the out-of-sample period including the years 2017-2019;
bold values identify the models included in the MCS at the 90% confidence level (i.e., p-values larger than 0.10).
‘MCS 2020-2022’ column: the analogous results for the period 2020-2022.

In addition, we examine some basic features of the portfolios, including the Av-

erage Return (AR), i.e., the average of out-of-sample returns for the corresponding

period; the Information Ratio (IR), i.e., the ratio AR/SD; portfolio turnover rates
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(TO); and the proportion of short positions (SP).11

The latter are specified as follows:

TOt =
N∑
i

∣∣∣∣ŵi,t − ŵi,t−1

1 + rit−1

1 + rpt−1

∣∣∣∣ ; (4.38)

SPt =
N∑
i

1{ŵi,t<0}, (4.39)

where rpt is the total return of the portfolio for the month t, ŵi,t and rit are the weight

and return of stock i, respectively, and 1{·} denotes the indicator function.12

The results reported in Table B.2.4 confirm that hierarchical HD DCC-HEAVY

models consistently and notably outperform Realized GARCH variants. In particular,

the “M-HD DCC-HEAVY” features the highest IR during turbulent periods and

overall. On the other hand, the findings summarized in Table B.2.5 suggest that the

propensity of models with respect to short positions is very similar and, in general,

moderately increases for HD DCC-HEAVY models during turmoils. The increasing

trend of the average monthly turnover rates for all models is also visible.

Given that the GMVPs aim at minimizing the variance, and thus the SD, rather

than maximizing the expected returns or the IR, the most important performance

measure is the out-of-sample SD. In this regard, the out-of-sample returns and IR are

also beneficial but should be considered of secondary importance.

Finally, to assess the economic gains of utilizing distinct HD DCC-HEAVY co-

variance matrix estimators, following Fleming et al. (2001, 2003), we determine the

maximum performance fee a risk-averse investor would be willing to pay to switch

from using one model to another.

11The resulting AR and IR are computed with respect to estimated non-negative weights since
short-selling is difficult to implement, thus it is not generally the common practice for most investors.

12We do not set constraints on the turnover rate and leverage proportion in the optimization.
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Accordingly, we assume that the investor has quadratic preferences of the form:

U(rpt ) = 1 + rpt −
γ

2(1 + γ)
(1 + rpt )

2, (4.40)

where rpt is the portfolio return and γ is the investor’s relative risk aversion, taking

values 1 and 10 (Fleming et al. (2003)). As follows, we determine a fee ∆γ by equating

the average realized utilities from two alternative portfolios:

T∑
t=1

U(rp1t ) =
T∑
t=1

U(rp2t −∆γ), (4.41)

where rp1t and rp2t are the portfolio returns related to competing HD DCC-HEAVY

forecasting strategies.

Major observations based on results in Table 4.8 are as follows. First, by utilizing

the “4F-HD DCC-HEAVY” covariance forecasts, a risk-averse investor can achieve

notable economic gains that become pronounced during the crisis period. Overall, an

investor with low (high) risk aversion would be willing to pay on average 27 (38) bps

to switch from the “FF-HD DCC-HEAVY” strategy to the “4F-HD DCC-HEAVY”

and 15 (35) bps to switch from the “M-HD DCC-HEAVY”. These results provide

further support that the “4F-HD DCC-HEAVY” might be a preferable hierarchical

factor model from the investor’s point of view.

Table 4.8: BPS fees for switching from simpler HD DCC-HEAVY to the “4F-HD
DCC-HEAVY” covariance matrix forecasts

Period 2017-2019 2020-2022 2017-2022

Model ∆1 ∆10 ∆1 ∆10 ∆1 ∆10

FF-HD DCC-HEAVY -6.92 -6.92 61.52 83.84 27.30 38.46

M-HD DCC-HEAVY 28.74 28.74 0.46 40.64 14.60 34.69

‘∆γ ’ columns: the basis points fee an investor with quadratic utility and relative risk aversion γ would pay to switch
from the covariance matrix estimator indicated in column 1 to the “4F-HD DCC-HEAVY” model over the period
indicated in row 1.
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4.6 Conclusion

In this paper, we introduce a class of models for high-dimensional covariance matrices

by combining the hierarchical approach of Hansen et al. (2014) and dynamic condi-

tional correlation formulation of a HEAVY model (Noureldin et al. (2012)) recently

proposed by Bauwens and Xu (2023). In this regard, we rely on the evidence to adopt

the higher-frequency data to model more accurate realized measures of covariances

and employ them to forecast the conditional covariance matrix of lower-frequency

returns (i.e., Noureldin et al. (2012); Gorgi et al. (2019); Bauwens and Xu (2023)).

An illustrative empirical study for the S&P500 constituents over the period from

January 1962 until January 2023, i.e., N = 20 and T = 732, shows that our method

always significantly outperforms the benchmark and existing hierarchical factor mod-

els in statistical and economic terms. The findings are robustified under distinct

market conditions.

The avenues for future research are twofold. First, a promising feature of the

framework is the ability to readily extract inherently time-varying factor loadings for

a given asset or portfolio, thus conforming to the extensive literature that proves

the dynamic nature of betas (e.g., Bollerslev et al. (1988); Jagannathan and Wang

(1996); etc.) but also potentially improving the commonly adopted rolling regression

approach for their estimation. Second, to verify the relevance of adopted factors

and thus employ the optimal HD DCC-HEAVY model, the asymptotic theory on

estimated loadings and corresponding testing procedures should be derived.
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B Appendix of Chapter 4

B.1 Data cont’d

Table B.1.1: Summary statistics for the individual assets

r2cc RV P N GJRP GJRN RL

AEP 3.68 (6.54) 4.34 (9.99) 2.21 (4.69) 2.13 (5.55) 1.97 (3.47) 2.37 (9.85) 0.30 (0.21)

BA 11.32 (26.15) 11.54 (19.78) 6.04 (8.81) 5.50 (12.40) 5.69 (9.58) 5.85 (19.13) 0.34 (0.22)

CAT 8.53 (17.46) 8.76 (10.13) 4.43 (4.75) 4.33 (6.71) 4.61 (7.31) 4.15 (9.35) 0.35 (0.23)

CVX 5.27 (10.15) 6.63 (12.97) 3.38 (5.72) 3.25 (8.01) 3.18 (5.45) 3.45 (12.67) 0.34 (0.23)

DTE 3.26 (8.77) 3.96 (7.89) 2.04 (3.97) 1.92 (4.55) 1.97 (4.17) 1.99 (7.26) 0.31 (0.21)

ED 4.40 (26.05) 4.03 (11.62) 1.93 (3.92) 2.10 (9.68) 1.92 (4.17) 2.11 (11.22) 0.30 (0.22)

GD 9.45 (16.93) 9.23 (9.68) 4.94 (5.89) 4.29 (5.42) 4.99 (8.33) 4.24 (8.16) 0.34 (0.22)

GE 6.62 (13.82) 7.52 (12.06) 3.83 (5.71) 3.69 (7.23) 3.35 (6.91) 4.17 (11.21) 0.33 (0.24)

HON 7.53 (18.62) 8.55 (14.84) 4.36 (6.91) 4.19 (9.34) 4.15 (7.29) 4.40 (14.27) 0.36 (0.23)

IBM 5.77 (11.11) 6.39 (8.69) 3.24 (4.12) 3.15 (5.86) 2.92 (4.98) 3.47 (8.43) 0.30 (0.24)

IP 8.44 (22.52) 9.31 (16.22) 4.71 (8.55) 4.60 (9.46) 4.58 (11.59) 4.73 (13.12) 0.35 (0.23)

KO 4.33 (9.19) 5.37 (9.22) 2.77 (4.01) 2.60 (5.74) 2.66 (4.05) 2.71 (9.11) 0.28 (0.23)

KR 7.33 (14.14) 8.42 (10.08) 4.26 (5.36) 4.16 (6.96) 4.34 (7.21) 4.08 (9.22) 0.31 (0.20)

MMM 4.51 (8.47) 5.38 (6.69) 2.72 (3.13) 2.66 (4.52) 2.53 (6.11) 2.85 (4.68) 0.32 (0.24)

MO 6.29 (11.74) 6.63 (8.01) 3.35 (3.95) 3.28 (5.59) 3.43 (5.08) 3.20 (7.76) 0.29 (0.23)

MRK 5.59 (9.53) 6.26 (7.79) 3.17 (3.58) 3.09 (5.79) 3.21 (4.97) 3.05 (7.45) 0.28 (0.22)

MRO 12.67 (46.27) 12.92 (32.01) 6.27 (10.28) 6.65 (24.93) 5.89 (11.51) 7.03 (31.22) 0.35 (0.23)

MSI 11.54 (20.10) 13.72 (17.49) 6.87 (8.08) 6.85 (11.45) 6.56 (10.94) 7.16 (16.74) 0.32 (0.23)

PG 3.73 (10.02) 4.70 (11.17) 2.32 (3.71) 2.38 (8.44) 2.14 (3.52) 2.56 (11.11) 0.28 (0.22)

XOM 3.63 (7.75) 5.28 (10.27) 2.71 (4.72) 2.57 (6.06) 2.51 (4.27) 2.77 (10.05) 0.33 (0.24)

r2cc: squared close-to-close monthly return; RV : realized variance; P : positive semi-variance; N : negative semi-variance;
GJRP : RV if monthly return is positive, 0 if negative; GJRN : RV if monthly return is negative, 0 if positive; RL: realized
correlation, the average of the 4 time series means and sd-s of realized correlations with the set of factors.
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B.2 Out-of-Sample Performance cont’d

Table B.2.1: Model confidence sets at 90% level of hierarchical factor models, with
ED and FN loss functions over the full out-of-sample period

Model ED MCS 2017-2022 FN MCS 2017-2022

4F-HD DCC-HEAVY 0.454 0.005 0.739 0.003

FF-HD DCC-HEAVY 0.435 1.000 0.704 1.000

M-HD DCC-HEAVY 0.477 0.005 0.764 0.003

Realized Beta GARCH 0.515 0.005 0.824 0.003

Multivariate Realized Beta GARCH 0.524 0.005 0.845 0.003

‘ED/FN’ column: the average annualized value of ED/FN losses over the full forecast period; bold values identify
the minimum loss over the five models.
‘MCS 2017-2022’ columns: p-values of the MCS tests over the out-of-sample period including the years 2017-2022;
bold values identify the models included in the MCS at the 90% confidence level (i.e., p-values larger than 0.10).

Table B.2.2: Model confidence set at 90% level of hierarchical factor models, with
GMVP loss function over the full out-of-sample period

Model SD MCS 2017-2022

4F-HD DCC-HEAVY 0.612 1.000

FF-HD DCC-HEAVY 0.712 0.027

M-HD DCC-HEAVY 0.758 0.005

Realized Beta GARCH 0.761 0.005

Multivariate Realized Beta GARCH 0.720 0.005

‘SD’ column: the average annualized standard deviation of GMVP returns over the full forecast period; bold values
identify the minimum loss over the five models.
‘MCS 2017-2022’ column: p-values of the MCS tests over the out-of-sample period including the years 2017-2022;
bold values identify the models included in the MCS at the 90% confidence level (i.e., p-values larger than 0.10).

Table B.2.3: Model confidence set at 90% level of hierarchical factor models, with
GMVP loss function under long-only portfolios

Period 2017-2019 2020-2022 2017-2022

Model SD MCS SD MCS SD MCS

4F-HD DCC-HEAVY 0.105 0.079 0.137 1.000 0.121 1.000

FF-HD DCC-HEAVY 0.115 0.000 0.144 0.659 0.130 0.000

M-HD DCC-HEAVY 0.112 0.079 0.153 0.659 0.132 0.000

Realized Beta GARCH 0.157 0.000 0.242 0.000 0.199 0.000

Multivariate Realized Beta GARCH 0.080 1.000 0.199 0.091 0.140 0.000

‘SD’ columns: the average annualized standard deviation of GMVP returns with short sale restrictions over the
forecast period indicated in row 1; bold values identify the minimum loss over the five models.
‘MCS’ columns: p-values of the MCS tests over the out-of-sample period indicated in row 1; bold values identify the
models included in the MCS at the 90% confidence level (i.e., p-values larger than 0.10).
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Table B.2.4: Alternative economic performance measures for hierarchical factor mod-
els based on GMVP optimization

Period 2017-2019 2020-2022 2017-2022

Model AR IR AR IR AR IR

4F-HD DCC-HEAVY 0.099 0.937 0.145 1.066 0.122 1.010

FF-HD DCC-HEAVY 0.121 1.051 0.086 0.596 0.104 0.798

M-HD DCC-HEAVY 0.105 0.935 0.221 1.449 0.163 1.231

Realized Beta GARCH 0.027 0.173 0.005 0.020 0.016 0.080

Multivariate Realized Beta GARCH 0.005 0.059 0.116 0.579 0.060 0.431

‘AR’ columns: the average annualized GMVP return over the forecast period indicated in row 1.
‘IR’ columns: the average annualized AR/SD ratio over the forecast period indicated in row 1.

Table B.2.5: Alternative economic performance measures for hierarchical factor mod-
els based on GMVP optimization cont’d

Period 2017-2019 2020-2022 2017-2022

Model TO SP TO SP TO SP

4F-HD DCC-HEAVY 1.227 0.471 1.441 0.478 1.334 0.474

FF-HD DCC-HEAVY 0.828 0.463 1.089 0.476 0.959 0.469

M-HD DCC-HEAVY 1.023 0.469 1.258 0.478 1.141 0.474

Realized Beta GARCH 1.085 0.476 1.139 0.468 1.112 0.472

Multivariate Realized Beta GARCH 0.671 0.479 1.247 0.475 0.960 0.477

‘TO’ columns: the average portfolio turnover over the forecast period indicated in row 1.
‘SP’ columns: the average leverage proportion over the forecast period indicated in row 1.
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Chapter 5

Conclusions

Considering the importance of identifying the advantages and potential pitfalls in

the performance of distinct estimation techniques adopted for covariance models, in

Chapter 2, we empirically investigate the asymptotic properties of the NLS for the

HE–HAR family of models (Bauwens and Otranto (2023)). The latter allows for the

possibility of having a very flexible but parsimonious model, thus adequately offsetting

the well-known ‘curse of dimensionality’ issue while maintaining the computational

advantages of the HAR family, i.e., simplicity, stability, and cost with respect to

all ML-based RC models. Not to mention, the modelling framework automatically

guarantees the PD-ness of the covariances under the proper assumption for error

terms, e.g., multivariate Normal, Wishart, or Matrix F distribution.

To the best of our knowledge, this is the first study that not only empirically

verifies consistent and asymptotically Normal OLS estimates for benchmark HAR

models but also investigates the properties of the NLS for flexible nonlinear HAR

extensions. Our results show that conventional HAR parameters are consistent (and

Normal under Gaussian errors), while the HE coefficient features a small-medium bias

conditional upon the underlying distributional assumption. In this regard, we argue

for confidently adopting linear HAR models estimated by OLS to obtain RC forecasts.
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In addition, the NLS for the HE–HAR class might be employed with caution.

Regardless of the assumption on the assessment of the latent covariances, all

models aim to contain the main stylized facts of the financial time series, such as

persistence, clustering, etc. On the other hand, while the ‘leverage effect’ specific

to stock returns has been incorporated in the dynamics of realized variances (RV)

by, e.g., Corsi and Renò (2012), McAleer and Medeiros (2008), Patton and Sheppard

(2015), etc., the corresponding extension to the multivariate setting is rather rare.

In this regard, via Chapter 3, we contribute to the literature by developing a class

of asymmetric models for RC matrices based on the CAW model of Golosnoy et al.

(2012) that guarantees the PD-ness of covariances by construction and empirically

evaluating the statistical and economic performance of these models.

The asymmetric dynamics in RC are captured by utilizing the signs of either lagged

daily or intra-daily returns. Both the in-sample and forecasting results demonstrate

that the asymmetric models always significantly outperform the symmetric bench-

mark specification. In addition, we show that the models that rely on the signs

of underlying daily returns to capture asymmetry not only better fit the data but

also provide for more statistically accurate forecasts and notably lower out-of-sample

portfolio volatility than the models built upon the semi-covariance decomposition

(Bollerslev et al. (2020a)). As such, we underline the importance of accounting for

the asymmetries in modelling and forecasting RC matrices. To do so, we recommend

using the RC decomposition via daily close-to-close rather than HF returns.

In Chapter 4, we propose a class of models for high-dimensional covariance ma-

trices by utilizing the hierarchical modelling method of Hansen et al. (2014) and

dynamic conditional correlation (DCC)-HEAVY model of Bauwens and Xu (2023).

An assumption of a factor structure for cross-correlation dynamics, together with the

hierarchical approach, makes the estimation and forecasting independent of the cross-

sectional dimension of the assets under consideration. In particular, the estimation
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procedure relies on two main steps. In the first step, we estimate the marginal model

for the set of factors; in the second step, we estimate the models for individual asset

returns conditionally on the variables filtered from the core part.

Empirical results of the out-of-sample exercises imply that our High-Dimensional

(HD) DCC-HEAVY class of models brings statistically more accurate forecasts with

significant economic gains with respect to the existing hierarchical-type models (Hansen

et al. (2014), Archakov et al. (2020)) and the benchmark cDCC model (Aielli (2013)).

The robustness of the findings is verified under distinct market conditions.

The topics analyzed in this thesis are clearly relevant outside of academia. I.e.,

the presented methods and conclusions might be of interest to, e.g., asset managers,

banks, pension funds, etc. All these institutions face precisely the same problem of

selecting the estimator and forecasting methodology for covariance matrices of asset

returns in order to decide on their operations, which have a substantial impact on

their clients’ investments, retirement savings, etc.
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