SELECTIVELY STRONGLY STAR-MENGER SPACES AND RELATED PROPERTIES

Maddalena Bonanzinga ${ }^{a *}$ And Fortunato MaEsano ${ }^{a}$

Abstract

A space X is selectively strongly star-Menger (briefly, selSSM) if for each sequence ($\mathscr{U}_{n}: n \in \mathbb{N}$) of open covers of X and each sequence ($D_{n}: n \in \mathbb{N}$) of dense subspaces of X, there exists a sequence ($F_{n}: n \in \mathbb{N}$) of finite subsets $F_{n} \subset D_{n}, n \in \mathbb{N}$, such that $\left\{\operatorname{st}\left(F_{n}, \mathscr{U}_{n}\right): n \in \mathbb{N}\right\}$ is an open cover of X. This property is between absolute countable compactness [M. V. Matveev, Topol. Appl. 58, 81 (1994)] and selective absolute star-Lindelöfness [M. Bonanzinga et al., Topol. Appl. 221, 517 (2017)] and represents a "selective version" of the selection principle strongly star Menger [L. D. R. Kočinac, Publ. Math. Debrecen 55, 421 (1999)]. In this paper, we study some properties of selectively strongly star-Menger spaces, the relation with related properties and give some example distinguishing the properties considered.

1. Introduction and definitions

In this paper we use standard notation and terminology following Hodel (1984) and Engelking (1989). Let \mathscr{U} be a cover of a space X and M be a subset of X; the star of M with respect to \mathscr{U} is the set $\operatorname{st}(M, \mathscr{U})=\bigcup\{U: U \in \mathscr{U}$ and $U \cap M \neq \emptyset\}$. The star of a one-point set $\{x\}$ with respect to a cover \mathscr{U} is denoted by $\operatorname{st}(x, \mathscr{U})$. Recall that a space X is said to be star-compact (star-Lindelöf) if for every open cover \mathscr{U} of X there exists a finite (countable) subset $F \subset X$ such that $s t(F, \mathscr{U})=X ; X$ is absolutely countably compact (briefly, acc) (Matveev 1994) if for every open cover \mathscr{U} of X and every dense subspace $D \subset X$ there exists a finite subset $F \subset D$ such that $s t(F, \mathscr{U})=X ; X$ is absolutely star-Lindelöf (briefly, a -star-Lindelöf) (Bonanzinga 1998) if for every open cover \mathscr{U} of X and every dense subspace $D \subset X$ there exists a countable subset $C \subset D$ such that $s t(C, \mathscr{U})=X$. See also Matveev (1998) for a survey on star covering properties.

Bonanzinga et al. (2017) considered the following selective version of a-star-Lindelöfness (see also Bhowmik 2011; Bal et al. 2018), where another terminology is used; note that this notion is strictly related to selective separability (Bella et al. 2008, 2009).

Definition 1.1. (Bonanzinga et al. 2017) A space X has the selective absolutely star-Lindelöf property (briefly, sel-a-star-Lindelöf) if for every open cover \mathscr{U} of X and every sequence ($D_{n}: n \in \mathbb{N}$) of dense subspaces of X, there exists a sequence ($F_{n}: n \in \mathbb{N}$), of finite subsets $F_{n} \subset D_{n}$, such that $s t\left(\bigcup_{n \in \mathbb{N}} F_{n}, \mathscr{U}\right)=X$.

The previous property is between acc and sel-a-star-Lindelöf properties. In particular

$$
\text { acc } \Rightarrow \text { sel-a-star-Lindelöf } \Rightarrow \text { a-star-Lindelö } f .
$$

In a similar way we can introduce the following property (see also Cuzzupé 2017).
Definition 1.2. A space X is selectively strongly star-Menger (briefly, selSSM) if for each sequence ($\mathscr{U}_{n}: n \in \mathbb{N}$) of open covers of X and each sequence $\left(D_{n}: n \in \mathbb{N}\right)$ of dense subspaces of X, there exists a sequence ($F_{n}: n \in \mathbb{N}$) of finite subsets $F_{n} \subset D_{n}, n \in \mathbb{N}$, such that $\left\{\operatorname{st}\left(F_{n}, \mathscr{U}_{n}\right): n \in \mathbb{N}\right\}$ is an open cover of X.
Note that selSSM property is between acc and sel-a-star-Lindelöf properties. In particular

$$
a c c \Rightarrow \text { selSSM } \Rightarrow \text { sel-a-star-Lindelöf } f
$$

The selSSM property is a "selective version" of the following selection principle introduced by Kočinac (1999) (see also Bonanzinga et al. 2009; Sakai 2014):
Definition 1.3. (Kočinac 1999; Bonanzinga et al. 2009; Sakai 2014) X is strongly starMenger (briefly, SSM) if for every sequence ($\mathscr{U}_{n}: n \in \mathbb{N}$) of open covers of X there exists a sequence $\left(F_{n}: n \in \mathbb{N}\right)$ of finite subsets of X such that $\left\{\operatorname{st}\left(F_{n}, \mathscr{U}_{n}\right): n \in \mathbb{N}\right\}$ is an open cover of X.

Recall the definition of \mathfrak{b} and \mathfrak{d}. For $f, g \in \mathbb{N}^{\mathbb{N}}$ put $f \leq^{*} g$ if $f(n) \leq g(n)$ for all but finitely many n. A subset B of $\mathbb{N}^{\mathbb{N}}$ is bounded if there is $g \in \mathbb{N}^{\mathbb{N}}$ such that $f \leq^{*} g$ for each $f \in B . D \subset \mathbb{N}^{\mathbb{N}}$ is dominating if for each $g \in \mathbb{N}^{\mathbb{N}}$ there is $f \in D$ such that $g \leq^{*} f$. The minimal cardinality of an unbounded subset of $\mathbb{N}^{\mathbb{N}}$ is denoted by \mathfrak{b}, and the minimal cardinality of a dominating subset of $\mathbb{N}^{\mathbb{N}}$ is denoted by \mathfrak{d}.

In this paper we study the selSSM and related properties. Even if for completeness we introduce also Rothberger-type properties, we study only Menger-type and Hurewicz-type properties. In Section 2 we consider some properties related to selSSM property and prove that for spaces having cardinality less than \mathfrak{d} all the considered properties are equivalent. In particular, we prove that for Isbell-Mrwóka spaces $\Psi(\mathscr{A})$, all the considered Menger-type properties are equivalent to the condition $|\mathscr{A}|<\mathfrak{d}$. Also similar results are obtained for the corresponding Hurewicz-type properties. In Section 3 we consider some relative versions of the considered properties (recall Bonanzinga and Pansera 2007 as one of the first papers on relative star selection principles).

The selSSM property is in fact a "star-selection principle".
Let X be a space and Y a subspace of X. We use the symbol:
\mathscr{O}_{X} : the collection of open covers of X;
$\mathscr{O}_{Y X}$: the collection of open covers of Y by sets open in X;
Ω_{X} : the collection of open ω-covers of X. An open cover \mathscr{U} of X is an ω-cover (Gerlits and Nagy 1982) if X does not belong to \mathscr{U} and every finite subset of X is contained in an element of \mathscr{U};
$\Omega_{Y X}$: the collection of open ω-covers of Y by sets open in X;
Γ_{X} : the collection of open γ-covers of X. An open cover \mathscr{U} of X is an γ-cover (Gerlits and Nagy 1982) if it is infinite and each x belongs to all but finitely many elements of \mathscr{U};
$\Gamma_{Y X}$: the collection of open γ-covers of Y by sets open in X.
We shall drop the subscript X or Y in the indication of the family of covers when it is clear from the context which space we are referring to.

Definition 1.4. (Kočinac 1999) Let \mathscr{A}, \mathscr{B} be collections of subsets of an infinite space X. Then
$S S_{1}(\mathscr{A}, \mathscr{B})$ denote the selection hypothesis: For each sequence ($\left.\mathscr{U}_{n}: n \in \mathbb{N}\right)$ of elements of \mathscr{A} there exists a sequence $\left(x_{n}: n \in \mathbb{N}\right)$ of points of X such that $\left\{s t\left(x_{n}, \mathscr{U}_{n}\right): n \in \mathbb{N}\right\}$ belongs to \mathscr{B};
$S S_{\text {fin }}(\mathscr{A}, \mathscr{B})$ denote the selection hypothesis: For each sequence $\left(\mathscr{U}_{n}: n \in \mathbb{N}\right)$ of elements of \mathscr{A} there exists a sequence $\left(F_{n}: n \in \mathbb{N}\right)$ of finite subsets of X such that $\left\{s t\left(F_{n}, \mathscr{U}_{n}\right): n \in \mathbb{N}\right\}$ belongs to \mathscr{B}.

Kočinac (1999) used the following terminology. Let X be a space.

- X is SSR (strongly star-Rothberger) if it satisfies $S S_{1}(\mathscr{O}, \mathscr{O})$;
- X is SSM (strongly star-Menger) if it satisfies $S S_{f i n}(\mathscr{O}, \mathscr{O})$;
- X is SSH (strongly star-Hurewicz) if it satisfies $S S_{\text {fin }}(\mathscr{O}, \Gamma)$.

Bonanzinga et al. (2009), using a different terminology, considered the following weaker star versions of the properties in Definition 1.4:

Definition 1.5. (Bonanzinga et al. 2009) Let \mathscr{A}, \mathscr{B} be collections of subsets of an infinite space X. Then
$N S S_{1}(\mathscr{A}, \mathscr{B})$ denote the selection hypothesis: For each sequence $\left(\mathscr{U}_{n}: n \in \mathbb{N}\right)$ of elements of \mathscr{A} there exists a sequence ($x_{n}: n \in \mathbb{N}$) of points of X such that for every open $O_{n} \ni x_{n}, n \in \mathbb{N},\left\{s t\left(O_{n}, \mathscr{U}_{n}\right): n \in \mathbb{N}\right\}$ belongs to \mathscr{B};
$N S S_{\text {fin }}(\mathscr{A}, \mathscr{B})$ denote the selection hypothesis: For each sequence $\left(\mathscr{U}_{n}: n \in \mathbb{N}\right)$ of elements of \mathscr{A} there exists a sequence ($A_{n}: n \in \mathbb{N}$) of finite subsets of X such that for every open $O_{n} \supset A_{n}, n \in \mathbb{N},\left\{s t\left(O_{n}, \mathscr{U}_{n}\right): n \in \mathbb{N}\right\}$ belongs to \mathscr{B}.

Bonanzinga et al. (2009) used the following terminology. Let X be a space.

- X is NSR (neighbourhood strongly star-Rothberger) if it satisfies $N S S_{1}(\mathscr{O}, \mathscr{O})$;
- X is NSM (neighbourhood strongly star-Menger) if it satisfies $N S S_{f i n}(\mathscr{O}, \mathscr{O})$;
- X is NSH (neighbourhood strongly star-Hurewicz) if it satisfies $N S S_{f i n}(\mathscr{O}, \Gamma)$.

Recently, De la Rosa and Garcia-Balan (2021) used the following terminology for selective versions of properties in Definitions $\mathbf{1 . 4}$ and 1.7.

Definition 1.6. (De la Rosa and Garcia-Balan 2021; see also Kočinac 2021) Let \mathscr{A}, \mathscr{B} be collections of subsets of an infinite space X. Then
$\operatorname{selSS_{1}}(\mathscr{A}, \mathscr{B})$ denote the selection hypothesis: For each sequence $\left(\mathscr{U}_{n}: n \in \mathbb{N}\right)$ of elements of \mathscr{A} and each sequence $\left(D_{n}: n \in \mathbb{N}\right)$ of dense set of X there exists a sequence $\left(x_{n}: n \in \mathbb{N}\right)$ of points $x_{n} \in D_{n}, n \in \mathbb{N}$, such that $\left\{s t\left(x_{n}, \mathscr{U}_{n}\right): n \in \mathbb{N}\right\}$ belongs to \mathscr{B};
$\operatorname{selSS}_{\text {fin }}(\mathscr{A}, \mathscr{B})$ denote the selection hypothesis: For each sequence $\left(\mathscr{U}_{n}: n \in \mathbb{N}\right)$ of elements of \mathscr{A} and each sequence $\left(D_{n}: n \in \mathbb{N}\right)$ of dense set of X there exists a sequence $\left(F_{n}: n \in \mathbb{N}\right)$ of finite subsets $F_{n} \subset D_{n}, n \in \mathbb{N}$, such that $\left\{s t\left(F_{n}, \mathscr{U}_{n}\right): n \in \mathbb{N}\right\}$ belongs to \mathscr{B}.

De la Rosa and Garcia-Balan (2021) used the following terminology. Let X be a space.

- X is selSSR (selectively strongly star-Rothberger) if it satisfies $\operatorname{selSS}_{1}(\mathscr{O}, \mathscr{O})$;
- X is selSSM (selectively strongly star-Menger) if it satisfies $\operatorname{selSS}_{\text {fin }}(\mathscr{O}, \mathscr{O})$;
- X is selSSH (selectively strongly star-Hurewicz) if it satisfies $\operatorname{sel}^{S S} S_{f i n}(\mathscr{O}, \Gamma)$.

Definition 1.7. (De la Rosa and Garcia-Balan 2021) Let \mathscr{A}, \mathscr{B} be collections of subsets of an infinite space X. Then
$\operatorname{selNSS} S_{1}(\mathscr{A}, \mathscr{B})$ denote the selection hypothesis: For each sequence $\left(\mathscr{U}_{n}: n \in \mathbb{N}\right)$ of elements of \mathscr{A} and each sequence ($D_{n}: n \in \mathbb{N}$) of dense set of X there exists a sequence $\left(x_{n}: n \in \mathbb{N}\right)$ of points $x_{n} \in D_{n}, n \in \mathbb{N}$, such that for every open $O_{n} \ni x_{n}, n \in \mathbb{N}$, $\left\{\operatorname{st}\left(O_{n}, \mathscr{U}_{n}\right)\right.$: $n \in \mathbb{N}\}$ belongs to \mathscr{B};
selNSS fin $(\mathscr{A}, \mathscr{B})$ denote the selection hypothesis: For each sequence $\left(\mathscr{U}_{n}: n \in \mathbb{N}\right)$ of elements of \mathscr{A} and each sequence $\left(D_{n}: n \in \mathbb{N}\right)$ of dense set of X there exists a sequence $\left(F_{n}: n \in \mathbb{N}\right)$ of finite subsets $F_{n} \subset D_{n}, n \in \mathbb{N}$, such that for every open $O_{n} \supset F_{n}, n \in \mathbb{N}$, $\left\{s t\left(O_{n}, \mathscr{U}_{n}\right): n \in \mathbb{N}\right\}$ belongs to \mathscr{B}.

De la Rosa and Garcia-Balan (2021) used the following terminology. Let X be a space.

- X is selNSR (neighbourhood selectively strongly star-Rothberger) if it satisfies selNSS $(\mathscr{O}, \mathscr{O})$;
- X is selNSM (neighbourhood selectively strongly star-Menger) if it satisfies $\operatorname{selNSS}_{\text {fin }}(\mathscr{O}, \mathscr{O})$;
- X is selNSH (neighbourhood selectively strongly star-Hurewicz) if it satisfies $\operatorname{selNSS}_{\text {fin }}(\mathscr{O}, \Gamma)$.
See also Kočinac (2015) for a survey on star selection principles.
Recall that a family of sets is almost disjoint (a.d., for short) if the intersection of any two distinct elements is finite. Let \mathscr{A} be an a.d. family of infinite subsets of \mathbb{N}. Put $\Psi(\mathscr{A})=\mathbb{N} \cup \mathscr{A}$ and topologize $\Psi(\mathscr{A})$ as follows: the points of \mathbb{N} are isolated and a basic neighbourhood of a point $a \in \mathscr{A}$ takes the form $\{a\} \cup(A \backslash F)$, where F is a finite set. $\Psi(\mathscr{A})$ is called a Ψ-space or a Isbell-Mrówka space (see Engelking 1989).

2. SelSSM and related properties.

Proposition 2.1. A space X is selSSM iff for each sequence ($\mathscr{U}_{n}: n \in \mathbb{N}$) of open covers of X and each sequence $\left(D_{n}: n \in \mathbb{N}\right)$ of dense subspaces of X, there exists a sequence $\left(F_{n}: n \in \mathbb{N}\right)$ of finite subsets $F_{n} \subset D_{n}, n \in \mathbb{N}$, such that for every $x \in X$ there exists $n \in \mathbb{N}$ such that $s t\left(x, \mathscr{U}_{n}\right) \cap F_{n} \neq \emptyset$.
Proof. It it enough to note that if $x \in X$ then

$$
x \in s t\left(F_{n}, \mathscr{U}_{n}\right) \Leftrightarrow s t\left(x, \mathscr{U}_{n}\right) \cap F_{n} \neq \emptyset .
$$

Caserta et al. (2011) gave the following selective version of strongly star-Menger property.
Definition 2.1. (Caserta et al. 2011) A space X is absolutely strongly star-Menger (briefly, $a S S M)$ if for each sequence ($\mathscr{U}_{n}: n \in \mathbb{N}$) of open covers of X and each dense subspace D of X, there exists a sequence $\left(F_{n}: n \in \mathbb{N}\right)$ of finite subsets of D such that $\left\{\operatorname{st}\left(F_{n}, \mathscr{U}_{n}\right): n \in \mathbb{N}\right\}$ is an open cover of X.

The implications in the following diagram are easy to see:

Note that any star-compat non a-star-Lindelöf space is an example of a SSM space which is not aSSM: consider, for example, the space $X=\omega_{1} \times\left(\omega_{1}+1\right)$ (see Bonanzinga 1998).

Bonanzinga et al. (2017, Example 8) gave an a-star-Lindelöf not sel-a-star-Lindelöf space. Of course every countable discrete space is a selSSM not countably compact, hence not acc, space.

The following questions are open:
Question 2.1. Does exist an $a S S M$ which is not sel-a-star-Lindelöf?
Question 2.2. Does exist an $a S S M$ not selSSM space?
Bonanzinga and Matveev proved the following characterization:
Theorem 2.1. (Bonanzinga and Matveev 2009) The following properties are equivalent:
(i) $\Psi(\mathscr{A})$ is SSM
(ii) $|\mathscr{A}|<\mathfrak{d}$.

Now we have the following characterization.
Proposition 2.2. Let X be a topological space. Suppose $|X|<\mathfrak{d}$. Then all the following properties are equivalent in X :
(i) selSSM
(ii) sel-a-star-Lindelöf
(iii) a-star-Lindelöf
(iv) aSSM

Proof. Since (i) \Rightarrow (ii) \Rightarrow (iii), (i) \Rightarrow (iv) and (iv) \Rightarrow (iii), we only prove that (iii) implies (i). Let ($\mathscr{U}_{n}: n \in \mathbb{N}$) be a sequence of open covers of X and ($D_{n}: n \in \mathbb{N}$) a sequence of dense subsets of X. Fixed $n \in \mathbb{N}$, since X is an a-star-Lindelöf space, we can find a countable subset $C_{n} \subseteq D_{n}$ such that $X=\operatorname{st}\left(C_{n}, \mathscr{U}_{n}\right)$. We enumerate $C_{n}=\left\{c_{n, k}\right\}_{k \in \mathbb{N}}$ for all $n \in \mathbb{N}$. For each $x \in X$ and $n \in \mathbb{N}$ we can find $f_{x}(n) \in \mathbb{N}$ such that $c_{n, f_{x}(n)} \in \operatorname{st}\left(x, \mathscr{U}_{n}\right)$. Since the set $\left\{f_{x}: x \in X\right\}$ is not cofinal in $\left(\mathbb{N}^{\mathbb{N}}, \leq\right)$, there are $g \in \mathbb{N}^{\mathbb{N}}$ and $n_{x} \in \mathbb{N}$ such that $f_{x}\left(n_{x}\right)<g\left(n_{x}\right)$ for all $x \in X$. Let $F_{n}=\left\{c_{n, j}: j \leq g(n)\right\}$. Then F_{n} is a finite subset of D_{n} for all $n \in \mathbb{N}$. Let $x \in X$. Then obviously $x \in \operatorname{st}\left(F_{n_{x}}, \mathscr{U}_{n_{x}}\right)$. This prove that $X=\bigcup\left\{s t\left(F_{n}, \mathscr{U}_{n}\right): n \in \mathbb{N}\right\}$.

Corollary 2.1. (Bonanzinga et al. 2017) If X is an a-star-Lindelöf space with $|X|<\mathfrak{d}$ then X is sel-a-star-Lindelöf.

Corollary 2.2. (see also Song 2013) The following properties are equivalent:
(i) $\Psi(\mathscr{A})$ is selSSM
(ii) $\Psi(\mathscr{A})$ is aSSM
(iii) $\Psi(\mathscr{A})$ is SSM
(iv) $|\mathscr{A}|<\mathfrak{D}$.

Proof. Of course (i) \Rightarrow (ii) \Rightarrow (iii) and by Theorem 2.1 (iii) \Leftrightarrow (iv). Now suppose $|\mathscr{A}|<\mathfrak{d}$. Since $\Psi(\mathscr{A})$ is always a-star-Lindelöf, by the previous proposition we can conclude that $\Psi(\mathscr{A})$ is selSSM.

Cuzzupé posed the following question:
Question 2.3. (Cuzzupé 2017) Is the product of a selSSM space with a compact first countable space a selSSM?

Now, under the assumption $\omega_{1}<\mathfrak{d}$, we answer in the negative to the previous question.
Corollary 2.3. $\left(\omega_{1}<\mathfrak{d}\right)$ There is a selSSM space X and a compact first countable space Y such that $X \times Y$ is not selSSM.

Proof. Let $X=\mathbb{N} \cup \mathscr{A}$ be a Ψ-space with $|\mathscr{A}|=\omega_{1}$ and Y a compact first countable non ccc space. Then, by Corollay 2.2, X is selSSM. Following Bonanzinga and Matveev (2001, Corollary 2.4), since X is a space having uncountable extent and Y is a non ccc space, we have that the product $X \times Y$ is not star-Lindelöf, hence not selSSM.

Bonanzinga et al. (2017, Example 8) also constructed an a-star-Lindelöf non sel-a-star-Lindelöf space of cardinality \mathfrak{d} and then, by Corollary 2.1, the following result was obtained:

Corollary 2.4. (see Bonanzinga et al. 2017) The following conditions are equivalent:
(i) $\omega_{1}<\mathfrak{d}$
(ii) Every a-star-Lindelöf space of cardinality ω_{1} is sel-a-star-Lindelöf.

Question 2.4. Is the characterization of Corollary 2.4 true if "sel-a-star-Lindelöf" is replaced by with "aSSM"?

We can consider the following Hurewicz-type definition.
Definition 2.2. (Caserta et al. 2011) A space X is absolutely strongly star-Hurewicz (briefly, $a S S H)$ if for each sequence $\left(\mathscr{U}_{n}: n \in \mathbb{N}\right)$ of open covers of X and each dense subspace D of X, there exists a sequence ($F_{n}: n \in \mathbb{N}$) of finite subsets of D such that each x belongs to all but finitely elements of $\left\{s t\left(F_{n}, \mathscr{U}_{n}\right): n \in \mathbb{N}\right\}$.

Recall the following characterization of Bonanzinga and Matveev:
Theorem 2.2. (Bonanzinga and Matveev 2009) The following properties are equivalent:
(i) $\Psi(\mathscr{A})$ is SSH
(ii) $|\mathscr{A}|<\mathfrak{b}$.

By the previous result and following step by step the proof of the implication (iii) \Rightarrow (i) in Proposition 2.2, we obtain:

Proposition 2.3. If X is an a-star-Lindelöf space with $|X|<\mathfrak{b}$, then X is selSSH.
Corollary 2.5. If X is an aSSH space with $|X|<\mathfrak{b}$, then X is selSSH.
Then we have the following characterization.
Corollary 2.6. Let X be a topological space. Suppose $|X|<\mathfrak{b}$. Then all the following properties are equivalent in X :
(i) selSSH
(i) selSSM
(ii) sel-a-star-Lindelöf
(iii) a-star-Lindelöf
(iv) aSSH.

3. Relative selective star-selection principles

We introduce the following definitions:
Definition 3.1. A subspace Y of a space X is relatively selSSM in X if for each sequence $\left(\mathscr{U}_{n}: n \in \mathbb{N}\right)$ of open covers of X and each sequence ($D_{n}: n \in \mathbb{N}$) of dense subspaces of X, there exists a sequence ($F_{n}: n \in \mathbb{N}$) of finite subsets $F_{n} \subset D_{n}, n \in \mathbb{N}$, such that $\left\{s t\left(F_{n}, \mathscr{U}_{n}\right): n \in \mathbb{N}\right\}$ is an open cover of Y (i.e. if $\operatorname{selSS}_{f i n}\left(\mathscr{O}_{X}, \mathscr{O}_{Y X}\right)$ holds).

Now we introduce the following technical property:
Definition 3.2. A subspace Y of a space X is relatively closed selSSM in X if it is closed in X and relatively selSSM in X. A space Y is said to be a relatively closed selSSM, briefly, rel-cl selSSM, if there is a larger space X such that Y is relatively closed selSSM in X.

Of course, every selSSM space is rel-cl selSSM. The following example shows that a rel-cl selSSM space need not to be selSSM.

Example 3.1. A rel-cl selSSM space which is not selSSM.
Let \mathscr{A} be a almost disjoint family of cardinality $\omega_{1}<\mathfrak{d}$. Since, by Corollary 2.2, $\Psi(\mathscr{A})$ is selSSM and \mathscr{A} is closed in $\Psi(\mathscr{A})$, we have that \mathscr{A} is rel-cl selSSM in $\Psi(\mathscr{A})$. Since the subspace \mathscr{A} of $\Psi(\mathscr{A})$ is the discrete subspace of cardinality ω_{1}, we have that \mathscr{A} can not be selSSM.

We have the following result:
Theorem 3.1. Let Y be a subspace of X. If for every $n \in \mathbb{N}, Y^{n}$ is relatively selSSM in X^{n}, then selSS fin $\left(\mathscr{O}_{X}, \Omega_{Y X}\right)$ holds.
Proof. Let $\left(\mathscr{U}_{n}: n \in \mathbb{N}\right)$ be a sequence of open covers of $X,\left(D_{n}: n \in \mathbb{N}\right)$ be a sequence of dense subspaces of X and $\mathbb{N}=N_{1} \cup N_{2} \ldots$ be a partition on \mathbb{N} into infinite (pairwise disjoint) sets. For each $\kappa \in \mathbb{N}$ and every $m \in N_{\kappa}$ let $\mathscr{W}_{m}=\left(\mathscr{U}_{m}\right)^{\kappa}$ and $E_{m}=\left(D_{m}\right)^{\kappa}$.

Then, $\left(\mathscr{W}_{m}: m \in N_{K}\right)$ is a sequence of open covers of X^{κ} and $\left(E_{m}: m \in N_{\kappa}\right)$ is a sequence of dense subspaces of X^{κ}. Applying the fact that Y^{κ} is relatively selSSM in X^{κ} to these
sequences, we can find a sequence ($F_{m}: n \in N_{\kappa}$) of finite subsets $F_{m} \subset E_{m}, m \in N_{\kappa}$, such that $\left\{s t\left(F_{m}, \mathscr{W}_{m}\right): n \in N_{\kappa}\right\}$ is an open cover of Y^{κ}. For each $m \in N_{\kappa}$, let $S_{m} \subset X$ be the union of projections of F_{m} on all coordinates. Since each projection is finite and it is contained in D_{m}, we have that S_{m} is a finite subset of D_{m}. Also, for every $m \in N_{\kappa},\left(S_{m}\right)^{\kappa} \supset F_{m}$. Now we prove that $\left\{s t\left(S_{n}, \mathscr{U}_{n}\right): n \in \mathbb{N}\right\}$ is an ω-cover of Y. Let $H=\left\{y_{1}, \ldots, y_{p}\right\}$ be a finite subset of Y. Then $\left(y_{1}, \ldots, y_{p}\right) \in Y^{p}$. Then, there exists $n \in N_{p}$ such that $\left(y_{1}, \ldots, y_{p}\right) \in \operatorname{st}\left(F_{n}, \mathscr{W}_{n}\right) \subset$ $\operatorname{st}\left(\left(S_{n}\right)^{p}, \mathscr{W}_{n}\right)$ and consequently $H \subset s t\left(S_{n}, \mathscr{U}_{n}\right)$.
Corollary 3.1. Let X be a space. If for every $n \in \mathbb{N}, X^{n}$ is selSSM, then X satisfies $\operatorname{selSS_{fin}^{*}}(\mathscr{O}, \Omega)$.
Definition 3.3. A subspace Y of a space X is relatively selSSH in X if $\operatorname{selSS}_{f i n}\left(\mathscr{O}_{X}, \Gamma_{Y X}\right)$ holds.

Now we introduce the following technical property:
Definition 3.4. A subspace Y of a space X is relatively closed selSSH in X if it is closed in X and relatively selSSH in X. A space Y is said to be a relatively closed selSSH, briefly, rel-cl selSSH, if there is a larger space X such that Y is relatively closed selSSH in X.

Of course, every selSSH space is rel-cl selSSH. The following example shows that a rel-cl selSSH space need not to be selSSH.
Example 3.2. A rel-cl selSSH space which is not selSSH.
Let \mathscr{A} be a almost disjoint family of cardinality $<\mathfrak{b}$. Since, by Proposition 2.3, $\Psi(\mathscr{A})$ is selSSH and \mathscr{A} is closed in $\Psi(\mathscr{A})$, we have that \mathscr{A} is rel-cl selSSH in $\Psi(\mathscr{A})$. Since the subspace \mathscr{A} of $\Psi(\mathscr{A})$ is the discrete supace of cardinality \mathfrak{b}, we have that \mathscr{A} can not be selSSH.

Now we consider the relative versions of neighbourhood selective SSM and SSH properties. First we note the following easy characterizations.

Proposition 3.1. A space X is selNSM (selNSH) iff for each sequence ($\mathscr{U}_{n}: n \in \mathbb{N}$) of open covers of X and each sequence ($D_{n}: n \in \mathbb{N}$) of dense subspaces of X, there exists a sequence ($F_{n}: n \in \mathbb{N}$) of finite subsets $F_{n} \subset D_{n}, n \in \mathbb{N}$, so that for every $x \in X$ there exists $n \in \mathbb{N}$ such that $\overline{\operatorname{st}\left(x, \mathscr{U}_{n}\right)} \cap F_{n} \neq \emptyset$ (respectively, for every $x \in X, \overline{s t\left(x, \mathscr{U}_{n}\right)} \cap F_{n} \neq \emptyset$ for all but finite $n \in \mathbb{N}$).
Proof. It is enough to note that, if $x \in X$, then
$\overline{\operatorname{st}\left(x, \mathscr{U}_{n}\right)} \cap F_{n} \neq \emptyset \Leftrightarrow$ for every open $O_{n} \supset F_{n}, n \in \mathbb{N}$, st $\left(x, \mathscr{U}_{n}\right) \cap O_{n} \neq \emptyset \Leftrightarrow$ for every open $O_{n} \supset$ $F_{n}, n \in \mathbb{N}, x \in \operatorname{st}\left(O_{n}, \mathscr{U}_{n}\right)$.
Definition 3.5. A subspace Y of a space X is
relatively selNSM if $\operatorname{selNSS}_{f i n}\left(\mathscr{O}_{X}, \mathscr{O}_{Y X}\right)$ holds;
relatively selNSH if $\operatorname{selNSS} S_{f i n}\left(\mathscr{O}_{X}, \Gamma_{Y X}\right)$ holds.
We introduce the following technical property:
Definition 3.6. A subspace Y of a space X is
relatively closed selNSM in X if it is closed in X and relatively selNSM in X; a space Y is said to be a relatively closed selNSM, briefly, rel-cl selNSM if there is a larger space X such that Y is relatively closed selNSM in X;
relatively closed selNSH in X if it is closed in X and relatively selNSH in X; a space Y is said to be a relatively closed selNSH, briefly, rel-cl selNSH if there is a larger space X such that Y is relatively closed selNSH in X.
Of course, every selNSM space is rel-cl selNSM and every selNSH space is rel-cl selNSH. The following examples show that assuming $\omega_{1}<\mathfrak{d}$ a rel-cl selNSM space need not to be selNSM and that assuming $\omega_{1}<\mathfrak{b}$ a rel-cl selNSH space need not to be selNSH.

Example 3.3. $\left(\omega_{1}<\mathfrak{d}\right)$ A rel-cl selNSM space which is not selNSM.
Example 3.4. $\left(\omega_{1}<\mathfrak{b}\right)$ A rel-cl selNSH space which is not selNSH.
Bonanzinga et al. (2009) considered the following space: let S be a subset of \mathbb{R} such that for every open $U \subset \mathbb{R},|S \cap U|=\omega_{1}$ (in particular $|S|=\omega_{1}$). Consider $X_{S}=S \times(\omega+1)$ topologized as follows: a basic neighbourhood of a point $\langle x, n\rangle$, where $x \in S$ and $n \in \omega$, takes the form $((U \cap S) \backslash A) \times\{n\}$ where U is a neighbourhood of x in the usual topology of \mathbb{R} and A is an arbitrary countable subset of S not containing x; a point $\langle x, \omega\rangle$, where $x \in S$, has basic neighbourhoods of the form $\{\langle x, \omega\rangle\} \cup(((U \cap S) \backslash A) \times(n, \omega))$ where U is a neighbourhood of x in the usual topology of \mathbb{R} and A is an arbitrary countable subset of S. Bonanzinga et al. (2009) proved, under the assumption $\omega_{1}<\mathfrak{d}$, that for every sequence ($\mathscr{U}_{n}: n \in \mathbb{N}$) of open covers of X_{S} there exists finite subset $C_{n} \subset X$ such that for every neighbourhood O_{n} of $C_{n}, n \in \mathbb{N}$, we have that $\bigcup\left\{s t\left(O_{n}, \mathscr{U}_{n}\right): n \in \mathbb{N}\right\}$ contains $S \times\{\omega\}$. Since each $C_{n}, n \in \mathbb{N}$, is contained in $S \times \omega$ and each dense subspaces of X_{S} contains $S \times \omega$, we can conlude that $S \times\{\omega\}$ is relatively selNSM in X_{S}. Since $S \times\{\omega\}$ is closed in X_{S}, it is rel-cl selNSM in X_{S}; similarly, under the assumption $\omega_{1}<\mathfrak{b}$, we can prove that $S \times\{\omega\}$ is rel-cl selNSH in X_{S}. Since the subspace $S \times\{\omega\}$ is a discrete space, it is neither selNSM nor selNSH.

Question 3.1. Do there exist ZFC examples of spaces as in Examples 3.3 and 3.4?
We have the following result:
Theorem 3.2. Let Y be a subspace of X. If for every $n \in \mathbb{N}, Y^{n}$ is relatively selNSM in X^{n}, then $\operatorname{selNSS}_{f i n}\left(\mathscr{O}_{X}, \Omega_{Y X}\right)$ holds.
Proof. Let $\left(\mathscr{U}_{n}: n \in \mathbb{N}\right)$ be a sequence of open covers of $X,\left(D_{n}: n \in \mathbb{N}\right)$ be a sequence of dense subspaces of X and $\mathbb{N}=N_{1} \cup N_{2} \ldots$ be a partition on \mathbb{N} into infinite (pairwise disjoint) sets. For each $\kappa \in \mathbb{N}$ and every $m \in N_{\kappa}$ let $\mathscr{W}_{m}=\left(\mathscr{U}_{m}\right)^{\kappa}$ and $E_{m}=\left(D_{m}\right)^{\kappa}$.

Then, ($\left.\mathscr{W}_{m}: m \in N_{K}\right)$ is a sequence of open covers of X^{κ} and ($E_{m}: m \in N_{\kappa}$) is a sequence of dense subspaces of X^{κ}. Applying the fact that Y^{κ} is relatively selNSM in X^{κ} to these sequences, we can find a sequence ($F_{m}: m \in N_{\kappa}$) of finite subsets $F_{m} \subset D_{m}, m \in N_{\kappa}$, such that for every sequence $\left(O_{m}\left(F_{m}\right): m \in N_{K}\right)$ of neighbourhoods of $F_{m}, m \in N_{\kappa}$ in X^{κ}, we have that $\left\{s t\left(\left(O_{m}\left(F_{m}\right), \mathscr{W}_{m}\right): m \in N_{\kappa}\right\}\right.$ is an open cover of Y^{κ}. For each $m \in N_{\kappa}$, let $S_{m} \subset X$ be the union of projections of F_{m} on all coordinates. Since each projection is finite and it is contained in D_{m}, we have that S_{m} is a finite subset of D_{m}. Also, for every $m \in N_{\kappa}$, $\left(S_{m}\right)^{\kappa} \supset F_{m}$. Let $\left(O_{n}^{\prime}\left(S_{n}\right): n \in \mathbb{N}\right)$ be a sequence of neighbourhoods of $S_{n}, n \in \mathbb{N}$, in X. Now we prove that $\left\{\operatorname{st}\left(O^{\prime}\left(S_{n}\right), \mathscr{U}_{n}\right): n \in \mathbb{N}\right\}$ is a ω-cover of Y. Let $H=\left\{y_{1}, \ldots, y_{p}\right\}$ be a finite subset of Y. Then $\left(y_{1}, \ldots, y_{p}\right) \in Y^{p}$. Then, there exists $n \in N_{p}$ such that $\left(\left(O_{n}^{\prime}\left(S_{n}\right)\right)^{p}: n \in \mathbb{N}\right)$ is a sequence of neighbourhoods of $F_{n}, n \in \mathbb{N}$ in X^{p} and $\left(y_{1}, \ldots, y_{p}\right) \in \operatorname{st}\left(\left(O^{\prime}\left(S_{n}\right)\right)^{p}, \mathscr{W}_{n}\right)$. Then $H \subset \operatorname{st}\left(O^{\prime}\left(S_{n}\right), \mathscr{U}_{n}\right)$.

Corollary 3.2. Let X be a space. If for every $n \in \mathbb{N}, X^{n}$ is selNSM, then X satisfies $\operatorname{selNSS}_{f i n}(\mathscr{O}, \Omega)$.

References

Bal, P., Bhowmik, S., and Gauld, D. (2018). "On Selectively star-Lindelöf properties". The Journal of the Indian Mathematical Society 85(3-4), 291-304. DOI: 10.18311/jims/2018/20145.
Bella, A., Bonanzinga, M., and Matveev, M. V. (2009). "Variations of selective separability". Topology and Its Applications 156, 1241-1252. DOI: 10.1016/j.topol.2008.12.029.
Bella, A., Bonanzinga, M., Matveev, M. V., and Tkachuk, V. V. (2008). "Selective separability: general facts and behaviour in countable spaces". Topology Proceedings 32, 15-30. URL: http: //topology.nipissingu.ca/tp/reprints/v32/tp32002.pdf.
Bhowmik, S. (2011). "Selectively star-Lindelöf spaces". In: 26th Summer Conference on Topology and its Applications - Abstract Book. City College of Cuny. New York, NY, USA, pp. 26-29. URL: http://at.yorku.ca/c/b/c/d/24.htm.
Bonanzinga, M. (1998). "Star-Lindelöf and absolutely star-Lindelöf spaces". Questions and Answers in General Topology 16(2), 79-104. URL: http://qagt.org/v16n2.html.
Bonanzinga, M., Cammaroto, F., Kočinac, L. D., and Matveev, M. V. (2009). "On weaker forms of Menger, Rothberger and Hurewicz properties". Matematički Vesnik 61, 13-23. URL: http: //www.vesnik.math.rs/vol/mv09102.pdf.
Bonanzinga, M., Cuzzupé, M. V., and Sakai, M. (2017). "On selective absolute star-Lindelöfness". Topology and Its Applications 221, 517-523. DOI: 10.1016/j.topol.2017.02.006.
Bonanzinga, M. and Matveev, M. V. (2001). "Products of star-Lindelöf and related spaces". Houston Journal of Mathematics 27(1), 45-57. URL: https://www.math.uh.edu/~hjm/Vol27-1.html.
Bonanzinga, M. and Matveev, M. V. (2009). "Some covering properties for Ψ-spaces". Matematički Vesnik 61, 3-11. URL: http://www.vesnik.math.rs/vol/mv09101.pdf.
Bonanzinga, M. and Pansera, B. A. (2007). "Relative versions of some star-selection principles". Acta Mathematica Hungarica 117, 231-243. DOI: 10.1007/s10474-007-6095-5.
Caserta, A., Di Maio, G., and Kočinac, L. D. R. (2011). "Versions of properties (a) and (pp)". Topology and Its Applications 158, 1630-1638. DOI: 10.1016/j.topol.2011.05.010.
Cuzzupé, M. V. (2017). "Some selective and monotone versions of covering properties and some results on the cardinality of a topological space". PhD thesis. Catania, Italy: University of Catania, Department of Mathematics and Computer Science. URL: http://archivia.unict.it/handle/10761/ 3830.

De la Rosa, J. C. and Garcia-Balan, S. A. (2021). "Variations of star selection principles on small spaces". arXiv: 2105.06644 [General Topology (math.GN)].
Engelking, R. (1989). General Topology. 2nd ed. Berlin: Heldermann Verlag.
Gerlits, J. and Nagy, Z. (1982). "Some properties of C(X), I". Topology and Its Applications 14, 151-161. DOI: 10.1016/0166-8641(82)90065-7.
Hodel, R. (1984). "CHAPTER 1 - Cardinal Functions I". In: Handbook of Set-Theoretic Topology. Ed. by K. Kunen and J. E. Vaughan. Amsterdam: North-Holland, pp. 1-61. DOI: 10.1016/B978-0-444-86580-9.50004-5.
Kočinac, L. D. R. (1999). "Star-Menger and related spaces". Publicationes Mathematicae Debrecen 55(3-4), 421-431. URL: http://publi.math.unideb.hu/load_pdf.php?p=556.
Kočinac, L. D. R. (2015). "Star selection principles: A survey". Khayyam Journal of Mathematics 1(1), 82-106. DOI: 10.22034/kjm.2015.12289.
Kočinac, L. D. R. (2021). "Selective forms of some topological properties". In: Fifth International Conference of Mathematical Sciences - Abstract Book. Maltepe University. Turkey. URL: https: //www.maltepe.edu.tr/icms21.

Matveev, M. V. (1994). "Absolutely countably compact spaces". Topology and Its Applications 58(1), 81-92. DOI: 10.1016/0166-8641(94)90074-4.
Matveev, M. V. (1998). "A survey on star covering properties". Topology Atlas. Preprint \# 330. URL: http://at.yorku.ca/v/a/a/a/19.htm.
Sakai, M. (2014). "Star versions of the Menger property". Topology and Its Applications 176, 22-34. DOI: 10.1016/j.topol.2014.07.006.
Song, Y. K. (2013). "Absolutely strongly star-Menger spaces". Topology and Its Applications 160, 475-481. DOI: 10.1016/j.topol.2012.12.006.
a Università degli Studi di Messina
Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra Contrada Papardo, 98166 Messina, Italy

* To whom correspondence should be addressed | email: mbonanzinga@unime.it

