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The contribution of structural connectivity to functional connectivity dynamics is still far from being elucidated. 

Herein, we applied track-weighted dynamic functional connectivity (tw-dFC), a model integrating structural, 

functional, and dynamic connectivity, on high quality diffusion weighted imaging and resting-state fMRI data 

from two independent repositories. The tw-dFC maps were analyzed using independent component analysis, 

aiming at identifying spatially independent white matter components which support dynamic changes in func- 

tional connectivity. Each component consisted of a spatial map of white matter bundles that show consistent 

fluctuations in functional connectivity at their endpoints, and a time course representative of such functional 

activity. These components show high intra-subject, inter-subject, and inter-cohort reproducibility. We provided 

also converging evidence that functional information about white matter activity derived by this method can cap- 

ture biologically meaningful features of brain connectivity organization, as well as predict higher-order cognitive 

performance. 
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. Introduction 

Functional co-activation of brain regions, as measured by resting-

tate functional MRI (rsfMRI), has long been employed to identify spa-

ially segregated patterns of brain activity ( Buckner et al., 2009 ). During

he last decades, neuroscience has seen a paradigm shift from a tradi-

ional, localizationist view of functional brain organization to a network-

ased perspective, in which different brain regions, which are frequently

ngaged together during the execution of complex tasks, tend to show

orrelated intrinsic activity in awake rest, the so-called resting state

 Eickhoff et al., 2011 ; Smith et al., 2009 ). Inter-individual differences in

ctivity and configuration of such intrinsic connectivity networks have

een shown to reflect differences in perception, cognition and behavior

 Raichle, 2015 ; van den Heuvel et al., 2009 ). 

Recently, this paradigm has been further expanded by incorporat-

ng evidence for time-varying fluctuations in functional connectivity
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trength across brain regions ( Preti et al., 2017 ). This dynamic func-

ional connectivity approach has been employed to parcellate the brain

nto brain networks akin to those identified by static functional connec-

ivity ( Fan et al., 2021 ), as well as to identify transitions from different

tates of brain activity in the resting state ( Allen et al., 2014 ), and to pre-

ict inter-individual variability in age and cognition ( Liu et al., 2018 ;

in et al., 2015 ). 

Structural connectivity, resulting either from direct or indirect

xonal connections between brain regions, is thought to represent

he anatomical substrate of such functional organization. At the cur-

ent state-of-art, diffusion weighted imaging (DWI) and tractogra-

hy are instruments of choice for the study of structural connectiv-

ty in the human brain in-vivo and non-invasively ( Bertino et al.,

021 , 2020a ; Cacciola et al., 2019 , 2016 ; Milardi et al., 2022 ). Multi-

odal approaches integrating tractography with resting-state fMRI

ave demonstrated a general agreement between structural and func-
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p  
ional connectivity and between structural and functional brain net-

orks ( Honey et al., 2009 ; Horn et al., 2014 ; O’Muircheartaigh and

babdi, 2018 ). Notwithstanding, the contribution of structural connec-

ivity to functional connectivity dynamics is still far from being eluci-

ated. 

The peculiar spatial organization of functional connectivity is

hought to stem in part from the underlying anatomy of white matter cir-

uits, so that some of the system-level properties of functional networks

an be explained by the underlying structural connectivity ( Honey et al.,

009 ). At the same time, the intrinsic organization of structural and

unctional connectivity are expected to diverge, as functional connec-

ivity investigates neuronal activity at a very different time scale com-

ared to synaptic activity and is not constrained by the implicit anatomy

f long and short-range neuronal connections. As a clear example of this

ismatch, a recent work correlating structural brain networks to func-

ional brain networks found that multiple white matter components ac-

ounted for the spatial distribution of each functional brain network

 O’Muircheartaigh and Jbabdi, 2018 ). In this perspective, while most of

he existing works analyze functional and structural connectivity data

eparately, a joint decomposition of both structural and functional infor-

ation may provide the opportunity of investigating structure-function

elationships in a more intuitive fashion ( Griffa et al., 2017 ; Gutiérrez-

ómez et al., 2020 ). 

In addition, evidence suggests that white matter connections have a

rucial role in driving and modulating synchronization between brain

egions ( Finger et al., 2016 ; Sanchez et al., 2019 ), which is probably

eflected by dynamic fluctuations in brain connectivity ( Preti et al.,

017 ). Hence, incorporating the dynamic connectivity paradigm into

his framework provides a simple and natural model to investigate the

ontribution of structural connectivity in shaping context-dependent

uctuations in functional connectivity in the human brain. 

As a member of the track-weighted imaging “family ” ( Basile et al.,

021 ; Calamante, 2017 ; Calamante et al., 2012 ), track-weighted dy-

amic functional connectivity (tw-dFC) has been recently developed to

llow for a joint analysis of structural and dynamic functional connec-

ivity data ( Calamante et al., 2017 ). By integrating tractography and

ynamic functional connectivity information into a unified framework,

w-dFC represents a powerful tool to investigate the relationship be-

ween structure and function, as the structural constraints imposed by

apping dynamic functional connectivity on tractography-derived pri-

rs provide a solution to the high dimensionality of functional connec-

ivity data. 

In the present work, we applied this framework on high spatial and

emporal resolution DWI and resting state fMRI (rs-fMRI) data from the

uman Connectome Project (HCP) repository ( Van Essen et al., 2013 ).

he resulting tw-dFC maps were analyzed using independent compo-

ent analysis (ICA) at different dimensionality levels, aiming at identi-

ying consistent, spatially independent white matter components which

upport dynamic changes in functional connectivity. We demonstrated

hat such components are stable and conserved across different datasets

sing a test-retest, a split-half approach and data from an independent

epository (Leipzig Study for Mind-Body-Emotion Interactions, LEMON)

 Babayan et al., 2019 ). In addition, we provide converging evidence that

unctional information on white matter activity as derived by this ap-

roach can be employed to capture biologically meaningful features of

rain connectivity organization, as well as to predict higher-order cog-

itive performance. 

. Materials and Methods 

.1. Subjects and data acquisition 

.1.1. Primary dataset (HCP) 

Structural, diffusion and resting-state functional MRI data of 210

ealthy subjects (males = 92, females = 118, age range 22-36 years) were

etrieved from the HCP repository ( https://humanconnectome.org ).
2 
ata have been acquired by the Washington University, University

f Minnesota and Oxford University (WU-Minn) HCP consortium. The

ashington University in St. Louis Institutional Review Board (IRB) ap-

roved subject recruitment procedures, informed consent and sharing

f de-identified data. 

MRI data were acquired on a custom-made Siemens 3T “Connec-

ome Skyra ” (Siemens, Erlangen, Germany), provided with a Siemens

C72 gradient coil and maximum gradient amplitude (Gmax) of 100

T/m (initially 70 mT/m and 84 mT/m in the pilot phase), to improve

cquisitions of diffusion-weighted imaging (DWI). 

High resolution T1-weighted MPRAGE images were collected using

he following parameters: voxel size = 0.7 mm, TR = 2400 ms, TE = 2.14

s. 

DWI data were acquired using a single-shot 2D spin-echo multi-

and Echo Planar Imaging (EPI) sequence and equally distributed over

 shells (b-values 1000, 2000, 3000 mm/s 2 ), 90 directions per shell,

patial isotropic resolution of 1.25 mm. 

For rs-fMRI, a gradient-echo EPI resolution was acquired with the fol-

owing parameters: voxel size = 2mm isotropic, TR = 720 ms, TE = 33.1

s, 1200 frames, ∼15 min/run. Scans were acquired along two different

essions on different days, with each session consisting of a left-to-right

LR) and a right-to-left (RL) phase encoding acquisition; in the present

ork, we employ left-to-right and right-to-left acquisitions from a sin-

le session only (first session) ( Glasser et al., 2013 ; Smith et al., 2013 ;

 ǧurbil et al., 2013 ; Van Essen et al., 2013 ). 

.1.2. Validation dataset (LEMON) 

We obtained structural, diffusion and rs-fMRI data of 213 healthy

ubjects (males = 138, females = 75, age range 20-70 years) from the

eipzig Study for Mind-Body-Emotion Interactions (LEMON) dataset

 http://fcon_1000.projects.nitrc.org/indi/retro/MPI_LEMON.html ). 

he study was carried out in accordance with the Declaration of

elsinki and the study protocol was approved by the ethics committee

t the medical faculty of the University of Leipzig. 

MRI was performed on a 3T scanner (MAGNETOM Verio, Siemens

ealthcare GmbH, Erlangen, Germany) equipped with a 32-channel

ead coil. 

High resolution structural MRI scans were acquired using a

P2RAGE sequence and with the following parameters: voxel size = 1

, TR = 5000 ms, TE = 2.92 ms. 

Single-shell DWI data were acquired using a multi-band accelerated

equence with spatial isotropic resolution = 1.7 mm, b-value = 1000, 60

iffusion-encoding directions. 

For rs-fMRI data, a gradient-echo EPI was performed with the fol-

owing parameters: phase encoding = AP, voxel size = 2.3 mm isotropic,

R = 1400 ms, TE = 30 ms, 15.30 min/run ( Babayan et al., 2019 ). 

.2. Data preprocessing 

.2.1. Structural preprocessing 

All T1-weighted images were obtained in skull-stripped version

 Babayan et al., 2019 ; Glasser et al., 2013 ) and were subsequently seg-

ented into cortical and subcortical gray matter (GM), white matter

WM) and cerebrospinal fluid (CSF) using FAST and FIRST FSL’s tools

 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/ ). The segmentation outputs were

ollapsed into a 5-tissue-type (5TT) image that was required later in

he tractography pipeline. T1-weighted volumes were also non-linearly

egistered to the 1-mm resolution MNI 152 asymmetric template using

LIRT and FNIRT from the FSL toolbox. The quality check of the reg-

stered T1 images was performed by visual inspection in specific axial,

agittal and coronal sections. 

.2.2. DWI preprocessing 

For the HCP dataset, DWI scans were retrieved in a minimally pre-

rocessed form which includes eddy currents, EPI susceptibility-induced

https://humanconnectome.org
http://fcon_1000.projects.nitrc.org/indi/retro/MPI_LEMON.html
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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istortion and motion correction, as well as linear registration of struc-

ural and DWI images ( Glasser et al., 2013 ). 

In contrast, the LEMON DWI scans were obtained in raw format and

nderwent preprocessing through the dedicated pipeline included in the

Rtrix3 software ( https://www.mrtrix.org/ ). It features denoising us-

ng Marchenko-Pastur principal component analysis (MP-PCA), removal

f Gibbs ringing artifacts, eddy currents, distortion (by exploiting the

vailable reverse-phase encoding scans) and motion correction using

DDY and TOPUP FSL’s tools, as well as bias field correction using the

4 algorithm ( Tournier et al., 2019 ; Tustison et al., 2010 ). 

.2.3. Resting state fMRI preprocessing 

Both HCP and LEMON rs-fMRI data were obtained in preprocessed

nd denoised form. 

HCP data preprocessing included the following steps: field

nhomogeneity-related artifact correction, motion correction, registra-

ion to standard space (MNI152, 2mm resolution), high pass temporal

ltering ( > 2000 s full width at half maximum) for removal of slow drifts

 Glasser et al., 2013 ), artifact components identification using ICA-FIX

 Salimi-Khorshidi et al., 2014 ) and regression of artifacts and motion-

elated parameters ( Smith et al., 2013 ). Minimally preprocessed data

ere additionally band-pass filtered (0.01-0.09 Hz) and the global WM

nd CSF signal was regressed out to further improve ICA-based denois-

ng ( Plachti et al., 2019 ). 

The LEMON dataset processing pipeline included removal of the first

 volumes to allow for signal equilibration, motion and distortion cor-

ection, artifact detection (rapidart) and denoising using component-

ased noise correction (aCompCor), mean-centering and variance nor-

alization of the time series as well as spatial normalization to MNI

52, 2mm resolution template ( Babayan et al., 2019 ). 

Finally, all rs-fMRI volumes were smoothed through convolution

ith a Gaussian kernel of 6mm full width at half maximum. All the

dditional preprocessing described above was carried out in the CONN

oolbox ( Whitfield-Gabrieli and Nieto-Castanon, 2012 ). 

.3. Tractography and track-weighted dynamic functional connectivity 

tw-dFC) 

Whole-brain tractograms were obtained for each subject using the

ollowing pipeline: first, diffusion signal modeling was performed on

he preprocessed DWI data within the constrained-spherical deconvo-

ution (CSD) framework, which estimates white matter Fiber Orienta-

ion Distribution (FOD) function from the diffusion-weighted deconvo-

ution signal using a single fiber response function (RF) as reference

 Tournier et al., 2008 ). Specifically, multi-shell HCP DWI data under-

ent multi-shell multi-tissue (MSMT) CSD signal modeling, an opti-

ized version of the CSD approach which allows for separate response

unction calculation in WM, GM and CSF, reducing the presence of

purious FOD in voxels containing GM and/or CSF ( Jeurissen et al.,

014 ). To achieve a similar result on the single-shell LEMON data,

he diffusion signal was modeled by using single-shell 3-tissue CSD,

 variant of the MSMT model optimized for RF estimation in single-

hell datasets. Single-Shell 3-Tissue (SS3T)-CSD signal modeling was

erformed using MRtrix3Tissue ( Dhollander et al., 2016 ), a fork of MR-

rix3 software. After signal modeling, whole-brain tractography was per-

ormed using the IFOD2 algorithm with default parameters, and by ap-

lying the Anatomically-Constrained Tractography (ACT) framework,

hich makes use of the 5TT map previously obtained from segmenta-

ion to improve the biological plausibility of the resulting streamlines

 Smith et al., 2012 ; Tournier et al., 2010 ). 

For the high b-value, multi-shell HCP data, the spherical-

econvolution informed filtering of tractograms (SIFT) ( Smith et al.,

015 ) algorithm was applied to further improve the fit between the

econstructed streamlines and the underlying DWI data, starting from

 generated tractogram of 10 million streamlines and filtering it to a

nal whole-brain tractogram of 1 million streamlines. Since the SIFT
3 
lgorithm is best suited for high b-value datasets, it was not applied

n the single-shell, low b-value LEMON dataset, where instead a whole

rain tractogram of 5 million streamlines was generated (note that the

umber of streamlines is uninfluential to the tw-dFC contrast genera-

ion). Whole-brain tractograms for each subject of both datasets were

ransformed to the MNI 152 standard space by applying the non-linear

ransformations obtained from structural images. Since each subject’s

s-fMRI volumes were already registered to the MNI 152 template, all

he following analyses took place in standard space. 

For each subject, whole-brain tractograms derived from tractography

nd preprocessed rs-fMRI time series were combined to generate a 4-

imensional tw-dFC dataset with the same spatial and temporal resolu-

ion of the original fMRI time series. In this framework, each white mat-

er voxel’s time series reflects the dynamic changes in functional connec-

ivity occurring at the endpoints of the structural pathways traversing

hat voxel ( Calamante et al., 2017 ). Specifically, the tw-dFC of a voxel

 at time window t is defined as: 

𝑤 − 𝑑𝐹 𝐶 ( 𝑣, 𝑡 ) = 

1 
𝑁 𝑣 

𝑁 𝑣 ∑
𝑖 =1 

𝐹 𝐶 𝑖 ( 𝑡 ) 

here N v is the number of tracts traversing that voxel; which is saying,

w-dFC of a voxel v at time window t the averaged functional connec-

ivity across all tracts traversing that voxel at time window t. The final

w-dFC volume is a 4-D volume resulting from tw-dFC of partially over-

apping time windows. In particular, for each volume, the contribution

rom each streamline is calculated based on a finite-width sliding time

indow, centered at the timepoint corresponding to that volume. In our

ase, a rectangular sliding window with ∼40 s length (55 volumes for the

CP data, TR = 0.72 s; 29 volumes for the LEMON data, TR = 1.4 s) was

sed, as suggested by previous works ( Leonardi and Van De Ville, 2015 ;

reti et al., 2017 ). As we employed a rectangular window, the over-

ap between adjacent time windows is given by (tp-1)/tp where tp is

he number of time points in the window, thus resulting in an overlap

ate of ∼0.98. For HCP data analyses, apart from test-retest analysis, tw-

FC derived from LR and RL phase encoding volumes were temporally

oncatenated for each subject. It is worth to note that to deal with the

ow SNR deriving from sampling BOLD signal from the grey-white mat-

er interface, we followed the same rationale as in the reference paper

 Calamante et al., 2017 ). The ACT framework ( Smith et al., 2012 ) was

mployed to ensure streamline endpoints were located exclusively at

he gray matter/white matter interface (see above). To minimize partial

olume effects with white matter BOLD signal, spatial smoothing with

 relatively large Gaussian kernel (6mm FWHM) was applied and the

lobal WM signal was regressed out. 

.4. Group independent component analysis (ICA) 

The obtained tw-dFC volumes were analyzed using a spatial group

CA framework as implemented in the Group ICA of FMRI Toolbox

GIFT) ( Calhoun et al., 2001 ; Erhardt et al., 2011 ). Group analysis was

erformed separately for the primary dataset (HCP) and the validation

ataset (LEMON). Briefly, the pipeline for group ICA analysis involves a

rst step, in which a subject-level principal component analysis (PCA)

s performed for dimensionality reduction purposes, and a second step

n which dimensionality-reduced data are temporally concatenated and

ndergo a secondary PCA dimensionality reduction along directions of

aximal group variability. Finally, the group PCA-reduced matrix is de-

omposed into a given number of independent components (ICs) using

he Infomax algorithm ( Bell and Sejnowski, 1995 ). 

For the first data reduction step, 120 subject-specific PCA compo-

ents were chosen, as in previous works ( Erhardt et al., 2011 ). The

econd data reduction step and subsequent ICA decomposition were

erformed at three different dimensionality levels (ICA 10 , ICA 20 and

CA 100 ). For each run, the ICA algorithm was repeated 20 times in

CASSO and the n most reliable components were identified as the fi-

al group-level components, to ensure stability of estimation. ICASSO

https://www.mrtrix.org/
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eturns a stability (quality) index (Iq) for each estimate-cluster. This

rovides a rank for the corresponding ICA estimate. In the ideal case

f m one-dimensional independent components, the estimates are con-

entrated in m compact and close-to-orthogonal clusters. In this case, the

ndex to all estimate-clusters is very close to one, while it drops when

he clusters grow wider and less homogeneous (Sai Ma et al., 2011 ). 

Finally, the resulting components for each run were visually in-

pected to ensure that: 1) the peak activation of each network was lo-

alized in the white matter; 2) there was only minimal overlap to vas-

ular, meningeal, ventricular sources of artifacts; 3) the mean power

pectra of each network showed prominence of low frequency spectral

ower. 

For each component, subject-specific spatial maps and time courses

ere obtained using group-information guided ICA (GIG-ICA) back-

econstruction ( Du and Fan, 2013 ). A one sample t-test was run to gen-

rate group statistical maps for each component’s spatial map, and a

ard parcellation of the white matter was obtained by thresholding the

btained t-maps at z = 1. To facilitate the interpretation of the results,

patial maps were annotated by calculating percentage overlap with re-

ions of interest from known GM ( Rolls et al., 2020 ) and WM atlases

 Hua et al., 2008 ; Yeh et al., 2018 ). For low-level (ICA 10 ) white mat-

er parcellation, components were also labeled in analogy with existing

ray matter networks as reported in the previous literature. 

.5. Reproducibility and reliability analysis 

The reproducibility of results was evaluated at three different lev-

ls on the primary dataset: intra-subject reproducibility (test-retest),

nter-subject reproducibility (split-half) and inter-cohort reproducibility

comparison with the validation dataset). 

For test-retest reproducibility analysis, the LR- and RL-phase encod-

ng acquisitions for each subject were employed as the test and retest

ata respectively; in the split-half reproducibility analysis, the HCP sam-

le was split in random halves (105 subject each) and the ICA was

un separately on each of them; in the external reproducibility anal-

sis, the results from ICA on the primary dataset were directly com-

ared to the results obtained on the validation dataset. In all cases, the

omparison metrics were: i) the pairwise Pearson’s correlation coeffi-

ient between each spatial component and its corresponding component

i.e., the component which scored the highest correlation coefficient);

i) the Dice similarity coefficient (DSC) ( Dice, 1945 ) between the ob-

ained white matter parcellations, i.e. between each component’s bina-

ized, z-thresholded group statistical map and the corresponding com-

onent map. Finally, we also computed the intra class correlation coef-

cient (ICC) to assess test-retest (LR vs RL phase encoding acquisition)

omponent reliability. First, for each component we created a specific

inary mask derived from group z-thresholded statistical maps, which

ncluded voxels belonging to a given component as derived by both LR

nd RL datasets. Then the corresponding component map from LR and

L respectively has been masked by using the above mentioned specific

inary mask. Next, voxel-wise ICCs ( Xing and Zuo, 2018 ; Zuo et al.,

019 ) between the corresponding components from LR phase encoding

cquisition and the corresponding components from RL phase encoding

cquisition were calculated to assess the reliability of the component.

he result of this process is one 3D ICC map reflecting the component

eliability at the voxel level. Based on each ICC map reflecting the re-

iability of each component, the ICC values were then averaged across

oxels. In the present work, voxel-wise ICC computation was performed

y using the third ICC defined by ( Shrout and Fleiss, 1979 ) ICC (3,1)

ccording to the following formula: 

CC ( 3 , 1 ) = 

𝐵𝑀 𝑆 − 𝐸𝑀 𝑆 

𝐵𝑀 𝑆 + ( 𝑘 − 1 ) 𝐸𝑀 𝑆 

In particular, ICC (3,1) estimates the correlation of the subject sig-

al intensities between test-retest data, modeled by a two-way ANOVA,
4 
ith random subject effects and fixed session effects. In this model, the

otal sum of squares is split into subject (BMS) and error (EMS) sums

f squares; and k is the number of repeated sessions. In this work, ICC

3,1) (single fixed session effects) was chosen because the components

ere obtained by two different sessions (k = 2, LR and RL) which are the

nly sessions of interest. Reproducibility and reliability analysis was run

eparately for each ICA dimensionality level (n = 10, n = 20, n = 100). 

.6. Task-based functional network annotation 

To provide insights on the functional relevance of the identified

hite matter components, i.e. to give a measure of how large-scale white

atter networks may be involved in the execution of complex tasks, we

ompared the resting-state spatial maps resulting from the main dataset

o the task-based white matter activation maps derived from a recently

eveloped method, namely the Functionnectome ( Nozais et al., 2021 ).

riefly, the Functionnectome projected the BOLD signal from the grey

atter onto the white matter. The white matter signal of a voxel was the

esult of a weighted mean of the BOLD signals from grey matter voxels

tructurally connected to the said white matter voxel. The weight ap-

lied here was the probability of structural connectivity between the

rey and white matter voxels. The Functionnectome outputs a 4D vol-

me that was then processed with standard first-level and second level

nalyses using FSL, thus resulting in task-based z-transformed t-maps

eflecting task-based white-matter activation. 

To compare these results to the ICs derived from distinct ICA runs,

airwise Pearson’s correlation between the z-weighted functionnectome

aps and each component’s z-map were computed after a threshold-

ng of z > 0. We considered correlations significant if the proportion of

hared variance between tw-dFC and functionnectome maps was above

% (e.g., a spatial correlation of r > 0.22). 

.7. Connectivity-based component classification 

Functional network connectivity (FNC), defined as the pairwise cor-

elation between each pair of IC time courses, was measured on the

rimary dataset for each ICA dimensionality level. For each run of ICA,

e sought to classify components in an unsupervised way based on the

imilarity of their activity profiles, by performing k-means clustering

n the group-average FNC matrix. The optimal number of clusters (k)

as determined by plotting the ratio of between-group variance to to-

al variance for increasing values of k and identifying the elbow point

elbow method). To obtain robust cluster centroids, k-means clustering

as performed on bootstrap resamples, by iterating clustering 100 times

n randomly drawn samples of ∼80% of the total subjects (n = 168 for

he HCP dataset; n = 172, for the LEMON dataset); the resulting centroids

ere then employed to perform clustering on the whole dataset. 

.8. FNC-based cognitive performance prediction tasks 

To evaluate the role of tw-dFC-derived FNC in predicting individual

ognitive performance, we applied a linear regression model with leave-

ne-out cross validation (LOOCV) to behavioral measures of cognitive

erformance available in the HCP database. Behavioral measures of

uid intelligence (Penn Progressive Matrices, HCP_ID: PMAT24_A_CR),

ognitive flexibility (Dimensional Change Card Sort, HCP_ID: Card-

ort_AgeAdj) and sustained attention (Short Penn Continuous Perfor-

ance Test, HCP_ID: SPCPT_TP) were selected as independent variables.

irst, behavioral scores were filtered to remove outliers (values > 3 stan-

ard deviations distant to the mean) and zeros (subjects in the sample

hich did not perform the cognitive tests); this step resulted in n = 209

ubjects being included for the fluid intelligence and cognitive flexi-

ility tasks, and n = 207 subjects for the sustained attention task. Then,

NC measures were used as features to predict, independently and sep-

rately, each behavioral variable. More specifically, FNC upper triangu-
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ar matrices were vectorized to obtain a single feature vector per sub-

ect, and underwent a first feature selection step, in which only fea-

ures with the highest correlation coefficient (p < 0.01) to behavioral

cores were retained. In particular, a first LOOCV was used to select

he features according to the feature occurrence on each LOO step, tak-

ng thus the features above the 70 percentile across each LOO itera-

ion. Then, the retained features were then fed into a predictive lin-

ar model and predicted scores were generated for each subject using

 LOOCV approach, i.e., for each iteration, data from one subject were

et aside as test sample and the remaining subjects were used as train-

ng set; such step was iterated for all subjects. Finally, the difference

etween observed and predicted behavioral scores was computed and

he residuals were used to obtain a R 

2 for each model, as a measure

f goodness of fit. The statistical significance of this value was tested

sing a permutational approach (10,000 permutations), i.e., by itera-

ively calculating the R 

2 after random permutations of the behavioral

cores; results were considered significant with p < 0.01. The spatial

istribution of significant features for each cognitive score has also been

ssessed. 

.9. “Brain state ” vectors identification 

The time series of components underwent further clustering analysis

imed at identifying stable or quasi-stable patterns of component ac-

ivity weights which tend to reoccur over time and across subjects, an

nalogy to “brain states ” described in the dynamic functional connec-

ivity literature ( Allen et al., 2014 ; Fan et al., 2021 ). For tw-dFC com-

onents, we sought to replicate the procedure described in Fan et al.,

021 ( Fan et al., 2021 ) for brain state vector identification from dynamic

unctional connectivity-derived independent components. For simplic-

ty, and in analogy with this work, we employed the subject-specific

ime series obtained from ICA 20 . Firstly, we computed subject-specific

atrices containing the time course for each component: 

 𝑖 = 

[
𝑎 
( 1 ) 
𝑖 
, 𝑎 

( 2 ) 
𝑖 
, ...𝑎 

( 𝑡 ) 
𝑖 

]𝑇 

here i is a subject and a is the activity vector of each component at

ach timepoint t. To reduce redundancy and temporal autocorrelation

etween time windows, and decrease the computational load, we down-

ampled the time points at the rate of 10 (i.e. retaining one time window

ach ten). 

Data for all m subjects were concatenated together

 𝑎 
(1) 
𝑖 
, 𝑎 

(2) 
𝑖 
, … 𝑎 

( 𝑇 ) 
𝑖 

, 𝑖 = 1 , 2 , …𝑚 } and a distance matrix based on L1

istance function (Manhattan distance) was computed as follows: 

𝑖𝑠𝑡 

(
𝑎 
𝑡 1 
𝑖 
, 𝑎 

𝑡 2 
𝑗 

)
= 

𝑛 ∑
𝑐=1 

| 𝑎 𝑡 1 
𝑖,𝑐 

− 𝑎 
𝑡 2 
𝑗,𝑐 
|

here 𝑎 
𝑡 1 
𝑖,𝑐 

refers to the time-varying activity of c th independent compo-

ent at time window t 1 for subject i and 𝑎 
𝑡 2 
𝑗,𝑐 

is defined similarly. The

ard’s method of agglomerative hierarchical clustering ( Ward, 1963 )

as applied to the resulting distance matrix. To determine the optimal

umber of clusters (k), a cluster validity index (CVI) was computed as

he ratio of within-cluster to between-clusters distance. To obtain robust

luster centroids, clustering was performed on bootstrap resamples, by

terating the algorithm 100 times on randomly drawn samples composed

y ∼80% of the total subjects (n = 168 for the HCP dataset; n = 172, for

he LEMON dataset). Consequently, all the time points were classified

nto k clusters, each including time windows with a similar pattern of

omponent activity. To make the results more easily interpretable and

ecover information on how each component behaves in these time win-

ows, brain states were visualized as vectors obtained by averaging each

omponent’s activity weights at the time points falling within the same

luster. A complete representation of the whole processing pipeline is

rovided in Fig. 1 . 
5 
. Results 

For each subject, whole-brain tractograms derived from tractogra-

hy and preprocessed rs-fMRI time series were combined to generate a

-dimensional tw-dFC dataset with the same spatial and temporal res-

lution of the original fMRI time series. In this framework, each white

atter voxel’s time series reflects the dynamic changes in functional

onnectivity occurring at the endpoints of the white matter pathways

raversing that voxel. 

.1. ICA-based parcellation of tw-dFC reveals white matter networks, 

ub-networks, and functional units 

The obtained tw-dFC volumes were analyzed using a spatial group

CA that resulted in a series of well-recognizable, anatomically mean-

ngful patterns of white matter connectivity. Each component consisted

f a white matter spatial map, which represents the spatial distribu-

ion of white matter bundles which show consistent fluctuations in func-

ional connectivity at their endpoints, and a time course that is repre-

entative of the dynamic connectivity fluctuations occurring along these

racts. ICA decomposition was performed at three different dimension-

lity levels, by selecting a different number of components (n) for each

un: a first run with n = 10 (ICA 10 ), to reveal large-scale networks; a

econd run with n = 20 (ICA 20 ) which has been commonly used empir-

cally to identify consistent resting-state networks ( Damoiseaux et al.,

006 ; Fan et al., 2021 ) and a third run with n = 100 (ICA 100 ) to ob-

ain a more fine-grained parcellation. For each of these three group ICA

uns, and both for the principal dataset (HCP) and the validation dataset

LEMON), peak activation for each independent component (IC) was lo-

alized in the white matter; all the components’ mean power spectra

how higher low-frequency spectral power and for all the reconstructed

omponents there was no or minimal overlap with known vascular, ven-

ricular, and meningeal sources of artifacts (Supplementary File 1). To

nsure stability of estimation, each ICA algorithm was repeated 20 times

n ICASSO (Sai Ma et al., 2011 ). On the principal datasets, the cluster

tability/quality index (I q ) over 20 ICASSO runs was very high ( > 0.9)

or all the components. Similar results were obtained on the validation

ataset, except for the n = 100 run, where nearly all components obtained

oderate-to-high I q values ( > 0.8) (Supplementary Figure 1). 

For the lower-dimensionality ICA 10 , the resulting components

ostly consisted of white matter pathways linking nodes of well-known

ray matter functional networks derived from rs-fMRI literature: default

ode network (IC3), lateral (IC5) and medial (IC1) sensorimotor net-

ork, right (IC6) and left (IC7) frontoparietal network, lateral (IC9) and

edial (IC9) visual network and auditory network (IC4) ( Fig. 2 ). 

The ICA 20 parcellation retrieved a more detailed representation of

he networks featured in the lower dimensionality ICA run, and some

f the networks were split into distinct sub-networks. In addition,

long with cortical connectivity networks, a cerebello-cerebellar con-

ectivity component was also identified (IC5). By contrast, the higher-

imensionality ICA 100 mostly identifies individual white matter bundles

 Fig. 3 A). While most components are bilateral and symmetric, espe-

ially from the low-dimensionality ICA runs, some of the ICs from ICA 100 

re lateralized, and many of them show roughly symmetrical, contralat-

ral counterparts (Supplementary Figure 2). In addition, the patterns of

onnectivity revealed by the higher-dimensionality ICA also highlighted

functional units ” corresponding to the somatotopic subdivision of the

ensorimotor cortex, to parallel cortico-basal ganglia circuits, as well

s to segregated, intrinsic cerebellar connectivity patterns ( Fig. 3 B-C-

). Component spatial maps underwent a group statistical analysis (one

ample t-test) and the resulting statistical maps were hard-thresholded

t z = 1to obtain a white matter parcellation for each ICA run. Percent-

ge overlap between white matter parcellations derived from the ICA 10 ,

CA 20 and ICA 100 and known white and gray matter components is re-

orted in Supplementary File 2. 
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Fig. 1. Overview of the workflow. After diffusion-MRI and fMRI preprocessing steps, whole-brain tractography and resting-state fMRI are merged to generate 

subject-specific track-weighted dynamic functional connectivity (tw-dFC) time series. Independent component analysis (ICA) is then applied at the group level to 

classify the tw-dFC signal into spatially independent component (IC) maps and their associated time courses, which are the basis for following analyses. In particular, 

reproducibility of IC spatial maps was evaluated at three different levels on the primary dataset: intra-subject reproducibility (test-retest), inter-subject reproducibility 

(split-half) and inter-cohort reproducibility (comparison with the validation dataset). Test-retest components’ reliability was assessed by computing the intra class 

correlation coefficient (ICC). IC spatial maps were also annotated by calculating percentage overlap with regions of interest from known GM ( Rolls et al., 2020 ) 

and WM atlases ( Hua et al., 2008 ; Yeh et al., 2018 ). IC time courses, instead, were employed to compute between-components correlation (functional network 

connectivity, FNC), perform connectivity-based IC classification, and predict cognitive tasks. Finally, the time series of IC underwent a further clustering analysis 

aimed at identifying stable or quasi-stable patterns of component activity weights which tend to reoccur over time and across subjects, an analogy to “brain states ”

described in the dynamic functional connectivity literature. 
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.2. White matter components show high intra-subject, inter-subject and 

nter-cohort reproducibility and variable test-retest reliability 

The reproducibility of the results was evaluated at three different

evels on the primary dataset: intra-subject reproducibility (test-retest),

nter-subject reproducibility (split-half) and inter-cohort reproducibility

comparison with the validation dataset). 

All the components derived from ICA 10 , ICA 20 and ICA 100 were suc-

essfully replicated in the test-retest reproducibility analysis, showing

ery high or moderate-to-high intra-subject reproducibility. Pearson’s

orrelation was employed to quantify similarity between group spatial

aps. Specifically, the ICA 10 showed the highest test-retest reproducibil-

ty (all components with Pearson r = 1, meaning absolute identity be-

ween the paired components from the two datasets), while the ICA 20 

nd ICA 100 showed a decreasing trend. Reproducibility was evaluated

or the ICA-derived white matter hard parcellations as well, using the

SC as a reproducibility measure. We found a similar trend for the cor-

esponding white matter parcellations: for the ICA 10 a DSC value > 0.99

as reached for all components, while lower values were obtained by

he ICA 20 and the ICA 100 . Finally, test-retest reliability was found to be

aximal for ICA 10 , and to decrease with higher dimensionality, being

air for ICA 20 and low for ICA 100 ( Fig. 4 A). 
6 
As regards the split-half replicate analysis, slightly lower between-

ubject reproducibility compared to test-retest reproducibility was

ound; in particular, the ICA 10 obtained the highest correlation between

orresponding components, followed by the ICA 20 and the ICA 100 . For

he white matter parcellation, a different trend was observed; while

he ICA 10 obtained the highest DSC values between corresponding com-

onents, the ICA 100 run showed higher spatial overlap than the ICA 20 

 Fig. 4 B). 

For sake of readability, values of reproducibility and reliability mea-

ures are reported in Table 1 . 

Finally, many of the components resulting from the primary dataset

HCP) were totally or partially replicated in the validation dataset

LEMON) ( Fig. 5 A). To ease with interpretation of the results, we sub-

ivided correlation values into three ranks: high correlation (r > 0.66),

oderate correlation (0.33 < r > 0.66) low or absent correlation (r <

.33). Fig. 5 B shows the components ranked by Pearson’s correlation

oefficient for each ICA dimensionality. Due to the heterogeneity of the

esults between the two datasets, DSC between paired components from

he two datasets was not calculated. However, corresponding compo-

ents were visually inspected to check for similar coverage of cortical,

ubcortical, and white matter regions. Visual inspection confirmed that

ighly correlated components covered roughly the same cortical, sub-
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Fig. 2. Large-scale networks as identified by low-dimensionality ICA of tw-dFC data. Independent components (ICs) identified by the ICA 10 on the main dataset 

reveal white matter structures corresponding to large-scale brain connectivity networks. Group spatial maps for each component are thresholded at z > 1, binarized 

and volume-rendered on a glass-brain underlay for visualization purposes. Each render shows left, right, superior, and anterior 3D views, along with the putative 

large-scale network name attributed to each component. 

Table 1 

Internal reproducibility and test-retest reliability analysis. The table shows Pearson’s correlation values (Pearson’s r) and Dice simi- 

larity coefficients (DSC) for the test-retest and split-half datasets. The intraclass correlation coefficient (ICC) values computed on the 

test-retest dataset are also reported. All values are expressed as median (IQR). 

Test-retest Split-half 

Pearson’s r DSC ICC Pearson’s r DSC 

ICA 10 1 (1-1) 1 (1-1) 1 (1-1) 0.97 (0.99-0.96) 0.88 (0.90-0.85) 

ICA 20 0.97 (0.98-0.83) 0.78 (0.83-0.55) 0.40 (0.48-0.35) 0.95 (0.98-0.85) 0.71 (0.85-0.59) 

ICA 100 0.95 (0.97-0.91) 0.64 (0.67-0.58) 0.18 (0.20-0.12) 0.92 (0.95-0.87) 0.81 (0.86-0.75) 
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ortical, and white matter regions (i.e., they have substantially the same

natomical meaning). Components showing moderate correlation were

natomically distinct, but shared some degrees of overlap, while compo-

ents with low or absent correlation were completely distinct ( Fig. 5 C).

.3. Resting-state and task-based white matter networks are correlated 

ogether 

Given that resting-state patterns of brain activity are often related

o regional coactivation during behavioral tasks ( Smith et al., 2009 ),

e sought to investigate the involvement of resting-state white mat-

er dynamic connectivity components in task-modulated activity by cor-

elating them with distinct, task-dependent white matter networks ob-

ained from track-weighted, task-based fMRI data ( “Functionnectome ”).
7 
n brief, the Functionnectome algorithm maps the function signal from

MRI to tractography-derived priors of white matter anatomy. It has

een applied to task-based fMRI data from the HCP dataset to obtain

roup task-based activation maps for the HCP motor, working memory

nd semantic language tasks ( Nozais et al., 2021 ). As expected, we found

igh correlation between resting-state and task-based white matter net-

orks. As an example, for the lowest dimensionality ICA run (ICA 10 ),

omponents covering sensorimotor regions (IC1, IC5 and IC8) showed

elatively high correlation (r > 0.30) with the motor task-based func-

ionnectome maps (corresponding to left and right finger tapping and

eft and right toe clenching). The medial, lateral and vertical occipi-

al visual network components (IC2, IC9, IC10) and default mode net-

ork component (IC3) were not strongly correlated to any of the task-

ased functionnectome maps. The auditory network component IC4 was
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Fig. 3. Anatomical details of white matter organization. Group spatial maps for each component are thresholded at z > 1, binarized and volume-rendered on 

a glass-brain for visualization purposes. A) Increasing ICA dimensionality splits large scale white matter networks (e.g. the default mode network white matter 

component, IC3, n = 10) into smaller sub-networks (left anterior, IC1; right anterior; IC18; posterior, IC20, n = 20) and increasingly detailed white matter sub-units 

(ICs 12, 30, 49, 50, 56, 68, 81, n = 100). B) Cortico-basal ganglia-thalamocortical loops as revealed by ICA 100 (ICs 72, 84, 38, 42, 87). Fine-grained ICA unsupervised 

decomposition identifies a ventromedial-orbitofrontal component (red) which extends to the basal forebrain, a ventrolateral component (orange) and dorsolateral 

(yellow) component involving prefrontal white matter, and two lateralized sensorimotor components (light blue) which also include part of the pyramidal tract. 

C) Intra-cerebellar connectivity networks (ICs 21, 29, 39, 80, 2, 40, 19, 24, 1, 14, 15, 16, 37) are mostly lobule-specific and include distinct cerebellar white 

matter regions (likely corresponding to cortico-deep nuclear connectivity); superior, middle and inferior cerebellar peduncles are roughly circumscribed by specific 

components. D) Components spanning between the sensorimotor strip (precentral and postcentral gyrus) (ICs 5, 11, 13, 31, 33, 35, 44, 75) roughly reflect the 

somatotopic organization of primary motor and primary somatosensory cortex. 

w  
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eakly correlated to the language semantic task-based functionnectome

ap (r = 0.24). Left and right frontoparietal components (IC6 and IC7)

howed higher correlation to the working memory task-based function-

ectome map (r = 0.40 both). Generally lower correlation to task-based

aps were found for ICA 20 or ICA 100 , in line with the finding that
8 
ncreasing ICA dimensionality leads to spatially circumscribed compo-

ents, in contrast with the widespread task-activation maps. However,

ome components still showed high correlation to task-based maps, sug-

esting their possible involvement in language, working memory or mo-

or tasks ( Fig. 6 ). 
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Fig. 4. Internal reproducibility and reliability analysis. A) Box plots showing Pearson’s correlation values (left), Dice similarity coefficients (middle) and intraclass 

correlation coefficient (ICC) (right) between corresponding components from the test-retest dataset. B) Box plots showing Pearson’s correlation values (left) and Dice 

similarity coefficients (right) for the split-half dataset. 
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.4. Connectivity-based clustering of independent components uncovers 

heir intrinsic functional organization 

Within each different dimensionality ICA run, temporal activity of

he extracted ICs, which is a measure of component-specific fluctua-

ions in functional connectivity, showed correlation to that of the other

omponents. Pairwise correlations between components of each run

ere quantified to obtain ICA-specific “functional network connectiv-

ty ” (FNC) matrices. Note that the interpretation of connectivity values

lightly differ from the classical functional network connectivity as ob-

ained in previous works ( Allen et al., 2014 ). Since tw-dFC volumes are

lready derived from windowed, dynamic functional connectivity, the

ime series of tw-dFC derived components are a measure of mean func-

ional connectivity fluctuations at the endpoints of the white matter

racts involved in the IC (i.e., within each component). Consequently,

NC can be interpreted as a measure of “co-fluctuation ” of the mean

unctional connectivity between pairs of components. As expected, func-

ionally correlated components showed anatomical and functional com-

onalities that were captured by the clustering analysis of FNC. On the

ain dataset, the elbow method suggested an optimal number of clus-

ers of k = 3 for the ICA 10 ; the following k-means clustering revealed an

ntrinsic functional organization of ICs into an associative cluster in-

luding the default mode, left and right frontoparietal networks, a sen-

orimotor cluster covering somatomotor, somatosensory, auditory and

remotor regions and a visual cluster which includes lateral and medial

isual networks as well as a component covering the vertical occipital

asciculus ( Fig. 7 ). Clustering analysis from the ICA 20 (k = 5) and ICA 100 

k = 24) highlighted a roughly similar functional organization into asso-

iative, sensorimotor and visual clusters (Supplementary File 2; Supple-

entary Figures 3-5). In particular, clustering obtained from the higher-

imensionality ICA run showed multiple associative, sensorimotor, vi-

ual and cerebellar “sub-clusters ”, each with distinctive anatomical fea-

ures, that are likely to represent fine-grained levels of organization of

hite matter functional activity. FNC clustering based on the validation

ataset showed a similar overall organization of clusters (Supplemen-
9 
ary Figures 6-9); at ICA 20 (k = 6) and ICA 100 (k = 13), the partitioning

nto associative, sensorimotor, visual and cerebellar clusters was partic-

larly evident. 

.5. Co-fluctuations of functional connectivity between tw-dFC components 

redict individual cognitive performance 

In order to quantify the role of correlated activity between brain

unctional units in predicting cognitive performance, we built predic-

ive models based on linear regression using features extracted from

ndividual FNC matrices. In more detail, each feature is constituted by

he connectivity strength (Pearson’s correlation coefficient) between a

air of ICs from the high dimensional ICA 100 . LOOCV feature selection

based on correlation between individual connectivity and each behav-

oral score) resulted in 27 features being correlated to fluid intelligence

cores (p < 0.01), 34 features being correlated to cognitive flexibility

p < 0.01) and 43 features being correlated to sustained attention (p <

.01). The following LOOCV-regression model revealed that each behav-

oral measure could be effectively predicted by the FNC-derived features

 Fig. 8 ). In particular, the best prediction resulted for fluid intelligence

cores (R 

2 = 0.40, p < 0.001), where almost 40% of the inter-individual

ariance in the behavioral scale was explained by the cross-validated re-

ression model. Cognitive flexibility and sustained attention scores were

lso successfully predicted by FNC-derived features (cognitive flexibil-

ty: R 

2 = 0.35, p < 0.001; sustained attention: R 

2 = 0.37, p < 0.001). FNC-

erived features predictive of fluid intelligence mostly involved corre-

ated fluctuations in connectivity between white matter involving the

rimary sensorimotor cortices, as well as frontoparietal and prefrontal

undles and the right cingulum. Cognitive flexibility was predicted by

orrelated fluctuations in activity in the white matter connecting fronto-

arietal, prefrontal and visual regions, as well as the brainstem and cere-

ellum; finally, sustained attention-related features mostly involved co-

uctuations between intrinsic cerebellar hemispheric connectivity, sen-

orimotor, prefrontal, frontoparietal and visual cortices. 
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Fig. 5. External reproducibility analysis. A) Matrix plots of the pairwise Pearson’s correlation coefficient between the main (HCP) and the validation dataset (LEMON). 

The colormap allows distinguishing between pairs of components with high correlation (red/yellow), intermediate correlation (green/turquoise) and low correlation 

(blue/light blue). B) Barplots of the components ranked by Pearson’s correlation coefficient between the main and validation datasets. Dashed black and red lines 

indicate respectively the cut-off for high correlation (r > 0.66) and low or absent correlation (r < 0.33) respectively. C) A visual example of overlaps between spatial 

maps of the two independent datasets at different levels of correlation (high, left; moderate, center; low, right). Group spatial maps are thresholded at z > 1, binarized 

and shown in form of 2D maximum intensity projections on a glass brain in axial, sagittal and coronal sections; L = left; R = right. 

10 



G.A. Basile, S. Bertino, V. Nozais et al. NeuroImage 258 (2022) 119391 

Fig. 6. Correlation between resting-state track-weighted dynamic functional connectivity components (tw-dFC) and task-based white matter activation maps (Func- 

tionnectome). The lower threshold was set to 0.22 (i.e., spatial maps which share 5% or above of their variance were deemed to be significantly correlated). 

Explanatory variables (EV) follow the same nomenclature of the HCP release. 
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Prediction analysis based on FNC measures from ICA 10 and ICA 20 

esulted in a few or no features surviving the features selection step and

ailed at providing statistically significant predictions and acceptable R 

2 

alues. 

.6. Hierarchical clustering of tw-dFC time windows identifies transient 

brain states ”

Dynamic connectivity shows temporally organized patterns of activ-

ty between pairs of nodes or connectivity units, often described as tran-

ient “brain states ” ( Allen et al., 2014 ; Fan et al., 2021 ). By applying a

ierarchical clustering algorithm to tw-dFC time series, we investigated

hether a similar information could be obtained from track-weighted

onnectivity data. In the main dataset, for hierarchical clustering of tw-

FC time windows an optimal cluster number of k = 11 was identified

ccording to the elbow method of CVI, thus resulting in 11 recurring

emporal patterns of component activity ( “brain states ”) ( Fig. 9 ). Note

hat, due to the dynamic and windowed nature of the tw-dFC signal, the

erm “activity ” in this case refers to high or low functional connectivity

ithin components, while the FNC previously analyzed referred to cor-

elated variations of functional connectivity between components. Brain

tates analysis for the validation dataset is reported in Supplementary

igure 10. While being not completely identical, brain states identified
11 
n the validation dataset are likely to follow roughly the same organi-

ational principles as the main dataset. 

. Discussion 

In the present work we employed tw-dFC to incorporate structural

nd dynamic functional connectivity information into a unified analysis

ramework ( Calamante et al., 2017 ). In such a framework, the compo-

ents identified by the ICA process can be interpreted as spatially in-

ependent functional units of white matter, composed by fiber bundles

haring coordinated fluctuations of functional connectivity at their end-

oints. 

On a coarse ICA dimensionality scale, our findings complement and

xpand current knowledge on resting-state brain networks, as tw-dFC-

erived components could be associated with well-known grey matter

esting-state networks. Indeed, these ICs mostly consisted of white mat-

er pathways linking nodes of gray matter functional networks as de-

cribed in rs-fMRI literature during the last decades ( Buckner et al.,

009 ; Fan et al., 2021 ; Smith et al., 2009 ). Our results clarify the con-

ribution of anatomical white matter structures to known resting state

etworks, such as distinct anatomical portions of the corpus callosum in

he default mode, medial sensorimotor, medial visual and lateral visual

etworks ( Friedrich et al., 2020 ), the cingulum bundle in the default

ode network ( Alves et al., 2019 ), and the arcuate fasciculi in the left
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Fig. 7. Functional network connectivity (FNC) clustering analysis (ICA 10 ). A) Plot of the explained variance for different numbers of clusters; the elbow method (red 

arrow) suggests an optimal number of k = 3. B) The FNC matrix, ordered according to the clustering results. Black squares delimitate the three distinct connectivity 

clusters; ASS = associative, SM = sensorimotor, VIS = visual. C) Visualization of the three FNC-derived clusters; group spatial maps for each component are thresholded 

at z > 1, binarized and volume-rendered on a glass-brain underlay. 
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nd right frontoparietal networks ( Barbeau et al., 2020 ). While many

ther works combined tractography and rs-fMRI to identify the white

atter correlates of intrinsic brain connectivity networks ( Figley et al.,

017 ), directly decomposing the tw-dFC signal offers the advantage of

dentifying joint structural/functional connectivity networks in an un-

upervised way. In addition, and in line with the existing literature, we

onfirmed that there is no one-by-one correspondence between white

atter bundles and functional brain networks ( O’Muircheartaigh and

babdi, 2018 ), as each tw-dFC large scale component included multiple

ssociation, commissural and U-fiber tracts. 

As expected from previous works ( Fan et al., 2021 ;

’Muircheartaigh and Jbabdi, 2018 ; Wu et al., 2015 ), increasing

CA dimensionality has led to a more detailed classification of white

atter sub-units. At the most detailed dimensionality scale (ICA 100 ),

CA decomposition of tw-dFC data reveals a fine-grained, anatomically

eaningful functional parcellation of the white matter into long- or

hort-range connectivity patterns, adding further insights on the func-

ional organization of white matter circuits at the macroscale. As an

xample, fine-grained ICA was able to reveal subtle anatomical details of

hite matter connectivity such as the dense, tightly-organized U-fibers
12 
ystem connecting somatotopically analogous regions of precentral

nd postcentral gyri, the contribution of the cerebellar white matter

o intrinsic lobule-specific cerebellar circuitry ( Guell et al., 2018 ;

toodley and Schmahmann, 2018 ), or again, parallel white matter

omponents corresponding to topographically organized cortico-basal

anglia-thalamic circuitry ( Basile et al., 2020 ; Bertino et al., 2020b ;

raganski et al., 2008 ; Milardi et al., 2019 ) ( Fig. 3 ). 

Similarly to well-known gray matter resting-state intrinsic connec-

ivity networks ( Smith et al., 2009 ), white matter dynamic connectivity

etworks show correspondence to task-based activation networks. To

dentify task-based activation networks in the white matter, we em-

loyed the results obtained using a recently developed method, the

Functionnectome ” ( Nozais et al., 2021 ). Despite substantial differences,

his method shows remarkable analogies to the tw-dFC pipeline as they

oth involve the resampling of functional information derived from

OLD fMRI on anatomical priors derived by tractography, and the repre-

entation of outputs in terms of spatial statistical maps (z-maps), thus en-

bling direct comparison of results. Taken together, the high correlation

alues obtained between task-based and resting-state dynamic connec-

ivity provide complementary evidence to the hypothesis that regions



G.A. Basile, S. Bertino, V. Nozais et al. NeuroImage 258 (2022) 119391 

Fig. 8. FNC-based cognitive performance prediction. The upper row shows the observed vs predicted plots for cognitive performance scores of fluid intelligence 

(Penn Progressive Matrices, age adjusted), cognitive flexibility (Dimensional Change Card Sort), and sustained attention (Short Penn Continuous Performance Test). 

Each subject’s score is represented by a dot and the shaded area around the least square lines is the 95% confidence interval. The bottom row shows the spatial 

distribution of FNCs predicting fluid intelligence, cognitive flexibility and sustained attention scores respectively. LOOCV prediction analysis identified 27 edges for 

fluid intelligence, 34 edges for cognitive flexibility and 43 edges for sustained attention. For visualization purpose and to ease spatial interpretation, the glass brains 

show clusters of components above the 70 th percentile of cluster occurrence. Components are colored and grouped into 24 clusters as revealed by FNC clustering 

analysis (see Results 3.4 and Supplementary Figures 3-5). 
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ntrinsically connected in the resting state are more easily recruited to-

ether during tasks ( Di et al., 2013 ; Smith et al., 2009 ; Tavor et al.,

016 ). 

In addition, spatial tw-dFC components are highly stable both across

ubjects of the same sample and when compared to those obtained from

 validation dataset ( Fig. 4 ). This last result is of utmost importance,

s reproducibility is one of the key issues of modern-days neuroimag-

ng research ( Nichols et al., 2017 ). Noteworthy, the validation dataset

howed several demographical (larger age range, different gender pro-

ortion) and technical differences both in DWI (single shell, low b-value,

o filtering) and rs-fMRI (lower temporal resolution, different denoising

ipeline). Although a proper formal evaluation of the effects of these

ariables on the results is warranted in future studies, this finding sug-

ests that tw-dFC-based components may be robust to experimental con-

itions, and, by consequence, able to capture actual features of brain

ctivity and connectivity regardless of technical differences in data pro-

essing. While test-retest and split-half reproducibility showed a pro-

ressively decreasing trend with the increase of ICA dimensionality, ex-

ernal reproducibility measures seemed to benefit from high dimension-

lity; this observation would suggest that, while coarse-scale decompo-

ition may be more influenced by group-specific features of the tw-dFC

ignal, fine-grained ICA would be in turn less affected by technical and

emographic group differences. By contrast, test-retest reliability was

ound to be maximal for low-level dimensionality and to decrease with

igher dimensionality, resulting in excellent ICC values for ICA 10 and
13 
n poor reliability for ICA 100 . Since reliability has been defined as a

tatistic on characterizing stochastic processes of individual variability

 Xing and Zuo, 2018 ), this result may suggest that high-dimensionality

CA is less suitable to identify meaningful inter-individual differences. 

Aside from providing an unsupervised and reliable functional parcel-

ation of the human white matter, ICA of tw-dFC data has also the advan-

age of assigning to each white matter component a time course, which

llows for direct investigation of time-varying activity of white matter

athways – a difficult task for state-of-art, conventional neuroimaging

 Calamante et al., 2017 ; Nozais et al., 2021 ). Although a growing body

f works employed direct white matter BOLD signal analysis to accom-

lish such task ( Gawryluk et al., 2014 ; Huang et al., 2020 ; Peer et al.,

017 ), sampling BOLD signal from white matter is challenging due to

he much smaller number of blood vessels compared to the gray mat-

er, which implies lower signal-to-noise ratio and lower correlations be-

ween seed regions ( Gawryluk et al., 2014 ). In addition, the biological

echanisms behind BOLD signal fluctuations in the white matter are

till unclear ( Smith et al., 2002 ). In comparison to existing functional

etworks obtained by clustering of white matter signal ( Huang et al.,

020 ; Peer et al., 2017 ), the components detected by ICA of tw-dFC

how some topographical similarities both at coarse and fine-grained

cale, but they are more adherent to the known anatomy of white mat-

er bundles, as a consequence of incorporating white matter priors from

ulti-fiber tractography into the processing pipeline. This also allows

he tw-dFC signal to account for complex fiber configurations such as
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Fig. 9. “Brain states ” hierarchical clustering (main dataset). A) The elbow criterion of cluster validity index suggests an optimal cluster number k = 11 for hierarchical 

clustering of tw-dFC time windows. B) Cluster centroids of transient brain state vectors. Colors are assigned according to the average within-component connectivity 

value in the time windows corresponding to each state, and for each of the n = 20 components. Components are sorted according to FNC-based clustering (see 

Results 3.4 and Supplementary Figures 3-5): PO = parieto-occipital, ASS = associative, SM = sensorimotor, VIS = visual, ADM = anterior default mode. C) Clusters 

visualization. For each state, group spatial maps of independent components are thresholded at z > 1, binarized and volume-rendered on a glass-brain in left, right, 

anterior, and superior 3D views. For simplicity, only components with average within-component connectivity r > ± 0.5 are displayed. Colormap is the same as in 

panel B. 
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rossing, kinking and fanning fibers ( Jbabdi and Johansen-Berg, 2011 ),

hile this is not possible for white matter BOLD-fMRI ( Peer et al., 2017 ).

In addition, our work provided concurrent evidence that the profiles

f white matter activity identified by tw-dFC are functionally mean-

ngful. First, time profiles of white matter connectivity, similarly to

hat observed after dynamic connectivity analysis in the gray matter

 Allen et al., 2014 ; Fan et al., 2021 ), show peculiar patterns of activity

hich are recurrent in time ( “brain states ”). The eleven white matter

rain states identified in our work are in line with the corresponding

ray matter brain states identified by hierarchical clustering of dynamic

unctional connectivity ( Fan et al., 2021 ), by showing generally oppo-

ite patterns of activity between sensorimotor (visual, auditory, and so-

atomotor) white matter components (e.g. in states 5, 6, 9 and 11)

nd associative (default mode, frontoparietal, prefrontal and cerebellar)

omponents (as in states 1, 2, 3, 7 or 10). These distinct sets of states

re in line with the notion of “metastates ”, which involve preferentially

ensorimotor or associative connectivity patterns, and which has been

uggested to represent the basis for hierarchical organization of brain

unctional activity over time ( Vidaurre et al., 2017 ). Further investiga-

ion of the temporal structure (e.g., transition probability or fractional

ime occupancy) of these brain states, could give interesting clues about

heir relation to inter-individual differences in brain function. 

Second, correlation between time series components, as measured by

NC, revealed that dynamic activity in the white matter is coordinated

cross functionally homogeneous clusters, reflecting similarities in in-

ormation processing. In the low-level representation of tw-dFC organi-

ation derived by ICA 10 , FNC revealed a tripartite segregation into vi-

ual unimodal, somatosensory-auditory unimodal and associative trans-

odal brain regions. Along with reflecting the temporal activity patterns

evealed by “brain states ” hierarchical clustering, such a segregation is

n line with the hierarchical organization model theorized previously

y Mesulam ( Mesulam, 1998 ) and recently confirmed by diffusion em-

edding of functional connectivity ( Margulies et al., 2016 ). Moreover,

his hierarchical organization is maintained also for increasingly fine-

rained decompositions of the tw-dFC signal, where the tripartite model

breaks up ” into multiple associative, sensorimotor, and visual clusters,

ach capturing distinct facets of cortico-cortical and cortico-subcortical

nformation processing. In addition, while the cerebellar involvement is

inimal in the ICA 10 , and limited to a single component in the ICA 20 

IC5, which covers cerebello-cerebellar connections via the middle cere-

ellar peduncle and is part of the “transmodal ” cluster), FNC clustering

f the higher-dimensionality ICA 100 reveals distinct segregated cerebel-

ar connectivity clusters, consisting of components covering intrinsic

erebellar connectivity or the cerebellar peduncles, either alone or in

roup with cerebral connectivity components. This result fits well with

ecent investigations postulating the existence of a hierarchical orga-

ization of cerebellum-cerebellar and cortical-cerebellar connectivity,

imilar to that observed for cerebral cortex ( Guell et al., 2018 ). 

Last but not least, FNC between time series components as derived

y ICA 100 can be successfully employed to predict behavior. This find-

ng further confirms that the patterns of co-fluctuation between white

atter components may be functionally relevant, by encoding inter-

ndividual differences in behavioral traits. We choose to limit our anal-

sis to higher-level cognition measures, which are frequently used in

onnectome-based prediction tasks ( Finn et al., 2015 ) and, specifically,

ave been shown to be predictable by dynamic connectivity measures

 Fan et al., 2021 ; Liu et al., 2018 ). Although we did not directly test the

ccuracy of predictions derived from tw-dFC data versus other static

r dynamic connectivity methods, we suggest that tw-dFC-based behav-

oral prediction may show its usefulness by allowing a stronger link be-

ween functional measures and the underlying white matter anatomy,

ven considering that correlation between behavior and structural con-

ectivity measures have been shown to be generally weaker than those

btained by functional connectivity ( Lin et al., 2020 ; Miller et al., 2016 ;

’Muircheartaigh and Jbabdi, 2018 ). In the present work, mapping the

patial distribution of FNC-derived features predictive of cognitive per-
15 
ormance allowed to identify functionally relevant structures, such as

ong and short-range white matter pathways involving the primary sen-

orimotor cortices, as well as frontoparietal and prefrontal bundles and

onnections involving the right cingulum, visual regions, and the cere-

ellum. In addition, our results reinforce the concept that complex cog-

itive activity may be not localized into single white matter units, but

nstead emerge from the coordinated activity of multiple independent

hite matter systems. However, it is worth to note that FNC measures

s derived by ICA 10 and ICA 20 resulted in a few or no features surviving

he features selection step and failed at providing statistically signifi-

ant predictions and acceptable R 

2 values. These findings may be due

o the reduced FNC matrix dimensionality, which may be not sufficient

o predict complex behavioral measures. In this scenario, further studies

re warranted to probing the effect of different ICA dimensionalities on

NC-based cognitive performance prediction. 

Taken together, these results confirm ICA-analysis of tw-dFC data as

 powerful and versatile tool to investigate the relations between struc-

ural connectivity, functional activity, and behavior. Mapping behav-

orally and clinically relevant functional information to the underlying

hite matter structures is of major relevance for a better understanding

f brain functional anatomy in health and disease ( Fox, 2018 ). Indeed,

CA analysis of tw-dFC data has potential translational application in

iseases that involve direct damage to white matter bundles, such as

troke ( Boes et al., 2015 ), traumatic brain injury ( Hayes et al., 2016 )or

ultiple sclerosis ( Ravano et al., 2021 ). In addition, such a method may

rovide new insights into the pathophysiology of some neuropsychiatric

onditions in which there is evidence of subtle white matter connectivity

lterations such as epilepsy, schizophrenia, bipolar disorder, major de-

ressive disorder or autism spectrum disorders ( Koshiyama et al., 2020 ).

The present work does not come without limitations. The first con-

ern regards the choice of dimensionality for the ICA decomposition

f tw-dFC signal. In order to provide a compact representation of white

atter independent components, we maintained our ICA dimensionality

enerally low, i.e., not more than 100 components, if compared to sim-

lar applications ( O’Muircheartaigh and Jbabdi, 2018 ), and component

tability was evaluated using ICASSO to avoid overfitting (Sai Ma et al.,

011 ). Another possible limitation is related to which dimension to im-

ose maximized independence during ICA processing. Our choice to-

ards spatial ICA (i.e., maximizing the independence of components in

pace instead of time) was substantially aimed at keeping our work con-

istent with most of the existing literature on ICA analysis of static and

ynamic fMRI data ( Damaraju et al., 2014 ; Fan et al., 2021 ; Smith et al.,

009 ). In addition, the choice of minimizing between-component corre-

ation in space has permitted the conservation of higher degrees of corre-

ation between component time series, which, as suggested by our find-

ngs, may encode biologically relevant information. However, impos-

ng the constraint of spatial independence to white matter components

ould lead to oversimplification as multiple fiber populations, each with

otentially different temporal profiles, may share the same spatial lo-

alization. Additional investigation using temporal ICA of tw-dFC data

ould add further insights on the temporal organization of white matter

ctivity. 

In addition, it is important to remark the role of non-neuronal sources

such as CSF pulsations, motion-related noise or cerebrovascular re-

ctivity) as a potential confound when investigating dynamic fluctua-

ions in functional connectivity ( Preti et al., 2017 ). Although our results

ere obtained from nuisance-corrected fMRI data, preprocessed inde-

endently using two state-of-art denoising algorithms ( Parkes et al.,

018 ), disentangling neuronal from non-neuronal signal in dynamic

onnectivity may be challenging even with the existing tools. On the

ther hand, constraining the dynamic functional connectivity analysis

o voxels which are structurally connected by streamlines, as in tw-dFC,

ould help mitigate such drawback ( Calamante et al., 2017 ). Neverthe-

ess, it is generally well-known that tractography-derived priors may not

ntirely reflect the ground-truth white matter anatomy, being affected

y relatively high false positive rates ( Jbabdi and Johansen-Berg, 2011 ).
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n the present work we employed a probabilistic tractography algorithm

aired with track-filtering in the main dataset (multi-shell data), and the

ame algorithm without track-filtering in the validation dataset (single

hell data). Albeit finding generally good external reproducibility, it re-

ains difficult to rule out how much of the differences observed between

he two datasets were due to tractography. Optimizing the tw-dFC map

eneration by integrating a tractography pipeline with high robustness

o noise could help raising the external reproducibility of the result-

ng tw-dFC components, and the impact of different signal modeling.

inally, since the quality of tw-dFC maps depends on the correct align-

ent of tractography and BOLD-fMRI data, non-linear registration of

ractograms, as well as proper distortion correction of both DWI and

OLD data, are critical steps that need accurate control to ensure the

ood quality of the results. 

. Conclusions 

In the present work, we demonstrated that ICA decomposition of tw-

FC data may reliably identify spatial patterns of white matter connec-

ivity, each showing distinct temporal profiles of activity. These spatial

atterns, at the coarse scale, show similarity to well-known functional

etworks, and at increasing dimensionality are able to capture subtle

natomical details of white matter organization. Temporal patterns of

ctivity in the white matter showed evidence of hierarchical organi-

ation at different levels, and their pattern of correlation may encode

ifferences in behavioral traits. 

In summary, we showed that tw-dFC is a powerful and versatile tool

o investigate the relationships between brain structure, function, and

ehavior and it shows promise as a tool to deepen our knowledge on

rain connectivity in health and disease. 
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