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Abstract

Background: Prediction of survival and radiation therapy response is

challenging in head and neck cancer with metastatic lymph nodes (LNs). Here

we developed novel radiomics- and clinical-based predictive models.

Methods: Volumes of interest of LNs were employed for radiomic features

extraction. Radiomic and clinical features were investigated for their predictive

value relatively to locoregional failure (LRF), progression-free survival (PFS),

and overall survival (OS) and used to build multivariate models.

Results: Hundred and six subjects were suitable for final analysis. Univariate

analysis identified two radiomic features significantly predictive for LRF, and

five radiomic features plus two clinical features significantly predictive for both

PFS and OS. The area under the curve of receiver operating characteristic

curve combining clinical and radiomic predictors for PFS and OS resulted 0.71

(95%CI: 0.60–0.83) and 0.77 (95%CI: 0.64–0.89).
Conclusions: Radiomic and clinical features resulted to be independent pre-

dictive factors, but external independent validation is mandatory to support

these findings.

KEYWORD S

head and neck cancer, predictive factor, predictive model, radiomics, radiotherapy

Received: 20 December 2022 Revised: 2 February 2023 Accepted: 14 February 2023

DOI: 10.1002/hed.27332

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2023 The Authors. Head & Neck published by Wiley Periodicals LLC.

1184 Head & Neck. 2023;45:1184–1193.wileyonlinelibrary.com/journal/hed

https://orcid.org/0000-0001-7300-1168
https://orcid.org/0000-0001-7862-898X
mailto:luca.cozzi@humanitas.it
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/journal/hed
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fhed.27332&domain=pdf&date_stamp=2023-02-23


1 | INTRODUCTION

Head and neck cancer (HNC) represents the sixth
most common nonskin cancer worldwide, and in the
United States there are about 600 000 incident cases
of HNC annually.1 In the European Union the estimated
number of new annual HNC cases is about 107 000.2

Despite great advances have been made in the pre-
vention and diagnosis over the past decades, the manage-
ment of HNC still remains challenging when compared
to tumors in other areas of the body because it strongly
depends on pretreatment factors and prognosis. In addi-
tion, HNC covers a wide spectrum of heterogeneous dis-
eases including tumors originating from the oral cavity,
nasopharynx, oropharynx, hypopharynx, and larynx.

Currently, the standard of care for nonmetastatic
locoregionally advanced HNC is surgery followed by
postoperative radiotherapy (RT) or chemoradiotherapy
(CRT) if indicated, or definitive CRT or induction chemo-
therapy followed by concomitant CRT for patients with
unresectable HNC unfit for surgery or when organ pres-
ervation is one of the goals.3 However, great disparities
exist in the treatment response.

Indeed, not all HNC have the same prognosis and
subsets of patients may live for years or benefit from
more aggressive therapies. Therefore, useful prognostic
scores and omics technologies that help to predict sur-
vival, outcome, and treatment response are essential to
guide personalized treatment decisions and properly
stratify patients in future research.

Radiomics is the field of computational medicine that
allows the extraction of features from standard biomedical
imaging and generation of predictive models.4 Its potential
applications are extensive, both for the interpretation of
data resulting from modern imaging modalities and for
the identification of new features undetectable through
the human eyes, thus overcoming several limits of conven-
tional imaging and fostering further advances in RT.4,5

Radiomics and machine learning approaches have
found several applications in the HNC field, such as the
development of prognostic biomarkers,6–8 radiomics strat-
egies for predicting tumor response,9–11 as well as the
detection of HPV status in patients with oropharynx can-
cer.11,12 Furthermore, normal tissues radiomics informa-
tion is likely to reflect potential risks for late radiation-
induced toxicities.13,14 More recently, the nodal tumor bur-
den is gaining increasing interest as cervical nodal metas-
tasis are a well-known prognostic negative factor and
advanced nodal stage is predictive for increased distant
metastases and lower survival in HNC.15–18 A comprehen-
sive overview of big data applications in the HNC field
that should be taken into account in the decision-making
process is provided by Resteghini et al.19

In light of this rapidly evolving scenario towards a tai-
lored RT, the present study aims at developing radiomics-
and clinical-based models able to predict survival and
treatment response by employing computed tomography
(CT) pretreatment imaging data of metastatic lymph
nodes (LNs) and clinical variables of patients with HNC
submitted to definitive RT/CRT.

2 | MATERIALS AND METHODS

2.1 | Patients and treatment

All the head and neck squamous cell carcinoma
(HNSCC) patients with LNs treated between February
2016 and January 2022 were included in this retrospec-
tive single-institution analysis.

Inclusion criteria were histologically proven squa-
mous cell carcinomas with metastatic LNs defined radio-
logically and/or by citology, submitted to definitive
RT/CRT, with an Eastern Cooperative Oncology Group
(ECOG) performance status ≤2 and a minimum follow-
up time of 6 months. Patients were excluded if surgery or
irradiation was previously performed, if the disease was
metastatic at onset or if metallic CT artifacts altered the
radiological region of LNs.

TNM (tumor, node, and metastases) classification was
scored according to the 8th Edition of the American Joint
Committee on Cancer (AJCC) staging system and the
HPV status of oropharyngeal cancer was assessed by
immunohistochemical p16 staining in biopsy specimens.

All patients underwent contrast-free and contrast-
enhanced pretreatment planning imaging of the head and
neck according to the same scanning protocol with 120 kVp
and 300 mAs on the same CT scanner (Brilliance Big Bore,
Philips, Amsterdam, The Netherlands). CT images were
acquired with 3 mm slice thickness and an in-plane resolu-
tion of 0.8 mm. In addition, other pretreatment or planning
imaging modalities such as magnetic resonance imaging
(MRI) and/or positron emission tomography-computed
tomography (PET-CT) were acquired in almost all cases to
better identify the LNs and primary tumors.

All treatments consisted of volumetric modulated arc
therapy (VMAT) with 6 MV photon beams and the treat-
ment planning and dose calculation were performed
using the Eclipse planning system version 11 (Varian
Medical Systems, Palo Alto, CA).

Depending on tumor origin and performance status, the
prescription dose varied between three different simulta-
neous integrated boost regimens, respectively, to the high-
risk and low-risk volumes: 66/54 Gy in 30 fractions,
69.96/54.45 Gy in 33 fractions, and 70/56 Gy in 35 fractions.
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The entire anatomical neck levels to which the LNs
belonged were incorporated in the high-risk treatment
volume, whereas the low-risk nodal target volumes were
defined according to Biau et al.20 Consensus guidelines
were used for the delineation of the primary tumor clini-
cal target volumes.21

All patients were treated according to the Declaration of
Helsinki and provided informed general consent both to the
treatment and the scientific use of their clinical data.

Follow-up was performed with clinical examination
plus MRI or CT at 2 months and PET-CT at 12 weeks
after the treatment conclusion. Then clinical-radiological
follow-up according to physician's discretion occurred
every 3 months for the first 3 years, every 6 months for
the following 2 years, and then annually thereafter.

2.2 | Radiomics analysis

The contrast-free and postcontrast planning CT were
loaded into the Eclipse planning system and geometri-
cally aligned with the pretreatment MRI and/or PET-CT,
if available. All LNs were individually manually seg-
mented by two expert radiation oncologists on axial slices
of the contrast-free planning CT. The DICOM files of the
volumes of interest (VOI) thus obtained were finally
uploaded on LIFEx v7.0 for feature extraction.

First, input parameters were defined. Spatial resam-
pling to 1.2 � 1.2 � 3 mm and an absolute intensity
rescaling with a minimum bound of �1000 and a maxi-
mum bound of 3000 were performed. The number of gray
levels was set to 400 with a bin size of 10.

A total of 39 features was extracted for each patient.
The first-order features consisted of shape and histogram
features. The second order features included the gray
level co-occurrence matrix (GLCM), the neighborhood
gray level different matrix (NGLDM), the gray level run
length matrix (GLRLM), and the gray level zone length
matrix (GLZLM).

2.3 | Statistical analysis

All the radiomic features as well as the clinical features such
as age, sex, smoking status, TNM stage, chemotherapy
administration, and performance status were simultaneously
investigated for their predictive value relatively to locoregio-
nal failure (LRF), progression-free survival (PFS), and overall
survival (OS) with univariate Cox regression.

Optimal separation thresholds were determined per
each predictor by identifying the lowest p-value in the
p-value distribution from the Wilcoxon test, provided that
each group contained a number of patients greater than

or equal to 15, which approximately corresponds to the
15% of the entire sample.

Then a minimal set of significant features was
obtained by means of elastic net regularization, which is
a process that is able to automatically select the most sig-
nificant independent covariates from a group of multiple
cross-related variables.

Briefly, aimed at identifying potential results redun-
dancy, the mutual correlation between features was evalu-
ated for the best performing covariates (p ≤ 0.05). Covariates
showing Pearson correlation values with p ≥ 0.05 were con-
sidered not cross-related and used for further analyses.

Multivariate Cox regression was then performed
including in the model only the uncorrelated features
resulting from the elastic net regularization, and only the
variables surviving after a backward elimination phase
were considered to have a predictive value relatively to
LRF, PFS, and OS.

Calibration was evaluated with Hosmer and Lemen test.
The data of the whole dataset were split into low- (below
threshold) and high-risk (above threshold) groups by the
median of the Cox's prediction, similarly to Aerts et al.22

Performance of multivariate models was evaluated
with the area under curve (AUC) of receiver operating
characteristic (ROC) curve. The standard ROC curve was
computed by testing the sensitivity and specificity of the
models in predicting the outcome from the selected pre-
dictors of the model.

The statistical analysis of the data was performed
through the open source R platform (version 3.6).

3 | RESULTS

Overall 106 subjects treated from February 2016 to
January 2022 were suitable for final analysis and the
whole dataset was used for training creating a Transparent
Reporting of a multivariable prediction model for Individ-
ual Prognosis Or Diagnosis (TRIPOD) type 1a model.23

The clinical and demographic characteristics, as well
as the treatment parameters, are summarized in Table 1.
Exclusive concomitant CRT was delivered in 80/106
patients, induction chemotherapy followed by concomitant
CRT was administered in 15/106 patients, whereas the
remaining 11/106 patients were submitted to RT alone.

Table 2 provides the median and mean time for LRF,
PFS, and OS of the entire cohort.

3.1 | Locoregional failure

The univariate Cox regression analysis identified five sig-
nificant features for LRF, but after elastic net
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regularization and elimination of correlated features only
two features remained significant (GLZLM_SZE and
GLZLM_SZHGE). Figure 1 illustrates the LRF graphs
stratified according to the two significant predictors.

The AUC from the ROC curve built out of the model
resulted 0.56 (95% confidence interval (95%CI):
0.43–0.69).

Figure 1 shows the AUC-ROC curve as well as the
multivariate Cox model built for the LRF. In the survival
curves, solid blue lines represent the low-risk group of
patients, whereas dashed blue lines correspond to the
high-risk group. The p-value from the Wilcoxon test com-
parison between low- and high-risk groups resulted 0.735.

3.2 | Progression-free survival

As regards the PFS and OS, we found the same signifi-
cant clinical-radiomic signature. In particular, 13 radio-
mics predictors resulted significant at univariate analysis.
However, elastic net regularization led to five significant
predictors (GLCM_Entropy_log10, GLCM_Correlation,
GLZLM_LGZE, Skewness, Kurtosis). Performance status
and concomitant CRT were significant clinical predictors
with a p-value of 0.03 for both of them.

The AUC from the ROC curve built out of the model
using only clinical predictors for PFS resulted 0.58 (95%CI:
0.51–0.65). The p-value from the Wilcoxon test comparison
between low- and high-risk groups resulted 0.005.

When considering only radiomic features, the AUC
from the ROC curve built out of the model for the PFS
resulted 0.62 (95%CI: 0.50–0.73). The p-value from the
Wilcoxon test comparison between low- and high-risk
groups resulted 0.025.

Finally, the AUC from the ROC curve combining
clinical and radiomic predictors for PFS resulted 0.71
(95%CI: 0.60–0.83), thus outperforming the models based
only on either clinical or radiomic predictors.

Figure 2 shows the AUC-ROC curve as well as the
multivariate Cox model built for the PFS combining clini-
cal and radiomic predictors. In the survival curves, solid

TABLE 2 Median and mean time ± standard deviation in

months for locoregional failure, progression-free survival, and

overall survival

Locoregional failure (months)

Median 16.62

Mean ± standard deviation 26.42 ± 21.10

Progression-free survival (months)

Median 15.58

Mean ± standard deviation 25.28 ± 21.55

Overall survival (months)

Median 23.12

Mean ± standard deviation 29.25 ± 21.24

TABLE 1 Patients' clinical and demographics information

Number of patients 106

Sex Male: 77 (73%)

Female: 29 (27%)

Age, yearsa 63 (35–83)

ECOG performance status 0: 71 (67%)

1: 27 (26%)

2: 8 (7%)

Smoking status Smokers: 44 (42%)

Nonsmokers: 34 (32%)

Ex-smokers: 28 (26%)

Site Oropharynx: 68 (65%)

Nasopharynx: 11 (10%)

Hypopharynx: 11 (10%)

Larynx: 11 (10%)

Oral cavity: 5 (5%)

HPV-positive status 40 (38%)

TNM stage I: 5 (5%)

II: 10 (9%)

III: 31 (29%)

IVA: 48 (46%)

IVB: 12 (11%)

T1-2: 44 (41.5%)

T3-4: 62 (58.5%)

N1: 28 (26.4%)

N2: 68 (64.2%)

N3: 10 (9.4%)

Chemotherapy Induction TPF: 15 (14%)

Concomitant: 95 (89.6%)

3-weekly cisplatin: 72 (67.9%)

Weekly cisplatin: 6 (5.7%)

Cetuximab: 17 (16.0%)

No: 11 (10%)

Prescription dose 66/54 Gy in 30 fractions: 102 (96%)

69.96/54.45 Gy in 33
fractions: 2 (2%)

70/56 Gy in 35 fractions: 2 (2%)

Overall treatment
time, daysa

43 (39–69)

Median follow-up, monthsa 18.5 (6–74)
aMedian and range in parentheses.
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blue lines represent the low-risk group of patients,
whereas dashed blue lines correspond to the high-risk
group. The p-value from the Wilcoxon test comparison
between low- and high-risk groups resulted 0.

3.3 | Overall survival

Concerning the OS, the AUC from the ROC curve built
out of the model using only clinical predictors resulted
0.71 (95%CI: 0.59–0.83). The p-value from the Wilcoxon
test comparison between low- and high-risk groups
resulted 0.003.

The AUC from the ROC curve built out of the model
using only radiomic predictors for the OS resulted 0.61
(95%CI: 0.49–0.72). The p-value from the Wilcoxon test
comparison between low- and high-risk groups
resulted 0.098.

Finally, the AUC from the ROC curve combining
clinical and radiomic predictors for OS resulted 0.77 (95%
CI: 0.64–0.89), thus outperforming the models based only
on either clinical or radiomic predictors.

Figure 3 shows the AUC-ROC curve as well as the
multivariate Cox model built for the OS combining clini-
cal and radiomic predictors. In the survival curves, solid
blue lines represent the low-risk group of patients,

FIGURE 1 (A) Locoregional failure (LRF) curve for the entire dataset without any stratification. (B) The area under the curve (AUC)
from the receiver operating characteristics (ROC) curve built out of the model for LRF. (C) LRF curves for the multivariate model; solid blue

lines represent the low-risk group of patients, dashed blue lines correspond to the high-risk group, solid red line represents the entire patient

cohort. (D) LRF curves with number of subjects at risk for the high- (blue) and low-risk (red) groups [Color figure can be viewed at

wileyonlinelibrary.com]
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whereas dashed blue lines correspond to the high-risk
group. The p-value from the Wilcoxon test comparison
between low- and high-risk groups resulted 0.001.

A list of the clinical and radiomics features found to
be significant at the univariate analysis can be found in
Table 3.

4 | DISCUSSION

To the best of our knowledge, this is the first study inves-
tigating in HNSCC submitted to definitive RT/CRT possi-
ble CT-based radiomics signatures extracted by positive
nodes imaging data that correlate significantly with LRF,
PFS, and OS. Indeed, up so far, LNs radiomic features

have been used only to develop and validate a pretreat-
ment prediction model for nodal failure.17 In particular,
multivariable analysis disclosed three clinical features
(T-stage, sex, and PS) and two radiomic features (Least-
axis-length representing nodal size and GLCM_Correlation)
as independent prognostic factors of lymph node failure
in HNSCC. Interestingly, such a combined model outper-
formed the models based either on clinical features or
radiomics alone in terms of discrimination.

Herein, we found that CRT and PS as clinical features
and skewness, kurtosis, entropy, GLCM_Correlation, and
GLZLM_LGZE as radiomic features were independent
predictor factors of PFS and OS, especially when using
the combined clinical-radiomics model. It is worth to
note that the clinical feature PS and the radiomic feature

FIGURE 2 (A) The area under the curve (AUC) from the receiver operating characteristics (ROC) curve built out of the model

combining clinical and radiomic predictors for progression-free survival (PFS). (B) PFS curves for the multivariate combined model built;

solid blue lines represent the low-risk group of patients, dashed blue lines correspond to the high-risk group, solid red line represents the

entire patient cohort. (C) PFS curves with number of subjects at risk for the high- (blue) and low-risk (red) groups [Color figure can be

viewed at wileyonlinelibrary.com]
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GLCM_Correlation are consistent with the results of pre-
vious studies evaluating the potential of radiomics predic-
tion in HNSCC.17,24,25

Despite only two radiomics features resulted to be
predictive for LRF, interestingly the same clinical and
radiomic signature resulted to be significantly predictive
for PFS and OS, thus increasing the robustness of their
predictability.

Explaining why some features are significant rather
than others and their meanings still remains a challeng-
ing task, though previous evidence suggested that the
radiomics signatures identified are strongly affected by
tissue homogeneity. For instance, skewness and kurtosis
reflect the asymmetry and the shape of the gray-level

distribution, respectively, whereas GLCM_Correlation is
a textural feature describing the correlation of a reference
voxel to its neighbors. Altogether, these results may sug-
gest intranodal heterogeneity, which is likely to result by
the coexistence of multiple subclonal populations within
the LNs, as a significant noninvasive imaging-based pre-
dictor for PFS and OS.

The relevance of tissue homogeneity in predicting
PFS after CRT in locally advanced HNSCC has been also
recently demonstrated by Cozzi et al. by means of CT-
based radiomic analysis on the primary tumor.26 In par-
ticular, their model including Shape_Compacity and
GLCM_Correlation was predictive for the PFS with a
concordance index of 0.72 and 0.80 for the training and

FIGURE 3 (A) The area under the curve (AUC) from the receiver operating characteristics (ROC) curve built out of the model

combining clinical and radiomic predictors for overall survival (OS). (B) OS curves for the multivariate combined model built; solid blue

lines represent the low-risk group of patients, dashed blue lines correspond to the high-risk group, solid red line represents the entire patient

cohort. (C) OS curves with number of subjects at risk for the high- (blue) and low-risk (red) groups [Color figure can be viewed at

wileyonlinelibrary.com]
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validation dataset, respectively. In addition, while no
clinical- or treatment-related feature could be identified
as a predictive factor, only the use of induction chemo-
therapy approached significance in the analysis of PFS,
despite not passing the selection criteria to be included in
the model.

Several studies have attempted to identify, at the
radiomic level, imaging characteristics that could dis-
criminate between different treatment responses in HNC,
though consistent and robust features have not yet
emerged. This has made the application of radiomics in
the clinical scenario limited, and the reasons for such a
discrepancy between research studies and clinical prac-
tice are manifold. First, most radiomics studies have built
their models from limited data, assuming to be represen-
tative of all other data for different institutions. Second,
most research studies lack of validation of their generated
models.

Several limitations exist also in the present study.
First of all, it is a small cohort of patients from a single
institution with very few events in the dataset that did
not allow to separate it into training and testing sub-
groups, thus affecting both robustness and reproducibility
of the results.

Furthermore, the lack of a radiomic dedicated stan-
dardized segmentation may underestimate or overesti-
mate the true LNs volume. Indeed, the contouring
process has a strong impact on the performance of the
models being the first source of error in the complex pro-
cess of radiomics analysis.27

As regards features extraction, input parameters such
as spatial resampling and absolute intensity rescaling
methods were arbitrary. In addition, we decided to
extract a small number of basic features excluding many
higher order classes of features thus not investigating

their impact on prognosis and treatment response.
Although this approach may appear simplistic, the
underlying assumption is that, in order to improve our
understanding on the hidden meaning of radiological
data, it is advisable to begin from the most simple and
reproducible features that might play a role in everyday
clinical practice.

In addition, the predictive models here presented
should be validated in a large independent external
cohort in order to conduct a more valuable TRIPOD
type 3 study, but it should be kept in mind that some
technical aspects such as CT acquisition parameters
could influence the reproducibility of our radiomics
analysis.

Finally, though the use of noncontrast enhanced
treatment planning CT datasets makes this kind of ana-
lyses potentially available to all patients scheduled for
RT, LNs radiomic features from other imaging modalities
such as MRI, PET-CT, and ultrasound could be investi-
gated to further improve the current models' prediction
for LRF, PFS, and OS.

It is worth to note that a simple and easily reproduc-
ible methodology was applied in the present retrospective
study. However, as no gold standard currently exists for
the development of clinical- and radiomics-based predic-
tive models, different approaches should be tested and
critically compared. Hence, further studies are then war-
ranted to obtain a multimodal-imaging radiomic patient
characterization and develop reliable radiological-based
diagnostic and therapeutic markers for HNC.

5 | CONCLUSIONS

Metastatic lymph nodes CT-based radiomic signatures
and clinical features resulted to be independent predictor
factors of PFS, LRF, and OS in patients with HNC sub-
mitted to definitive radiotherapy with or without chemo-
therapy. Further validation studies on larger, prospective
and multicenter cohorts are mandatory to confirm these
findings and to improve the predictive models and clini-
cal strategies currently employed.
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